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Abstract—We derive a simple closed-form upper bound on the 
symbol error probability for coherent detection of -ary phase-
shift keying using antenna arrays with optimum combining, in the 
presence of multiple uncorrelated equal-power cochannel inter­
ferers and thermal noise in a Rayleigh fading environment. The 
new bound, based on Laguerre polynomials, is valid for an arbi­
trary number of antenna elements as well as arbitrary number of 
interferers, and it is proven to be asymptotically tight. Compar­
isons with Monte Carlo simulation are also provided, showing that 
our bound is useful in many cases of interest. 

Index Terms—Adaptive arrays, antenna diversity, cochannel 
interference, eigenvalues distribution, optimum combining (OC), 
Wishart matrices. 

I. INTRODUCTION 

ADAPTIVE antennas can significantly improve the perfor­
mance of wireless communication systems by suitably 

combining the received signals to reduce fading effects and 
suppress interference. In particular, with optimum combining 
(OC), the received signals are weighted and combined to 
maximize the output signal-to-interference-plus-noise power 
ratio (SINR). This technique provides substantial improvement 
in performance over maximal ratio combining (MRC), where 
the received signals are combined to maximize the desired 
signal-to-noise ratio (SNR) only, when interference is present. 

Closed-form expressions for the bit-error probability (BEP) for 
coherent detection of binary phase-shift keying (PSK) have been 
derived for the case of a single nonfading interferer with Rayleigh 
fading of the desired signal in [1] and [2] and with Rayleigh fading 
of the desired signal and a single interferer in [3]. In [4], two dif­
ferent methods (direct and moment generation function-based ap­
proaches), requiring a single integral with finite limits, are used 
for BEP evaluation with a single Rayleigh faded interferer. With 
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multiple interferers of arbitrary powers, closed-form expressions 
of the BEP for PSK with OC are not available in the literature: 
Thus, Monte Carlo simulation has been used to determine the BEP 
in [2]. Unfortunately, such simulations are computation intensive 
and not suitable for system studies where the variations of the av­
erage powers of the interferer and the desired signals are consid­
ered. An upper bound on the BEP was derived in [5], which is 
useful for such system studies, but the bound is generally not tight 
(the required powers for a given BEP can be as much as several 
decibels from the actual values). 

An interesting subclass of interferers is the equal-power 
interferers case, which generally arises in multiple-input mul-
tiple-output (MIMO) systems [6]–[8].1 For this case, BEP 
expressions have been derived in [9], involving multiple inte­
grals, as well as BEP approximations for binary modulations 
in [10], partially based on Monte Carlo simulation results, and 
a simpler but less accurate approximation in [11]. In [12], a 
closed-form expression is derived but only for the case where 
the number of interferers is greater than or equal to the number 
of antennas (but in this case, the gain of OC is limited) without 
thermal noise. As before, the upper bound of [5] can be used for 
system studies, but the looseness of the bound can be an issue. 

In this letter, starting from an approach similar to that used in 
[5], we apply some results on the characteristic polynomial of 
a complex Wishart matrix to derive new simple upper bounds 
on the symbol error probability (SEP) for coherent detection of 

-ary PSK using OC in the presence of multiple equal-power 
interferers, as well as thermal noise, in a Rayleigh fading envi­
ronment. We show that these upper bounds are generally very 
tight (within a few tenths of a decibel), and therefore, in general, 
significantly better than previous bounds for the case of multiple 
equal-power interferers. 

In Section II, we describe the system model. Performance and 
upper bounds are derived in Section III, and in Section IV we 
compare our analytical bounds with Monte Carlo simulations. 

II. SYSTEM MODEL 

We consider coherent demodulation with OC of multiple re­
ceived signals in a flat fading environment, as in Fig. 1. The 
fading rate is assumed to be much slower than the symbol rate. 
Throughout the letter, denotes the transposition operator 
and stands for conjugation and transposition. The received 
signal at the -element array consists of the desired signal, 

equal-power interfering signals, and thermal noise. After 

1For example, when the cochannel interferer is a MIMO user, multiple equal-
power interferers are present. Also, when OC is used to separate desired MIMO 
signals at the receiver, the interfering signals are equal power. 
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NI
 as the elements of , since represents a unitary transforma­
tion. Consequently, the SINR given in (2) can be rewritten as 
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By introducing the notation and 
, it is simple to show that the eigen­

values of the matrix can be written as 

Desired Signal


Fig. 1. Baseband model of the OC receiver. 

matched filtering and sampling at the symbol rate, the array 
output vector at time can be written as 

(1) 

where and are the mean (over fading) energies of the 
desired and interfering signals, respectively; and are the 
desired and th interfering signal propagation vectors, respec­
tively; and (both with unit variance) are the desired 
and interfering data samples, respectively; and represents 
the additive noise. 

The vectors and are multivariate complex-valued 
Gaussian vectors having and 

, where is the identity matrix. 
The th interfering data samples , can be 
modeled as uncorrelated random variables with zero-mean and 
unit variance. 

The additive noise is modeled as a white Gaussian random 
vector with independent and identically distributed (i.i.d.) ele­
ments with and , where 

is the two-sided thermal noise power spectral density per 
antenna element. 

We also define the SNR as and the signal-to-total-
interference ratio (SIR) as . 

(5) 

where are the eigenvalues of a complex Wishart matrix,2 

denoted by [9]. Hence, the first eigen­
values with of can be thought of 
as those of the matrix 

(6) 

In the next section, we will use the statistical properties of 
eigenvalues of the complex Wishart matrix to derive a simple 
upper bound on the SEP with OC. 

III. PERFORMANCE EVALUATION 

A. Simple Upper Bound on the SEP With OC 

The SEP for OC in the presence of multiple cochannel in­
terferers and thermal noise in a fading environment is now ob­
tained by averaging the conditional SEP over the (desired and 
interfering signals) channel ensemble as , 
where is the SEP conditioned on the random variable 

. This can be accomplished by using the chain rule of condi­
tional expectation as 

(7) 

where we first perform (i.e., average over the channel 
ensemble of the desired signal) to obtain the conditional SEP, 

The SINR at the output of the -element array with OC can conditioned on the random vector , denoted by . We then 
be expressed as [2] 

(2) 

where the short-term covariance matrix 
interference propagation vectors, is given by 

, conditioned on all 

(3) 

It is important to remark that , and consequently also the 

is a random matrix, and 
, vary at the fading rate, which is assumed to be much 

slower than the symbol rate. Thus, 
its eigenvalues are random variables. 

The matrix can be written as , where is 
a unitary matrix and is a diagonal matrix whose elements 

by . The elements of the vector 
on the principal diagonal are the eigenvalues of , denoted 

have the same complex Gaussian distribution 

perform to average out the channel ensemble of the in­
terfering signals. 

The Gaussian approximation for cochannel interference con­
tending with the demodulation of the desired signal after min-
imum-mean-squared-error (MMSE) combining has been shown 
to give good accuracy in most cases of interest [13]. Thus, owing 
to the equivalence between OC and MMSE combining [5], the 
Gaussian approximation will be used hereafter. 

Under the assumption of Gaussian interference and noise, 
for coherent detection of -ary PSK is given (see, for 

example, [14]–[16]) by 

(8) 

2Let us define � � � with � � �, where � is the set of the ��2�� 
complex matrices, and �� � �  �� �� �, ��� � . If all the th elements of � , 
are complex values with real and imaginary parts each belonging to a normal 
distribution � ��� ����, then the ��2 �� Hermitian matrix ���� �� is called �

Wishart. 
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where and . Using (8) 
together with the fact that is Gaussian with i.i.d. elements, the 
conditional SEP , conditioned on , in the general case of 

antennas and interferers, becomes 

(9) 

where is the characteristic function of the exponential 
random variable given by 

(10) 

Therefore 

(11) 

(12) 

where 

The derivation of the exact SEP, requiring the evaluation of 
statistical expectation of (11) with respect of the eigenvalues 
distribution [9], is not a simple task. In the following theorem, 
we derive a new upper bound for the SEP based on the expected 
characteristic polynomial of a complex Wishart matrix. 

Theorem 1: The SEP with OC is upper bounded as follows: 

(13) 

where 

(14) 
and are the generalized La­
guerre polynomials [17, p. 1061, eq. (8.970)]. 

Proof: Let us consider the integrand of the conditional 
SEP of (11) and rewrite 

(15) 

Then, by remembering that , and the fact that 
and ’s are real and nonnegative, the following inequality 

holds: 

(16) 

Therefore, by using (15) and (16), (11) can be upper bounded 
as follows: 

(17) 
Now, in order to apply (7), we need the expectation 

where denotes the determinant operator, and the last 
equality is due to (6) and [18, p. 49, eq. (15)]. Starting from [19, 
p. 86], it is possible to show, in general, that the expectation 
of the characteristic polynomial of a complex Wishart matrix 

can be written as 

(18) 

and therefore 

(19) 

Substituting (17) into (7) and using (19), we obtain (13). This 
completes the proof of the theorem. 

B. Observations 

Comparing (14) with [15, eq. (39)], we see that (14) is the 
exact expression of the SEP for coherent detection of -ary 
PSK using -branch MRC in the absence of interference. Note 
that in (13) is independent of interference, and de­
pends only upon the SNR and the number of antenna elements. 
Other factors in (13) are independent of SNR, and depend only 
on the interference-to-noise ratios, the number of interferers, 
and the number of antenna elements. 

It can be observed that (13) is asymptotically tight for 
: in fact, in this case, as , the inequality in (16) be­

comes an equality and the bound tends to the exact solution. It 
can also be verified that 

approaches one as (or equivalently as ) 
and hence, as expected, the performance of OC in the absence 
of interference reduces to that of MRC. 

In general, by expanding the Laguerre polynomial, it can be 
seen that 

(20) 
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Comparison of the bounds on SEP for coherent detection of binary Fig. 3. SEP versus SIR, with SNR as a parameter ranging from 0 to 15 dB; Fig. 2. 
� � �, � � �, and BPSK modulation. PSK using OC with four antennas and SIR � �� dB in the presence of one 

and four interferers. Also shown in the figure are the results obtained by Monte 
Carlo simulations. 
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tion (20) shows that the new bound is in the form of the exact 
error probability for MRC multiplied by a number greater than 10
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or equal to unity; this number, given by (19), represents an upper 
bound on the increase in SEP due to the presence of interfering -3
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signals. 
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Note also that the definite integral in (14) can be evaluated -4
10

in closed form using a canonical decomposition method [20], 
[21]; however, the expression (14) is more compact and clearly -5 

displays the dependence of SEP on SNR and diversity order. 10

Moreover, its numerical evaluation is straightforward since the -6 

integration has finite limits and the integrand is a simple expres- 10

sion involving trigonometric functions. 
Due to the simplicity of the bound, it is now possible, from 

(13), to obtain many useful results: For instance, the (SNR, 
SIR)-pairs corresponding to a target SEP (e.g., ) 
can be easily derived. 

IV. NUMERICAL RESULTS 

To assess the validity of the proposed bound, in Fig. 2, we 
compare our bound (13) and the only previously known bound 
[5, eq. (13)] on SEP for coherent detection of binary PSK using 
OC with four antennas and SIR dB in the presence of 
one and four interferers. Also shown in the figure are the results 
obtained by Monte Carlo simulations under the same hypothesis 
leading to (8). It can be observed that the new simple bound is 
several decibels tighter than the previously known bound, e.g., 
the difference is more than 4 dB at SEP . 

Fig. 3 shows the SEP as a function of SIR for several values 
of SNR, for , 
(BPSK) modulation. The comparison with simulation results 
shows that, for a reasonable range of SIR values, the proposed 
upper bound is tight for all considered SNR values; a similar 

, and binary phase-shift keying 

-7
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Fig. 4. Comparison between OC and MRC in terms of SEP for coherent 
detection of 8 PSK with � � � and SIR � �� dB. Also shown in the figure 
are the results obtained by Monte Carlo simulations for OC. 

behavior (not shown here for the sake of conciseness) can be 
observed for different values of and . 

In Fig. 4, a performance comparison between OC and MRC 
is presented; the number of interfering signals has been fixed 
to three, an 8-PSK modulation scheme is considered with 
SIR dB. Performance with MRC is evaluated by using 

, where is given 
by (14). Also shown in the figure are Monte Carlo simulation 
results for OC. The results show that, as expected, for small 
SNR, the thermal noise is dominant and, therefore, MRC and 
OC perform similarly. On the other hand, for sufficiently large 
SNR, the role of OC in exploiting the capability of the antenna 
array is of increasing importance. This aspect is more evident 
when the number of antennas is larger than that of interferers; 
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Fig. 5. Bounds on the SNR versus SIR to achieve a target SEP of �� for 
coherent detection of 8 PSK with OC in the presence of six interferers. 

e.g., for the case of in Fig. 4, MRC gives rise to an 
error floor, which is avoided with OC. 

Finally, in Fig. 5, for a target SEP , the locus of points 
in the (SNR, SIR)-plane has been obtained for and 
8 PSK. The curves are for and . Note that the 
two asymptotes (vertical and horizontal) give the values of SIR 
and SNR without thermal noise and interference, respectively. 
The region below each curve represents the outage domain re­
gion in which all points produce an SEP higher than target SEP; 
therefore, if the probability distribution of the SNR and SIR is 
known, integrating it over the region below each of the curves 
gives the outage probability corresponding to different numbers 
of receiving antennas. 

Using these results, one can obtain useful information for the 
design of wireless systems employing OC. For example, for the 
scenario considered in Fig. 5, if the link budget gives an SNR 
of 10 dB, a system with requires a minimum SIR of 
about 12.5 dB to achieve a target SEP ; on the other 
hand, systems with cannot achieve a target SEP 

. Since all results are obtained starting from an upper bound 
on the SEP, they represent conservative performance estimates 
from a wireless system designer’s point of view. 

V. CONCLUSION 

In this letter, we derived, in closed-form, a simple and asymp­
totically tight upper bound on the SEP for coherent detection 
of -ary PSK signals using OC in the presence of multiple 
equal-power interferers and thermal noise. The new bound, valid 
for arbitrary numbers of interferers and receiving antennas, has 
been compared with the only other available bound in the lit­
erature as well as Monte Carlo simulations. We also character­
ized OC in terms of an (SNR, SIR)-plane for a given target SEP, 
which allows a quick evaluation for the improvement of wireless 
systems employing OC. Since all results are obtained starting 
from an upper bound on the SEP, they represent conservative 
performance estimates from a wireless system designer’s point 
of view. 
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