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Abstract� We discuss a method of the asymptotic computation of moments of 

the normalized eigenvalue counting measure of random matrices of large order� The 

method is based on the resolvent i d e n tity and on some formulas relating expecta�
tions of certain matrix functions and the expectations including their derivatives or� 

equivalently� on some simple formulas of the perturbation theory� In the framework 

of this unique approach w e obtain functional equations for the Stieltjes transforms 

of the limiting normalized eigenvalue counting measure and the bounds for the rate 

of convergence for the majority k n o wn random matrix ensembles� 

�� Introduction 

Random matrix theory is actively developing� Among numerous topics of the theory 

and its various applications those related to the asymptotic eigenvalue distribution 

of random matrices of large order are of considerable interest� An important role 

in this branch of the theory plays the eigenvalue counting measure de�ned for any 

Hermitian or real symmetric matrix n on 

����� Mn 

� Mj 

(n) 

k 

j�k�1 

as follows n o� 

����� Nn��� � � �
(n) � �i n 

where � is a Borel set of the real axis R and f�(n) gn are eigenvalues of Mn�i i�1 

One distinguishes several large�n asymptotic regimes for the probability proper�
ties of eigenvalues �see e�g� 	�
�� In this paper we deal with the global regime� de�ned 

by the requirement that the expectation E�Nn���� has well de�ned �i�e� not zero 

and not in�nite� weak limit 

����� N ��� � lim E�Nn����� 

n�� 

This limit is called the Integrated Density of States �IDS�� We shall see b e l o w that 

explicit conditions to be in the global regime may look dierently in dierent cases� 

The IDS is a quantity to b e found and analyzed �rst in any random matrix 

study� because it enters in practically any problem and result of the theory� A new 

wave of interest to the global regime is motivated by recent studies of the free group 

factors of operator algebras known now as free probability theory 	�
� 
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In this paper we present a simple approach of the study of the random measure 

����� in the global regime� The approach allows us to �nd the limit ����� in many 

interesting cases� to show that the sequence of random measures ����� converges to 

this nonrandom limit either in probability or even with probability � and to �nd 

bounds on the rate of the convergence� 

The paper is organized as follows� In Section � we consider most studied random 

matrix ensembles� in particular� the Gaussian and the Circular Ensembles� This 

allows us to explain the method by using the simple and known setting of these 

ensembles� We call these ensembles classical because� �rst� they are indeed classic 

objects of the theory� and second� because of the role of the classical orthogonal 

polynomials in their studies �although� we almost do not use this technique in the 

paper�� Section � is devoted to ensembles whose probability distribution is invariant 

with respect to unitary or orthogonal transformations and whose study is motivated 

by the Quantum Field Theory� In Section � we present new results on the form of the 

limiting normalized eigenvalue counting measure of the sum of two Hermitian or real 

symmetric matrices randomly rotated one with respect to another� In Section � we 

�rst discuss ensembles with independent but not necessary Gaussian entries� These 

ensembles are known as the Wigner Ensembles� Then we consider the ensembles 

that can b e represented as the sum of the rank one independent operators� This 

form generalizes the sample covariance matrices widely used in multivariate analysis 

and is also motivated by statistical mechanics� 

Most of results� presented in the paper are known� sometimes for decades� How�
ever they were obtained by dierent and often rather complicated methods while in 

this paper we derive them in the framework of an unique approach� that we present 

in three slightly dierent versions� according to the case considered� We do not give 

here complete proofs of all presented results� but only outline basic moments of their 

proofs� The complete versions of the proofs will be published in 	�
� 

�� Classical Ensembles 

���� Gaussian Ensembles� We start from the well known ensembles among which 

the Gaussian Ensembles �GE� are most known� We restrict ourself by the technically 

simplest of Gaussian Ensembles� consisting of Hermitian matrices and known as the 

Gaussian Unitary Ensemble �GUE� because its probability distribution � � 

�����	 Pn�dM � � Z�1 exp � 

n 

Tr M 

2 dMn �w2 

is unitary invariant� Here Y Y 

�����	 dM � dMjj 

dReMjk 

dImMjk 

1�j�n 1�j� k �n 

is the �Lebesgue� measure on the space of n � n Hermitian matrices� It is often 

convenient to write 

�����	 Mn 

� n�1�2 Wn 
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where now Wn 

� fWjk 

g 

n can b e considered as the left upper corner of the semi�j�k�1 �in�nite Hermitian matrix W � fWjk 

gj�k�1� whose entries are complex Gaussian ran�
dom variables de�ned by the relations 

����� E�Wjk 

� � � � E�Wjk 

Wlm  

� � � w 

2�jl 

�km 

� 

Thus the probability s p a c e in this case consists of these matrices and has as a prob�
ability measure the in�nite product of the Gaussian measures de�ned by relations 

������ 

The relations ����� and ����� de�ne the global regime in this case� 

Theorem ���� For the Gaussian Unitary Ensemble de�ned above the sequence of 

eigenvalue counting measures ����� converges with probability � to the nonrandom 

measure Z 

� 

����� Nsc��� � 

��[�2p2w� 2
p
2w] 

p
�w2 � �2d� 

��w 

2 

i�e� Nsc 

has the density 

2��1 

p
�w2 � �2����� �sc��� � �� �w 

concentrated on the interval 	��p�w� �
p
�w
� The convergence Nn 

to Nsc 

has to be 

understood as the weak convergence of measures� 

The theorem dates back in fact to Wigner �see 	�
�� We give below t h e t wo proofs 

of the theorem to illustrate two methods that can be used in rather general situation 

of dependent and not necessary Gaussian entries� Both proofs as well as other proofs 

in this paper are based on the study the Stieltjes transforms of measures instead of 

measures themselves� In the random matrix theory the Stieltjes transform was used 

for the �rst time in paper 	��
 and since then is proved to b e a rather e�cient tool 

of the study of the global regime� 

Recall that the Stieltjes transform f �z� of a non�negative measure m�d��� m �R� � 

�� is the function of the complex variable z de�ned for all non�real z by the integral Z 

m�d��
����� f �z� � � Imz �� � � 

� � z 

Here and below w e use integrals without indicated limits denote integrals over whole 

real axis� f �z� is obviously analytic for non�real z and satis�es the conditions 

����� Imf � Imz � �� Imz �� � � sup yjf �iy�j � � � 

y�1 

It can b e shown 	�
 that any function f �z� de�ned and analytic for non�real z and 

satisfying conditions ����� is the Stieltjes transform of a unique nonnegative and 

normalized to � measure m�d�� and that for any continuous function ���� with a 

compact support Z Z 

� 

����� ����m�d�� � lim ����Imf �� � i	�d� 

��0 � 
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Besides the one�to�one correspondence b e t ween measures and their Stieltjes trans�
forms is continuous if one will consider the weak convergence of measures and the 

convergence of the Stieltjes transforms that is uniform on all compacts in CnR� 

The use of the Stieltjes transform in this context is based on the spectral theorem 

expressing the Stieltjes transform Z 

Nn�d��
������	 gn�z� � 

� � z 

of the normalized eigenvalue counting measure ����� of a matrix Mn 

via its resolvent 

������	 G�z� � � Mn 

� z��1 � Imz �� � 

by the formula 

� 

������	 gn�z� � Tr G�z� 

n 

Our proof has as a basic ingredient t h e following 

Proposition ���� The Stieltjes transform gn�z� of the eigenvalue counting measure 

����� for the Gaussian Unitary Ensemble de�ned by ����� or by ����� and ����� has 

the asymptotic properties for Imz � y0 

� � w� 

������	 lim E�gn�z�� � fsc�z�� 

n�� 

C 

������	 E�j
n�z�j2� � 

2 2w n
where 

������ 
n�z� � gn�z� � E�gn�z��� 

fsc 

�z� is the unique solution of the equation 

������	 �w 

2f 

2 � zf � � � � 

verifying condition ���	�
 and we denote here and below by C numerical constants 

that may be di�erent in di�erent formulas� 

To prove the proposition we need the following elementary facts� 

�i� for any two matrices A and B 

������	 �B � z��1 � � A � z��1 � �B � z��1 �B � A��A � z��1 � 

�the resolvent identity�� 

�ii� if � is a complex valued Gaussian random variable de�ned by


E��� � E��2� � � � E�j�j2� � � w 

2


and ��z� z�� is a dierentiable function polynomially growing at in�nity and 

having the same property of its derivatives� then �	 � � � 

�	

�� 

������ E��� ��� ��� � E�j�j2�E � � w 

2E 

�� 

� 

��� ���
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�iii� for the resolvent G�z� � � A � z��1 of any Hermitian or real symmetric matrix 

A we have 

������ jjG�z�jj � jImzj�1 � jGjk 

�z�j � j Imzj�1 

where Gjk 

�z�� j� k � � ���n are the matrix elements of the resolvent� 

Now using ������ for the pair B � M � A � � and applying ������ we obtain the 

system of identities for the moments 

������ mp�z1� ���� zp� � E�gn�z1 

����gn�zp�� 

of the random function gn 

with non�real arguments z1 

� ���� zp 

�w2� 

z
������ m1 

�z1 

� � � � m2�z1�z1�� 

1 

z1 

�w2� 

z
mp�z1� ���� z p� � � mp�1 

�z2� ���� z p� � mp+1�z1 

� z 1�z2����� zp� � rp�z1 

� ���� z p�� p � �� 

1 

z1 

where 

X ��w2 

p 

n2z1 

n 

n�zq 

��gn�z2 

����gn�zq�1�gn�zq+1����gn�zp�� �rp�z1 

� ���� z p� � E� Tr �Gn�z1 

�G2


q�2


Assume now that jImzqj � y� q � �� ��� for some y � �� Then relations ������ and 

������ imply the b o u n d s 

� � 

������ jgn�z�j � jImzj � 

y
� 

� �w2pjmpj � 

yp 

� jrpj � � 

n2 yp+1 

Following statistical mechanics �see e�g�	�
� we can treat system of identities ������ as 

a linear equation in the Banach space B of complex valued sequences m of functions 

m � fmp�z1� ���� zp�g� 

p�1 

equipped with the norm 

������ jjmjj � sup p sup jmp�z1 

� ���� z p�j
p�1 jImzq 

j�y �q �1���p 

for some  � �� The equation has the form 

������ m � Am � b � r 

where 

�w2 

z
�Am�1�z1 

� � � m2 

�


1


�w2
�w2 

�Am�p�z1� ���� zp� � � mp�1�z2 

� ���� z p�1� � mp+1�z1 

� z 1� z 2 

� ���� z p�1�� p � �� 

z1 

z1 
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and b � � �z�1 � �� ����� r � frpg� 

p�1� It is easy to show that optimal with respect to 1 

3 

 bound for the norm of A is jjAjj � � 

2 wy 

�1 for  � 

p
�w � Choosing say y � �w 

we have uniformly in n that the norm of A is strictly less than �� the vectors m� b 

and r belong to B and 

C 

������ jjrjj � � 

2n

Thus equation ������ is uniquely soluble uniformly in n� It is easy to check that this 

equation with r replaced by zero has the factorized solution 

p Y 

m(0) �z1 

� ���� z p� � f �zq�p 

q�1 

where f veri�es ������� Thus� in view of ������ we have 

p Y C 

������ jmp�z1 

� ���� zp� � f �zq�j � 

wpn2 

q�1 

uniformly in 

������ jImzj � �w� 

In particular we obtain that 

lim m1�z� � f �z�� 

n�� 

C jm2 

�z� z� � m1�z�m1 

�z�j � 

2 2n w

Recalling de�nition ������ of mp 

we see that the �rst relation implies that f �z� satis�es 

������ The unique solubility o f ������ in this class can b e easily veri�ed� The second 

relation is just another form of ������� The proposition is proved� 

Remark� As was mentioned the technique of the proof is similar to the tech�
nique of the correlation equations of the statistical mechanics �the Kirkwood�Salzburg 

equations� the Montroll�Mayer equations� etc� 	�
� combined with the mean �eld ap�
proximation also widely used in the statistical mechanics�The reason to have here an 

analogue of the mean �eld approximation regime is again similar to that of statistical 

mechanics� the entries of the GUE matrices are all of the same order of magnitude 

�see ����� � ������� like i n teractions in the Curie�Weiss model� Thus to obtain a non�
trivial �not zero and not in�nite� limit ����� �an analogue of an extensive quantity 

p e r unit volume in the statistical mechanics� we have to introduce the n�dependent 

normalizing factor n�1�2 in ������ This �xes the global regime scaling but also leads 

to vanishing of the statistical correlations and to the factorization of the moments 

�see ������ and ������� and to a nonlinear self�consistent equation determining the 

�rst moment that can b e regarded as an analogue of the Curie�Weiss equation for 

the magnetization� 
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To prove Theorem ��� denote by Nsc 

the measure ����� corresponding to fsc�z� 

via ������ In view of Proposition ��� and the Borel�Cantelli lemma we have for any 

�xed z with jImzj � �w the convergence of gn�z� to fsc�z� with probability � for 

any �xed z� Since any analytic function is uniquely determined by its values on a 

countable set having at least one accumulation point w e h a ve t h e c o n vergence of gn 

to 

f with probability � on any compact of the domain jImzj � �w� Now by continuity 

of the correspondence b e t ween measures and their Stieltjes transforms we obtain 

that the measure Nn 

converges weakly to Nsc 

with probability �� Solving explicitly 

equation ������ in the class ����� we �nd that 

� 

������ fsc�z� � 

2 

�
p
z2 � �w2 � z�

�w

where the radical is de�ned by the condition that it b e h a ves as z as z � �� By 

using the inversion formula ����� we obtain ������ Theorem ��� is proved� 

The method was proposed in 	�
 and subsequently used in 	�� �� �� ��
 to study 

a variety of problem of random matrix theory and its applications� A certain disad�
vantage of the method is that it is rather tedious� An important simpli�cation of the 

method was proposed by A�Khorunzhy 	��
� We describe now this simpler version by 

giving another p r o o f o f t h e previous proposition� 

Rewrite the �rst two equations of the system ������ for z1 

� z� z 2 

� �z in the 

form 

�w2� 2������ E�gn�z�� � � E�gn�z��� 

z 

� 

z 

�w2� 2������ E�jgn�z�j2 � � � E�gn�z��  � E�gn�z�gn�z�� � r2 

�z�� 

z z 

Expressing ���z in the �rst term of the r�h�s� of ������ from ������ we obtain 

�w2
2������ E�j
n�z�j2� � � E�gn�z�
n�z��  �  r2�z� 

z 

where 
n�z� is de�ned in ������� By using this de�nition we can rewrite the expecta�
tion in the �rst term in the r�h�s� of this relation as E�gn�z�j
n�z�j2 ��E�gn�z��E�j
n�z�j2 �� 

Hence in view of ������ 

�2������ jE�gn�z�
n�z��j � jImzj 

E�j
n�z�j2 �� 

By using this inequality and ������ we get from ������ 

�w2�w2 

������ �� � jImzj2 

�E�j
n�z�j2 � � � 

2jImzj4 n

Thus� we obtain the bound ������ on the variance of gn�z� under condition ������� 

2By using this b o u n d we replace E�gn�z�� in ������ by E2�gn�z�� with an error of the 

order O���n2� uniformly in the domain ������� Now by using standard compactness 

arguments we can prove that any subsequence of the sequence E�gn�z�� converges 
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uniformly on compacts of the domain ������ to a solution of equation ������ satisfying 

������ Since this solution is unique we obtain other assertions of the Proposition ���� 

Remarks� �i�� Analogous results are valid for two other widely used ensembles� 

the Gaussian Orthogonal Ensemble �GOE� consisting of real symmetric matrices 

distributed according the real analogue of ������ and for the Gaussian Symplectic 

Ensemble �GSE�� consisting of self�dual Hermitian matrices having also the Gaussian 

probability distribution �see 	�
 for de�nitions and properties�� This allows us to 

write that the density of the semicircle law of all three cases is concentrated on the 

interval 	��p�w � �
p
�w 
 and has the form 

������ �sc���� � 

� 

2 

p
��	w 

2 � �2� j�j � �
p
�w � 

���w 

for the GOE �� � ��� the GUE �� � ��� and the GSE �� � � � cases respectively� 

�ii� We can consider an ensemble of the more general form 

Hn 

� H(0)������	 � Mnn 

where Mn 

is as before and H
(0) 

is a matrix whose eigenvalue counting measure N 

(0) 

n	 n 

has a weak limit N0 

as n � �� We denote by f0�z� the Stieltjes transform of N0 

� 

In this case we use the resolvent formula ������ for B � Hn 

and A � H
(0) 

and a n 

natural extension of the above arguments� We obtain an analogue of Theorem ��� 

in which the Stieltjes transform f �z� of the limiting counting measure N is a unique 

solution of the functional equation 

������	 f �z� � f0 

�z � � w 

2f �z�� 

belonging to the class ����� � The equation de�nes the the deformed semicircle law 

�see 	�
 for its properties�� 

����	 Laguerre ensemble� The ensemble is de�ned as 

� 

������	 Mn 

� AnA
� 

n n 

where the n � n matrix An 

has the probability distribution �cf������� � � 

� 

������ P �dA� � Z�1 exp	 � Tr AA� dAn �a2 

n Y 

dA � dReAjk 

ImAjk 

� 

j�k�1 

In other words the entries Ajk 

� j� k � � � ���� n of An 

are independent complex Gaussian 

random variables de�ned by 

E�Ajk 

� � E�Aj 

2 

k 

� � � � E�jAjk 

j2� � � a 

2 � 

Note that the matrix A is not Hermitian� The name of the ensemble is recent �see e�g� 

	��
� and is related to the fact that in the orthogonal polynomial approach 	�
 one uses 

in the case of this ensemble the Laguerre polynomials �recall that in the case of the 
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Gaussian Unitary Ensemble one uses the Hermite polynomials�� The ensemble models 

a generic positively de�ned matrix� The real symmetric version of the ensemble in 

which A is n� m matrix with statistically independent Gaussian entries is well known 

since the ���s in the multivariate analysis as the Wishart distribution and describes 

the sample covariance matrix of m random Gaussian n�dimensional vectors 	��
� 

Theorem ���� Let the Laguerre ensemble of random matrices be de�ned as above� 

Then its eigenvalue counting measure converges in probability � to the nonrandom 

measure of the form r Z 

�	 �a2 � � 

������	 NL��� � d� 

��a 

2
��[0�8w2 ] 

� 

The proof of the theorem follows the scheme of that of Theorem ���� that is it 

is based on an analogue of Proposition ���� In particular� we have here an analogue 

of the important inequality ������� However� the analogue of ������ has the form 

� 2E�gn�z�� � � 

z 

� �a 

2 E�gn�� 

As a result� the corresponding quadratic equation is �a2zf 

2 � zf � � � � �cf��������� 

This leads to ������� 

Remarks� �i�� Analogous results are valid for the cases when the matrix An 

is 

real or quaternion� Thus we obtain the general formula for the density of the limiting 

measure r 

� ��a 

2 � � 

������ �L� 

��� �	 � � � � � ��a 

2� 

���a 

2 � 

that is concentrated on the interval 	�� ��a 

2
 for the orthogonal �� � ��� complex 

�� � � � a n d quaternion �� � � � cases respectively� 

�ii�� We can consider an ensemble of more general form 

Hn 

� H(0)������	 � Mnn 

where Mn 

is as in ������ and H
(0) 

is a matrix whose eigenvalue counting measure n 

N 

(0) 

N
n 

has a weak limit N0 

as n � � � We denote by f0 

�z� the Stieltjes transform of 

0 

� In this case we use the resolvent formula ������ for B � Hn 

and A � H
(0) 

and a n 

natural extension of the above arguments� We obtain an analogue of ������ in which 

the Stieltjes transform f �z� of the limiting counting measure N is a unique solution 

of the functional equation � 

�a2 

� 

������ f �z�	 � f0 

z � 

� � � a2 f 

belonging to the class ������ 

�iii� We can also consider a more general case when the random matrix An 

is 

the n � m matrix with Gaussian i�i�d� entries� This case can b e treated similarly� 
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We discuss this case in more detail in Section � considering arbitrary distributed 

independent entries� 

���� Circular Ensemble� The ensemble consists of n � n unitary matrices whose 

probability distribution is given by the normalized Haar measure on U �n�� The 

ensemble was introduced by Dyson together with its orthogonal and symplectic ana�
logues �see 	�
 for references and results�� We discuss b e l o w the simplest Circular 

Unitary Ensemble �CUE� but one can obtain similar results for two other ensembles� 

i�j � � �It is useful to write eigenvalues �j 

of the ensemble in the form �j 

� e
�j 

� �� � j � � � ���� n and to introduce the normalized counting measure �cf������� 

� 

������	 Nn��� � �f�j 

� �g
n 

where � is Borel set of 	�� ���� An analogue of the Stieltjes transform ����� for 

measures on the unit circle is the Herglotz transform 	�
 Z 2� ei� � z 

������	 h�z� � 

i� � z
m�d��� jzj �� � � 

0 

e

Respective inversion formula is �cf� ������ Z 2� � 

Z 2� 

����m�d�� � lim ����Reh�re 

i��d�� 

r�1�0 ��0	 0 

We use here instead of ������ the dierentiation formula 

������	 E����M �AM � � E����M �MA � � � 

valid for any C1 function � � U �n� � C and any Hermitian matrix A� This for�
mula and the spectral theorem for unitary matrices according to which t h e Herglotz 

transform hn�z� of the eigenvalue counting measure can be written as �cf� ������� 

� U � z 

������	 hn�z� � Tr 

n U � z 

allow u s to write the following relations for the moments of hn�z� � 

������	 E�hn�z�� � ��� jzj �� � � 

C � 

������	 E�jhn�z�j2 � � j E�hn�z��j2 � � jzj � � 

n2 � 

The �rst relation shows that E�Nn���� � j�j��� for all n� This is easy to understand 

because the Haar measure is shift invariant� The second relation plays the role of 

������� By using these relations and following the scheme of proof of Theorem ��� 

one obtains 

Theorem ���� Consider the ensemble of unitary matrices distributed according to 

the Haar measure o n U �n� �the CUE�� Then the eigenvalue counting measure ������ 

of the ensemble converge in probability to the uniform measure on the unit circle� 
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Remarks� �i�� Analogous statements are valid also for the Circular Orthogonal 

Ensemble and for the Circular Symplectic Ensemble �see 	�
 for their de�nitions and 

properties�� 

�ii�� Note that unlike Theorems ��� and ��� where we have the convergence 

with probability �� Theorem ��� asserts only the convergence in probability� despite 

the bound ������� The reason is that in Theorems ��� and ��� we can consider Wn 

and An 

for all n as de�ned on the same probability space of realizations of the semi�
in�nite matrices W � fWjk 

g� and A � fAjk 

g� equipped with the in�nite j�k�1 j�k�1 

product Gaussian measure� It is clear that similar natural and simple embedding 

does not exist for unitary matrices�1 This case can b e regarded as an analogue of 

the triangular array s c heme of probability and the Theorem ��� is an analogue of the 

�Tchebyshev� law of large numbers� while the case of the Gaussian and the Laguerre 

ensembles is analogous to the scheme of in�nite number of i�i�d� random variables and 

Theorems ��� and ��� are analogues of the strong law of large numb e r s � To deduce the 

convergence in probability o f Nn��� for a �xed Borelien � from the convergence in 

probability its Herglotz transforms for a �xed z� jzj � 

1 one has to use the argument 

4 

of Section � of 	��
� 

�iii�� The simple dierentiation formula ������ as well as its version ����� below 

allows one to give a direct proof of the asymptotic freeness of unitary and diagonal 

matrices as n � � �see 	�
 for de�nitions and results and 	��� ��� ��
 for some 

related recent results�� Existing proofs are based on the representation of the Haar 

distributed unitary random matrices U as the phase in the p o l a r decomposition of 

the Gaussian distributed random matrix X with complex i�i�d� entries and on the 

approximation of the phase by polynomials in X� Because of singularities of the 

���1�2polar decomposition representation U � X�XX these proofs are not simple to 

implement in all details� The approach based on the formula ������ i�e� on the shift 

invariance of the Haar measure� seems more direct and simple �see 	��
 and Remark 

�iv� of Section ��� 

�� Invariant Ensembles 

In this Section we discuss the random matrix ensembles de�ned by the proba�
bility la w 

����� P �dM � � Z�1 exp��n Tr V �M ��dMn 

where M is a real symmetric or a Hermitian or a quaternion self�dual Hermitian 

matrix and V is a bounded below and growing su�ciently fast at in�nity function of 

2respective matrix� For V ��� � �2 ��w we obtain the Gaussian Ensembles that were 

considered in the previous Section� In this paper we restrict ourselves by polynomial 

V �s� As it was in the case of the Gaussian Ensembles we discuss here the technically 

simplest Hermitian matrices� This subclass of ensembles ����� is motivated by Quan�
tum Field Theory �see e�g� review 	��
�� Following Quantum Field Theory we will 

1 Although one can always use the probability space that is the product over all n of the probability 

spaces consisting of the groups U �n	 with the normalized Haar measure as the probability measure� 
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call V the p oten tial� We will give b elow a result for convex V �s� More general case 

see in 	�
� 

Theorem ���� Consider the random matrix ensemble consisting of Hermitian n � n 

matrices distributed a c cording to ����� in which the potential V i s a c onvex polynomial 

of an even degree �p and growing at in�nity� Then the eigenvalue counting measure 

of the ensemble converges in probability 

2 to the nonrandom measure whose density 

is concentrated on the interval �a� b� and has the form 

����� ���� � p2p�2���
p
�b � ���� � a�� a � � � b 

where 

� 

Z b V 

���� � V 

���� d� 

�
����� p2p�2��� � 

2 

a 

� � � 

p
�b � ���� � a� 

is a positive on �a� b� polynomial of the degree �p � � and a and b are uniquely de�ned 

by the equations 

����� 

Z b 

a 

�qV 

����d� p
�b � ���� � a� 

� � � � 1q� q � � � �� 

The proof of the theorem follows again the scheme of the proof of Theorem ���� 

In particular we have the analogue of Proposition ��� 

Proposition ���� Under the conditions of the preceding theorem the Stieltjes trans�
form gn�z� of the eigenvalue counting measure of the ensemble ����� has the following 

properties for jImzj � y and a certain y depending on V 

����� lim E�g�z�� � f �z�� 

n�� 

const2����� E�jgn�z�j� � j E�gn�z��j � 

2n

where f �z� is a unique solution of the quadratic equation 

����� f 

2 � V 

��z�f � Q�z� � � 

satisfying ���	� and Z 

V 

��z� � V 

����
����� Q�z� � N �d�� 

z � � 

in which N �d�� is the measure corresponding to f � 

To prove the proposition we use the dierentiation formula 	��
 

����� E����M � � B� � nE���M � Tr V 

��M �B� � � 

valid for the matrix distribution ������ any function � � R � C whose derivative 

is polynomially bounded on the whole real line and any Hermitian matrix B� By 

2 See Remark �ii	 after Theorem 
��� 
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applying this formula to the matrix element of the resolvent G�z� � �M � z��1 we 

obtain the relation 

�2������ E�gn�z�� � E� Tr G�z�V 

��M �� � � 

n 

where gn�z� is de�ned in ������� The identity 

������ G�z�V 

��M � � G�z�V 

��z� � G�z��V 

��M � � V 

��z�� 

allows us to rewrite this relation in the form 

2������ E�gn�z�� � V 

��z�E�gn�z�� � Qn�z� � � 

where Qn�z� is de�ned as 

� 

������ Qn�z� � E� Tr Qn�z�M ��� Qn�z�M � � G�z��V 

��M � � V 

��z�� 

n 

and is a polynomial of the degree �p � � if V �z� is a polynomial of the degree �p� 

2It is easy to see that for V �z� � z2 ��w ������ coincides with ������� Thus ������ is 

an extension of ������ to the more general case of distribution ������ where V ��� is a 

polynomial of an even degree bigger than �� An analogue of ������ has the form 

������ 

� � � � 

�E�j
2 E� Tr 
n�z�qn�z�M �� � 

2
�� � jImz � V 

��z�j 

n�z�j� � jV 

��z�j n n j�Imz�3 V 

��z�j 

where 

qn�z�M � � Qn�z�M � � E�Qn�z�M ��� 

In the Gaussian case the �rst term in the r�h�s� of ������ is absent� 

In view of the inequality 

� � �jE� Tr 
n�z�qn�z�M ��j � E�j
n�z�j2 �1�2 E� Tr qn�z�M �qn�z�M ��1�2 

n n 

where 
n�z� is de�ned in ������� it seems that the most natural way to obtain ����� 

is to prove the estimate 

� � 

const 

E� Tr qn�z�M �qn�z�M �� � 

2n n

thereby reducing the estimation of the variance of gn�z� to that of qn�z�M �� Unfor�
tunately� we do not know the proof of the last estimate based on the dierentiation 

formula ����� and similar to that in the second proof of Proposition ���� Thus we 

refer the reader to works 	��
�	��
� where the b o u n d ����� is proven for all Imzj � � 

by using a combination of the orthogonal polynomials and variational techniques� 

A simple proof of a weaker version of ����� with n instead n2 in the r�h�s� will b e 

given in 	�
 also by using the orthogonal polynomial technique� Any of these bounds 

allows us to replace E�gn�z�
2 � in ����� by E�gn�z�

2 � � E�gn�z��
2 	 f 

2 

n 

�z�� Besides� 

by applying ����� to ��M � � M � we obtain the equality 

� 

������ E� Tr MV 

��M �� � � 

n 
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that allows us to prove that all coe�cients of the polynomial Qn�z� are uniformly 

bounded in n � After that simple compactness arguments yield that the limit of any 

convergent subsequence fnj 

�z� satis�es ������ 

Having Proposition ��� we can prove Theorem ��� by the following arguments� 

By solving the quadratic equation ����� we �nd that the measure N has the bounded 

H�older density �� that for a convex V the support of the measure N corresponding 

to f is a �nite interval �a� b� and that �see 	�
� Z b ����d� V 

����
������ v�p�	 � � � �a� b�

� � � 

� � 

�a R 

where the symb o l v �p � denotes the singular Cauchy i n tegral� Regarding this relation 

as a singular integral equation for ���� and using standard facts of the theory of 

singular integral equations 	��
 we �nd that the bounded solution of the equation 

has the form Z b 

������ ���� � 

�

� 

2 

p
R��� 

V 

���� � V 

���� d�
� R��� � � b � ���� � a�� 

� � � 

p
R���a 

provided that Z b V 

����d� 

������	 � � �p
R���a 

This gives condition ����� for q � � � Besides we have the normalization condition Z b 

������	 ����d� � � 

a 

that can be rewritten in the form ����� for q � � b y using ������� It is clear that the 

integral is positive for a convex V and that it is a polynomial of degree �p � �� if V 

is a polynomial of the degree �p� The unique solubility of system ����� can be proved 

by using the implicit function theorem 	�
� 

Remark� Consider the case of the monomial V ��� � j�j2p��p� In this case 

above formulas can b e written in the form Z 

� 

a t2p�1dt � 

������	 ���� � 

��I 2p�1 j�j 

p
t2 � �2 

� a 

2p � 

I2p 

where Z 1 t	dt 

I	 

� 

p
� � t2 

0 

These formulas are also valid for non�integer p� i�e� for potentials of the form V ��� � 

j�j	�� provided that � � �� For this case the formulas were obtained in 	��
 by 

another method� They can also be obtained by a v ersion of the method presented in 

this Section� In this version we use the identity 

������ G�z�V 

��M � � G�z�V 

���� � G�z��V 

��M � � V 

������ z � � � i	 

instead of ������� It can b e shown that this allows us to obtain the �nal formulas 

����������� for example for non�polynomial �and even non�analytic� V �s provided that 
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C
they are convex� even� grow faster than logarithmically at in�nity and are of the class 

2 on any �nite interval ��L� L�� 

�� Law of Addition of Random Matrices 

Consider Hermitian matrices of the form 

�����	 VnAnVn 

� � UnBnUn 

� 

where Vn 

and Un 

are random independent unitary matrices distributed both according 

to the normalized Haar measure on U �n�� An 

and Bn 

are Hermitian matrices such 

that their normalized eigenvalue counting measures NAn 

and NBn 

converge weakly 

to the limits NA 

and NB 

respectively and satisfy the condition Z 

�����	 sup j�jNAn 

�Bn 

�d�� � �� 

n 

Theorem ���� The normalized eigenvalue counting measure of the ensemble of ran�
dom matrices de�ned above tends in probability as n � � to the nonrandom limit 

whose Stieltjes transform f �z� is a unique solution of the system of functional equa�
tions 

f �z� � fA�z ��B 

�z�f 

�1 �z�� 

�����	 f �z� � fB 

�z ��A�z�f 

�1 �z�� 

zf �z� � �A�z� � � B 

�z� � � 

where f belongs to the class ���	� and �A 

and �B 

are analytic for non�real z and 

such that 

�����	 sup yj�A�iy�j � �� sup yj�B 

�iy�j � � 

y�1	 y�1 

The theorem was proved in 	��
 for the case of uniformly bounded in n matrices 

An 

and Bn 

by computing asymptotic form of moments of the sum via the moments 

of summands� This requires rather involved combinatorial analysis and impose the 

boundedness condition on matrices� 

We outline now the proof 	��
 based on the same ideas as above� i�e� on the 

resolvent identity and on a certain dierentiation formula� The formula used in this 

case is 

� ������	 E����UBU �	UBU � C 
� � � 

where � � R � C is a C1 function whose derivative is polynomially bounded on the 

real line� B and C are Hermitian matrices� 	B � C 
 � BC �CB and the symb o l E����� 

denotes the integration over U �n� with respect to the Haar measure normalized to �� 

The formula can be easily derived from the shift invariance of the Haar measure� 

Assume �rst that the norms of the matrices An 

and Bn 

are bounded uniformly 

in n� By applying ����� to the resolvent identity ������ relating the resolvent G of 

matrix ����� and the resolvent G1 

of matrix An 

we obtain the matrix identity 

� �	 � 

E�G Tr G� � G1E� Tr G� �G1E�G Tr GU BU 

� �� 

n n	 n 
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Assuming now asymptotic vanishing of the �uctuations of normalized traces� that we 

had in all cases above� we can rewrite this matrix identity in the form � � 

�Bn 

�z�
����� E�G� � G1 

z � � o���� n �� 

fn�z� 

where 

� � 

����� �Bn 

� E� Tr UnBnU 

�G�� fn 

� E� Tr G��n n n 

and jImzj is large enough to guarantee inversibility of the argument o f G1 

uniformly 

in n� Applying to ����� the operation n�1 Tr we obtain the prelimit form of the �rst 

equation of system ������ The second equation follows from the analogous procedure 

in which the roles of An 

and Bn 

are interchanged �recall that Un 

and U 

� have the same n 

distribution�� The third equation is the limiting form of the identity n�1 Tr G�z �
An 

� UnBnUn 

�� � � and of ������ The unique solubility of ����� follows from the 

implicit function theorem applicable for large jImzj� The proof of the vanishing of 

the correlations� more precisely� a bound similar to ������� is based on the same idea 

�see 	��
�� 

To obtain the general case ����� we truncate eigenvalues of An 

and Bn 

by a large 

numb er T and use the minimax principle to control this procedure as T � �� the 

compactness arguments and the unique solubility of ����� in the class ������ ������ 

Remarks� �i�� Since the normalized eigenvalue counting measure is unitary 

invariant and the Haar measure is shift invariant we can restrict ourselves without 

loss of generality to matrices of the simpler form 

����� Hn 

� An 

� UnBnUn 

� 

This form have� for example� the matrices ������ of the deformed GUE� Indeed� 

any matrix belonging to the GUE can b e written in the form �n n�
� � where �nn

is the matrix of its eigenvectors� distributed uniformly over the U �n� according to 

the Haar measure�  n 

is the random diagonal matrix of eigenvalues and �n 

and  n 

are independent 	�
� Besides� according to Theorem ��� the normalized eigenvalue 

counting measure of  n 

converges with probability � to the semicircle law ������ Thus 

�n 

plays the role of Un�  n 

plays the role of Bn 

and NB 

is given by ������ It can b e 

easily checked that in this case the system ����� reduces to ������� Analogous fact is 

also valid for the deformed Laguerre ensemble ������ and also for certain classes of 

random operators acting in l2 �Zd� 	��
� 

�ii�� It can be shown 	��
 that the theorem is also valid in the case when matrices 

An 

and Bn 

in ����� are also random� but independent o f Un 

and Vn 

and NAn 

and NBn 

converge weakly in probability to the nonrandom NA 

and NB 

� Then the ensemble 

of deformed covariance matrices ������ in which the random vectors al 

are uniformly 

distributed over the unit sphere in Cn also has form ������ As for the form ������ 

it is the case for the sum of two independent matrices distributed each according to 

the law ����� with possibly dierent polynomials V1�2� In this case the condition ����� 

follows from ������� This case was considered in 	��
 by using formal perturbation 

theory around the Gaussian ensemble� Thus� we see that Theorem ��� describes in 
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a rather general setting the result of deformation of a random matrix by another 

matrix randomly rotated with respect to the �rst and allows us to �nd the limiting 

eigenvalue counting measure of the the sum �of the deformed or of the perturbed 

ensemble� provided that we know these measure for the both terms of the sum� 

�iii�� For any function f �z� satisfying ����� one can introduce the �selfenergy� 

!�z� by the relation 

�����	 f �z� � ��z � !� z���1 � 

It can b e sh o wn that !�z� is also analytic for non�real z� and has the same property 

Im!�z�Imz � �� Imz �� � as f �see ������� Denote by z�f � the functional inverse 

of f �z� and set !�z� � R�f �� Then it is easy to see that ����� is equivalent to the 

relation 

������	 R�f � � RA�f � � RB 

�f � 

where RA�f � and RB 

�f � are the selfenergies corresponding to fA�z� and fB 

�z�� The 

inverses of the Stieltjes transforms of limiting eigenvalue counting measures were used 

in 	��
 in the qualitative study of the support of of these measures in the case ������ 

below where Z 

t��dt�
������	 R�f � � �c � 

� � tf 

Relation ������ was noted in 	��
 for the case when NA 

and NB 

are both the semicircle 

laws ������ when R�f � � w2f � The general form of this relation was proposed by 

D�Voiculescu in the context of the operator�algebras theory and its new branch k n o wn 

as the free probability theory �see 	�
 for results and references�� In this theory the 

semicircle law plays the role of the Gaussian distribution and the measure de�ned 

by ������ �more generally� by formula ������ b e l o w� plays the role of the Poisson 

distribution� 

�iv�� Similar technique can b e applied to multiplicative families of positive 

de�ned Hermitian and or unitary matrices and gives results 	��
 that generalize and 

simplify those of 	��
 and also gives a more direct proof of certain results obtained 

for these ensembles in the context of free probability 	 � 
 � 

��	 Matrices With Independent and Weakly Dependent Entries� Tiny 

Perturbations 

���� Wigner Ensemble� The proofs outlined in previous Sections for simplest ar�
chetypal ensembles� the GUE �rst of all� can b e elaborated and used in rather gen�
eral case of Hermitian� real symmetric or self�dual Hermitian random matrices whose 

entries are independent o r w eakly dependent modulo symmetry conditions� The ma�
trices can b e written in the form �cf������� 

�����	 Mn 

� n�1�2 Wn 

where matrix elements Wj 

(
k
n) 

of the matrix Wn 

still satisfy ����� but their probability 

laws Pj 

(n)
�dW � are not necessary Gaussian and may b e n�dependent� We call these k 
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ensembles the Wigner Ensembles� In this general case we have to use instead of 

dierentiation formula ������ the formula 	��
 

s 

����� E��� ���� � 

X �a+1 

E��(a) ���� � 	 s 

a" 

a�1 

where �a 

are semi�invariants �cumulants� of a real�valued random variable �� � � 

R � C is a function of the class Cs+1 and j	 sj � Cs 

supx 

j�(s+1)�x�jE�j�js+1�� 

Another version of the method is based on the perturbation expansion of matrix 

elements of the resolvent in a particular matrix element of the matrix Mn� Indeed� 

according to Section � an important moment of the method is the asymptotical 

computation of the expectation 

n X 

����� E� 

p� 

n
Gjk 

W 

(n)
�kl 

k�1 

basing on various dierentiation formulas �see formulas �������������������� and����� 

above�� However� in the case of independent e n tries satisfying ������ this requires the 

knowledge of dependence of Gjk 

on Wk 

(n) 

up to linear terms only� Indeed� writing the l 

resolvent identity ������ for B � n�1�2 Wn 

and A � n�1�2 W j
W 

(n) 

we obtain 

�0kl  

� Gj
k l � n�1�2 �W 

(n) 

Gk
j k
l Gk

lk
l � W 

(n) 

Gk
j l
l Gk

k 

l
k����� Gjk k 

� � rnkl kl 

where 

kl����� Gkl � Gj
W 

(n) 

� jrnj � 

jW 

(n) j2 

�
�0 3kl  njImzj

W 

(n)
Substituting ����� in ����� and taking into account that Gkl is independent o f we kl 

can perform explicitly the expectation with respect to W 

(n) 

and obtain the relation kl 

2 

n X 

4����� E�gn�z�� � ���z � 

w
E� Gk

j l
l Gk

k 

l
k 

� � O� max E�jW 

(n)j3��n1�2 jImzj �� 

zn 

2 0�j�k�n 

jk 

k�1 

Now we can use ����� in the opposite direction to replace matrix element of Gkl by 

those of G� Thus� if 

����� sup max E�jW 

(n) j3� � w3 

� �� 

n 

0�j�k�n 

jk 

we obtain the analogue of ������ in the case of independent entries satisfying ����� 

and ����� with the error of the order n�1�2 � Similar arguments allows one to prove a n 

analogue of ������ with the r�h�s� of the order n�1�2 � This is su�cient for the proof 

of an analogue of Theorem ��� for the independent entries satisfying ����� and ����� 

and with convergence in probability instead of convergence with probability � �see 

also Remark �ii� after Theorem ����� 

We list now several recent results obtained by c o m binations of approaches based 

on formulas ����� and ����� �for an account of previous results see 	��
�� 
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�i� Semicircle Law� The normalized eigenvalue counting measure converges 

weakly in probability to the semicircle law ����� if and only if in addition to ����� for 

any � � � matrix elements ����� of satisfy the condition 

n 

Z X 

����� lim 

� jzj2 P 

(n)
�dW � � � �jk n�� n2 jW j�
n 

1�2 

1�j�k�n 

reminiscent the well known Lindeberg condition of the validity of the central limit 

theorem� This fact is known since the seventies� see 	��
 for the su�ciency of some�
what stronger version of ����� and 	��� ��
 for the necessity and su�ciency of ������ 

However these results were obtained by rather complicated method� In 	�
 we give a 

simple proof based on the approach of this paper� 

�ii� ��n expansion 	��
� By using ����� and assuming that fW 

(n) g are identi�jk 

cally distributed �modulo symmetry conditions as usually� and have s � � �nite mo�
ments one can construct ��n � expansion of moments ������ in powers of ��nl� l � s� 

with the error of the order ��ns+1�2 provided that the complex spectral parame�
ter z veri�es ������� We give here the two results for the real symmetric matrices 

2M 

n � n�1�2 �� � �i�j 

�Wj
n � E�W 

(n)
� � � � E�Wj 

2 � � w andjk k jk k 

sup E�jW 

(n)j5� � ��jk 

n 

We have then the following asymptotic formulas� � � 

4 

�� 

3� w2f 

2 

m1 

�z� � fsc�z� � � 

sc�z� � 

�f sc�z� � O�n� 

2 �� 

n �� � w2f 

2 

sc�z�sc�z��
2 � � w2f 

2 

where � � E�jW 

(n)j4� � �E�jW 

(n)j2� is known as the excess of random variable W 

(n) 

jk jk jk 

and is assumed to be independent of n� and fsc 

is de�ned in ������� 

5 

m2�z1 

� z 2 

� � m1 

�z1 

�m1�z2 

� � n�2 c�z1� z 2 

� � O�n� 

2 � 

where 

����� � 	
3 c�z1 

� z 2 

� � 

�w2 

w 

2 

� 

fsc�z1� � fsc�z2 

� 

�2 

� �f sc�z1�f 

3 �sc�z2�
sc�z1 

���� � w2f 

2�� � w2f 

2 

sc�z2�� z1 

� z2 

�iii� Central Limit Theorem 	��
� Assume in addition to ����� that the forth 

moments of Wj 

(n) exist and are independent o f j� k and n� Then for z from the domain k 

������ the random function gn�z��E�gn�z�� converges in distribution to the Gaussian 

random function with zero mean and the covariance ������ 

���� Sample Covariance Matrices� In this Subsection we consider an ensemble of 

random matrices� generalizing the Laguerre ensemble of Subsection ��� and its real 

symmetric version known as the Wishart Ensemble of the sample covariance matrices� 

	��
� Respective matrices have the form 

� 

������ Mm�n 

� Am�nTmA
� 

m�n n 
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where Am�n 

are n�m random matrices whose entries A
(
j 

m�n) 

are i�i�d� complex random k 

variables satisfying conditions 

E�jA(m�n)
������ E�A

(m�n)
� � E��A

(
j 

m�n)
�2� � � � j2� � � �jk k jk 

A
(m�n)j4������ sup max � � a4 

� �� 

m�n 

1�j�n�1�k�m 

E�j jk 

and Tn 

is a diagonal matrix� We assume that 

m 

������ m �� � n �� � � c � �� 

n 

and that the normalized counting measure 

� 

������ �m��� � �ftl 

� �g
n 

of eigenvalues tl� l � � � ���� m of Tn 

has a w eak limit 

������ �m��� � ����� m �� � 

In particular� tl� l � � � ���� m may b e i�i�d� random variables independent of Am�n� 

Theorem ���� Under conditions listed a b ove the eigenvalue counting measure o f m a �
trices ����� converges weakly in probability to the nonrandom measure whose Stieltjes 

transform is a unique solution of the functional equation � �Z 

t��dt� 

�1 

������ f �z� � � z � c 

� � tf �z� 

in the class ���	�� 

We outline the scheme of the proof� based on the same idea as above� i�e� on 

the careful analysis of the result of in�nitesimal as n � � changes of respective 

matrices� 

Start again from the resolvent identity ������ written for the pair B � Mn� 

A � � � Applying to the identity t h e operation E�n�1 Tr ���� we obtain 

m n X X 

������ E�gn�z�� � � 

� 

z 

� 

� 

tlE� A
(m�n) 

Gjk 

A
(m�n) 

�
2 

jl kl zn 

l�1 j�k�1 

We can use now the scheme of proof of Theorem ��� using ����� instead ������� It is 

more convenient h o wever to apply here a somewhat dierent s c heme� It is analogous 

to that based on relations ������ ������ and ����� in the case of the Wigner Ensembles 

of the previous subsection� however applied not to individual matrix elements but to 

the columns al 

� fn�1�2 A
(m�n) gn � l � � � ���� m of the random matrix A(m�n) � Treating jl 

j�1

the columns as vectors of Cn we can rewrite ������ as follows 

m X� � 

������ E�gn�z�� � � tlE��Gal�  

al�� 

z 

�
zn 

l�1 

where ��� �� i s t h e scalar product in Cn� Since vectors al 

are independent we perform 

�rst the asymptotic computation of the expectation with respect to al 

in the l�th 
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term of the sum like we did in the previous subsection for Wj 

(n) 

� To this end we use k 

the formula� giving in the explicit form the result of perturbation of the resolvent GC 

of an arbitrary matrix C by the rank one matrix La� a � Cn de�ned by its action on 

any vector x � Cn as Lax � � x� a�a� 

������ �C � La 

� z��1 � GC 

� GC 

LaGC 

�� � �GC 

a� a���1 �


The formula can b e easily derived from the general resolvent identity ������� By


applying the formula to C � Mnjal 

�0 

we obtain that 

tl�Glal� a l�
�Gal� a l� � � 

� � tl�Glal� a l� 

where Gl 

� Gjal 

�0 

� This relation will play the role of ������ Indeed� assume �rst that 

for some �nite T and a2 

max������ sup max jtlj � T� sup 

1�l�m 

jjaljj � a2 

n 

1�l�m n 

Since Gl 

does not depend on al 

and since random vectors falgm are mutually inde�l�1 

p e n d e n t one can �nd from ������ and ������ that 

� 

El��Glal� a l�� � Tr Gl 

	 g(l) 

n n 

jEl��Glal� a l�� � 

� 

Tr Glj2 � 

Ca 4 

2njImzjn 

where the symb o l El����� denotes the operation of the expectation with respect the 

vector al 

only� 

These relations allow u s to present ������ in the form �cf� ������ 
 � 

m (l) X� gn
������ E�gn� � � 

z 

� tlE 

� � tlgn 

� rn(l) 

l�1 

where now 

C�� � a4� 

� jImzj � y0� 

2
jrnj � 

njImzj
and y0 

depends on T and on a2 

of ������� Besides� applying to ������ the operation 

1 Tr ��� we obtain that 

n 

gn 

� g(l) 

� tl�Gl 

2al� a l�
� � �n n � � tl�Glal� a l� 

and thus 

� jgn�z� � g(l)�z�j � 

njImzj 

�n 

By using three last relations we can write instead ������ for jImzj � y0 

and n� � 

�cf� ������ � � Z 

� tgn�z�
������ E�gn�z�� � � E �m�dt� � o��� 

z 

� 

� � tgn�z� 
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where �m�dt� is de�ned in ������� This is an analogue of ������� Similar arguments 

allow us to prove an analogue of ������� As a result we obtain ������ in the case 

of bounded tl 

and al� General case can b e obtained from the proven one by using 

the the analyticity of the Stieltjes transform up to the real axis� the truncation of tl 

and al� the minimax principle to control the truncation procedure� the compactness 

arguments� and the unique solubility of ������ in the class ������ The latter results 

from the the implicit function theorem� 

Remarks� �i�� In the case when m � n and ��dt� has only one atom at t � � a2 

we obtain ������� 

�ii�� Similar arguments shows that the eigenvalue counting measure of deformed 

ensemble ������ 

Hn 

� H(0)������ n 

� Mm�n 

where Mm�n 

is de�ned by ������ and H
(0) 

has the limiting eigenvalue counting measure n 

N0 

�like in ������ and in ������ also tends weakly in probability to the nonrandom 

limit whose Stieltjes transform is a unique solution of the functional equation � � Z 

t��dt�
������ f �z� � f0 

z � c 

� � tf �z� 

This functional equation was derived �rst in 	��
 by another and rather complicated 

method� The method was based on the study of the sequence of matrices H
(p)
� p �n 

�� ���� m de�ned as 

p X 

�H(p) � H(0)������ n 

�jk 

� n 

�jk 

� tlA
(m�n) 

A
(m�n) 

lj  lk  

l�1 

and �interpolating� between H
(0) 

and �H
(n) 

� � Hn� Asymptotic computation of the n n 

dierences Tr � H
(p+1) � z��1 � Tr �H

(p) � z��1 based on formula ������ lead to the 

�rst order partial dierential equation for 

n n 

� 

f �t� z� � lim Tr �H(p) � z��1 �n 

n���p�n�t n 

Solving the dierential equation subject the conditions f ��� z � � f0�z�� f ��� z � � f �z� 

one obtains ������� 

The derivations of equation ������ given later in 	��� ��� �� ��
 and as well as the 

proof outlined above are more simple and direct� On the other hand� the sequence 

H
(p) 

in ������ can be regarded as a matrix version of the sum of independent random n 

variables with varying upper limit used often in the study of limit theorems and 

processes with independent increments� Similar observation was used recently in 	�
 

to construct free �non�commutative� analogues of these processes where� in particular� 

an analogous partial dierential equation was obtained �called in 	�
 the complex 

Burgers equation�� 
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