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Random Growth and Random Matrices 

Kurt Johansson 

Abstract. We give a survey of some of the recent results on certain two­di­
mensional random growth models and their relation to random matrix theory, 
in particular to the Tracy­Widom distribution for the largest eigenvalue. The 
problems are related to that of finding the length of the longest increasing 
subsequence in a random permutation. We also give a new approach to certain 
results for the Schur measure introduced by Okounkov. 

1. Random Growth Models in the Plane 

1.1. Eden­Richardson growth 

During the last twenty years there has been alot of interest in models where an 
object grow by some rule involving randomness. Basically, there are two types of 
models, non­local models like difusion­limited aggregation (DLA) and local models, 
which is our concern here. There are many types of local random growth models 
in the plane, see [23] for a review and more background. As an example consider 
the Eden­Richardson growth model, [12, 29], which is defined as follows. The shape 
Ωt at time t of the growing object is a connected set, which is the union of unit 
squares centered at points in Z2. Let ∂Ωt denote the set of all unit squares, centered 
at integer points, which are adjacent to Ωt. In the continuous time version each 
square in ∂Ωt is added to Ωt independently of each other and with exponential 
waiting times; i.e. as soon as a square joins ∂Ωt it’s clock starts to tick and the 
square is added to Ωt after a random time T with the exponental distribution, 
P [T > s] = e−s. In the discrete time version, at each time t ∈ Z+, each square in 
∂Ωt−1, is added to Ωt−1 with probability p = 1 − q independently of each other, 
and the resulting set is Ωt. At time t = 0 we take Ω0 = [−1/2, 1/2]2 . In both 
cases the object grows linearly in time, [20], Ωt/t → A, the asymptotic shape, as 
t →∞. We are interested in the roughness of Ωt, the fluctuations of Ωt around tA. 
This growth model is equivalent with a certain first­passage site percolation model. 
With each site (i, j) ∈ Z2 we associate a random variable τ(i, j), which we think 
of as a random time. Variables associated with different sites are independent. A 
path π from (0, 0) to (M, N) is a sequence {pr }R ⊆ Z2 with pr − pr−1 = 1,r=0 | |
p0 = (0, 0) and pR = (M, N). The first­passage time from (0, 0) to (M, N) is 

T (M, N) = min τ(pr ) . (1)
π 

pr ∈π 
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If we take τ(0, 0) = 0 and P [τ(i, j) > s) = e−s (continuous time) or τ(i, j) = 
w(i, j) + 1 with P [w(i, j) = s] = (1 − q)qs , s ≥ 0, 0 < q < 1 (discrete time), then 

1
Ωt = {(M,N) ∈ Z2; T (M,N) ≤ t}+ [

2 
, 
1
]2 . (2)− 

2 

Thus, fluctuations in Ωt can be translated into fluctuations of T (M,N). It is 
comjectured that the standard deviation SD(T (N,N)) ∼ Nχ, as N → ∞ with 
χ = 1/3, [23, 26]. Since T (N,N) ∼ cN as N → ∞, we see that the standard 
deviation grows like (mean)1/3. This means that the longitudinal fluctuations of Ωt 

are of order t1/3, which is conjectured to be true generally for local two­dimensional 
random growth models. We can also consider the transversal fluctuations. Let 
dN be the maximal deviation of a all paths π, which are minimizers in (1) with 
M = N ≥ 0, from the straight line x = y. It is conjectured that dN is of order N ξ 

with ξ = 2/3, [24]. To prove that χ = 1/3 and ξ = 2/3 in the Eden­Richardson 
growth model is an open problem. Below we will consider related models, where 
this, and more, can be rigorously proved. 

1.2. The corner growth model 

We can modify the model above by allowing growth only upwards or to the right. 
In (1) this corresponds to allowing only up/right paths π in (1), i.e. pr − pr−1 = 
(1, 0) or (0, 1), which gives a so called directed first­passage percolation model. We 
can add one more restriction by allowing growth only in corners. In this model 
Ω0 = R2 \ R2 and we can add a square Q = [m − 1,m] × [n − 1, n] to Ωt only if + 
both [m − 2,m − 1] × [n − 1, n] ⊆ Ωt and [m − 1,m] × [n − 2, n − 1] ⊆ Ωt, i.e. Q 
lies in a “corner” of Ωt. For this model we have to replace (1) by 

G(M,N) = max w(i, j) , (3)
π 

(i,j)∈π 

where the maximum is over all up/right paths from (1, 1) to (M,N). Thus, we 
get instead what can be called a last­passage directed percolation model, and the 
random shape is given by 

Ωt = {(M,N) ∈ Z2; G(M,N) + M + N − 1 ≤ t}+ [−1, 0]2 , (4) 

since all up/right paths from (1, 1) to (M,N) contains the same number of points 
M + N − 1. The continuous time case can be obtained by taking the limit q → 1, 
see [16]. Note that if q = 1 − 1/L, then L−1w(i, j) converges, as L → ∞ to an 
exponentially distributed random variable. As explained in [30], the corner growth 
model is equivalent with the discrete or continuous time totally asymmetric simple 
exclusion process (TASEP) and results for the growth model can be translated 
into results for the TASEP, [16]. 

In order to state the results we have to define the Tracy­Widom distribution. 
Let Ai(x) denote the Airy function and define the Airy kernel, 

∞ 

A(x, y) = Ai(x+ t) Ai(y + t)dt = 
Ai(x) Ai�(y) −Ai�(x) Ai(y) 

. (5) 
0 x− y 
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The Tracy­Widom distribution is defined by the Fredholm determinant 

F (t) = det(I − A)L2 (t,∞), t ∈ R . (6) 

Let M be an N × N matrix from the Gaussian Unitary Ensemble (GUE), [25], 
where we put the measure Z−1 exp(−Tr M2)dM on the space of Hermitian ma­N 

trices. The space of N × N Hermitian matrices is isomorphic to RN 2 
and dM is 

Lebesgue measure on this space. If λmax is the largest eigenvalue of M , then 

lim P [
√

2N1/6(λmax −
√

2N) ≤ t] = F (t) , (7)
N →∞ 

see [35]. 
We can now state the main theorem for the corner growth model. 

Theorem 1.1. [16]. For each q ∈ (0, 1), γ ≥ 1 and s ∈ R, 

lim P [ 
G([γN ], N) − Nω(γ, q) ≤ s] = F (s) , (8) 

N →∞ σ(γ, q)N1/3 

where 

ω(γ, q) = 
(1 + 

√
qγ)2 

− 1
1 − q 

(9) 

and 

σ(γ, q) = 
q1/6γ−1/6 

(
√
γ + 

√
q)2/3(1 + 

√
qγ)2/3 . (10)

1 − q 

From ω(γ, q) we can compute the asymptotic shape A for the corner growth 
model, which was also done in [32], and we obtain A ∩ R2 = {(x, y) ∈ R2 

+ +; y + 
2
√
qxy + x ≤ 1 − q}. Note that in this model the standard deviation goes like 

∼ (mean)1/3, so we have a proof of χ = 1/3. Also we see from (8) that G(M, N), 
for M and N large, behaves like the largest eigenvalue of a big random hermitian 
matrix. There are analogous results for the continuous time case and the TASEP, 
see [16]. 

Theorem 1.1 is proved using the following representation of the distribution 
function for G(M, N), M ≥ N , 

1 
N

P [G(M, N) ≤ n] = 
� 

ΔN (h)2 
� hj + M − N

q hj , (11)
ZM,N 

h∈{0,...,n+N −1}N j=1 
hj 

where ΔN (h) = 1≤i<j≤N (hi − hj ) is the Vandermonde determinant and ZM,N 

is a normalization constant. How this formula is obtained is described in the next 
section. The formula (11) should be compared with the formula for the distribution 
function for the largest eigenvalue of a GUE­matrix, � N� 21 

P [λmax ≤ t] = ΔN (x)2 e−xj dN x . (12)
ZN (−∞,t]N 

j=1 

Note that in the continuous time case we obtain, by taking a limit q → 1 in (11), 
a similar integral giving the largest eigenvalue in the Laguerre ensemble, [16]. 
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The right hand side of (12) can also be written as 

1 2 

ZN (−∞,t]N 

exp( log |xj − xk |−1 + 
j 

xj )d
N x , (13) 

j=k 

which leads to Dyson’s Coulomb gas interpretation. We see that λmax is the posi­
tion of the rightmost charge in a logarithmic Coulomb gas on the line confined by 
a quadratic external potential. In (11) we get instead a discrete Coulomb gas on 
N, also confined by an external potential. At the edge of the support of the charges 
the density is low, so we expect the discrete Coulomb gas to be well approximated 
by a continuous Coulomb gas in this region, and thus, heuristically, G(M,N) and 
λmax should behave similarly. 

To establish this rigorously one can proceed as follows. A standard compu­
tation in random matrix theory, [25, ch. 5], shows that the right hand side of (12) 
equals a certain Fredholm determinant and this is used to prove (7). Carrying out 
the same computation for (11), [16], gives 

P [G(M,N) ≤ n] = det(I −KM,N )�({n+N,n+N +1,... }) , (14) 

where KM,N is the operator on �2(N) with kernel 

KM,N (x, y) = 
κN −1 MN (x)MN −1(y) −MN −1(x)MN (y) 
κN x− y �� �� � 
x+ M −N y + M −N

q x+y 

�1/2 

× 
x y 

, (15) 

for x, y ∈ N. Here Mn(x) = κnx
n + . . . are the normalized, discrete orthogonal 

polynomials with respect to the weight x 
x+M −N qx on N. They are multiples of 

the standard Meixner polynomials, [10]. Theorem 1.1 is proved by analyzing the 
asymptotics of the Fredholm determinant (14), using he fact that the asymptotics 
of the Meixner kernel, (15) can be analyzed using the integral formula for the 
Meixner poynomials, [16]. 

1.3. Hammersley’s model 

Consider a Poisson process with intensity α in the unit square [0, 1]2. An up/right 
path from (0, 0) to (1, 1) through the points is a sequence {(xk, yk )}L of Poisson k=1 
points such that xk ≤ xk+1 and yk ≤ yk+1 for each k. Let L(α) denote the 
maximum number of points in such a path. This random variable was introduced 
in [15] to study random permutations. In fact, if we condition the number of points 
in the square to be N , then L(α) has the same distribution as the length of the 
longest increasing subsequence in a random permutation from SN with uniform 
distribution, see also [1]. Hammersley’s model can also be obtained as a limit of 
the corner growth model by taking q = α/N2 and letting N go to infinity. With 
this choice of q the N ×N matrix (w(i, j))N 

i,j=1 has, with probability going to 1 as 
N →∞, at most one 1 in each row and column, and all other elements are 0. From 
this it is not hard to see that G(N,N) converges to L(α). Thus one approach to 
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the results for L(α) is to take M = N and q = α/N 2 in (14) and then compute 
the limit as N →∞, see [18] and [19] for a review. 

The distribution function for L(α) also has another representation, [14], as a 
Toeplitz determinant, � � π �N 

.
P [L(α) ≤ n] = Dn(e 2

√
α cos θ ) = det 

1 
e 2
√

α cos θ−i(j−k)θ dθ . (16)
2π −π j,k=1 

The asymptotics of the Toeplitz determinant in (16) can be analyzed using the 
steepest descent method for Riemann­Hilbert problems, [11], and this leads to a 
proof of 

Theorem 1.2. [5]. For all t ∈ R, 

lim P [L(α) ≤ 2
√
α + tα1/6] = F (t) , (17)

α→∞ 

where F (t) is the Tracy­Widom distribution (6), and also all moments of L(α) 
converge. 

Note that the standard deviation of L(α) is ∼ cα1/6 = c(
√
α)1/3 and the 

mean is ∼ 2
√
α, so we have the same exponent χ = 1/3 as above. This theorem 

was the first case where this exponent was rigorously verified. In the proof of (17) 
in [5] another expression for the Tracy­Widom distribution is obtained, namely 

∞ 

F (t) = exp(− (x − t)u(x)2dx) , (18) 
t 

where u(x) is the solution of the Painlevé II equation u�� = xu + 2u3, which 
satsifies u(x) ∼ Ai(x) as x → ∞. The fact that (6) and (18) are equal is proved 
in [35]. It is also possible to consider random permutations (or the Hammersley 
model) with symmetry restrictions and restrictions on the number of fixed points, 
[3, 4]. For these models one can also obtain the GOE and GSE largest eigenvalue 
distributions, [35], as limits besides the GUE distribution discussed above, see [4]. 

Hammersley’s model has an interesting interpretation as a two­dimensional 
growth model called polynuclear growth (PNG), see [28]. Some of the symmetrized 
models mentioned above also have an interpretation in this context, [28]. In Ham­
mersley’s model we can also obtain the exponent ξ discussed above, by looking 
at the largest deviation of any maximal path from the diagonal. Using estimates 
from [5] and ideas from [24, 37] it is possible to prove that ξ = 2/3 in this model, 
see [17]. 

The rigorous results discussed above are of course proved for very special 
models. On the other hand one would expect the results to hold more gener­
ally, [22], [16, Conjecture 1.9], [28], since limiting laws should have some degree 
of universality. To understand this universality rigorously is an interesting open 
problem. 
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2. Analysis of the Corner Growth Model 

Let λ = (λ1, . . . , λn) be a partition of k, i.e. λ1 ≥ λ2 n ≥ 0, λj ∈ N≥ · · · ≥ λ
and j λj = k. The Young or Ferrers diagram corresponding to λ is the set 
∪n 

j=1{(i, j); 1 ≤ j ≤ λn+1−j }, which we also denote by λ. A semistandard Young 
tableaux T of shape λ, sh(T ) = λ, with elements in {1, . . . , N} is a map T : λ 
{1, . . . , N} such that T (i, j) ≤ T (i + 1, j) and T (i, j) > T (i, j + 1). Let mr (T

→
) 

denote the number of points (i, j) ∈ λ, such that T (i, j) = r, see [13, 31] or [34] 
for more details. The Robinson­Schensted­Knuth (RSK) corresponence, [21], sets 
up a bijection between integer M × N matrices W = (w(i, j)) and pairs (T, S) 
of semistandard Young tableaux of the same shape λ, where T has elements in 
{1, . . . , N} and S has elements in {1, . . . ,M}. This bijection has the property that 
G(M,N) defined by (3) is equal to λ1, see [16], and furthermore j w(i, j) = 
mi(S), i w(i, j) = mj (T ). 

Consider a generalization of the corner growth model defined above, where 
w(i, j) is geometrically distributed with parameter xiyj , i.e. P [w(i, j) = s] = 
(1 − xiyj )(xiyj )s , s ∈ N. Here xi, yi, i ≥ 1, are given numbers in (0, 1). From the 
facts above we obtain 

P [G(N,N) ≤ n] = P [W ] 
W ;G(N,N )≤n 

N N � � �� � � N
j i w(i,j)= (1 − xiyj ) xi

w(i,j) 
yj 

i,j=1 W ;G(N,N )≤n i=1 j=1 ⎛ ⎞ ⎛ ⎞ 
N N N� � � � � � 

= (1 − xiyj ) ⎝ x mi (S)⎠ ⎝ yj
mj (T )⎠ (19)i


i,j=1 λ;λ1 ≤n S;sh(S)=λ i=1 T ;sh(T )=λ j=1


In (2.1) we can recognize one possible definition of the Schur polynomial. Given 
λ = (λ1, . . . , λN ), a partition of k, the Schur polynomial sλ(x1, . . . , xN ) is a ho­
mogeneous symmetric polynomial of degree k, defined by 

N

sλ(x1, . . . , xN ) = 
� � 

x mi (S) =
ΔN 

1
(x) 

det(x λj +N −j )N 
i,j=1 . (20)i i 

S;sh(S)=λ i=1 

The second equality is the Jacobi­Trudi identity, [31, 34]. Combining (19) and (20), 
we obtain 

N

P [G(N,N) ≤ n] = (1 − xiyj ) sλ(x)sλ(y) , (21) 
i,j=1 λ;λ1 ≤n 

[16, 3]. In [3] many variations of this formula are given. Note that we can think of 

N

PS [λ] = (1 − xiyj )sλ(x)sλ(y) (22) 
i,j=1 
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as a probability measure on all partitions with at most N non­zero parts. This is 
the Schur measure introduced in [27], where it is defined on the set of all parti­
tions and xi, yi are allowed to be complex. As discussed in [7], the Schur measure 
generalizes many other measures on partitions motivated by representation theory, 
see [6], including the classical Plancherel measure, which corresponds to random 
permutations, [8]. The Poissonized Plancherel measure can be obtained as a limit 
of (22) with xi = yi = 

√
α/N , see [18, 19]. 

Note that if we put yi = 0, M < i ≤ N , yi = 
√
q, 1 ≤ i ≤ M and xi = 

√
q, 

1 ≤ j ≤ N in (22) we get the distribution function for G(N, M) of section 1. Using 
the second equality in (20) we can rewrite the right hand side of (22) and obtain 
(11), [16]. The crucial fact in going from (11) to (14) is the fact that the measure 
in (11) has determinantal correlation functions, [25], see [33] for review on random 
point fields with determinantal correlation functions. In fact, this is true also for 
the Schur measure (22) as proved in [27]. In the next section we will give a new 
proof of this, and actually we will see that it is possible to go directly from (21) 
to a Fredholm determinant. 

3. The Schur Measure 

Our analysis of the Schur measure is based on [36], which is an alternative to the 
approach in [25]. We start by outlining some results in [36]. Let µ be a measure 
on the space Ω and let f , φj , ψj , j ≥ 1 be integrable functions from Ω to C. The 
following identity, [2], is central. � N

. 1 
j,k=1 det(ψj (tk))NZN [f ] = det(φj (tk))N 

j,k=1 f(tj )dµ(tj )
N ! ΩN 

j=1 

= det( φj (t)ψk (t)f(t)dµ(t))N 
j,k=1. (23) 

Ω 

Let � 
A = ( φj (t)ψk(t)dµ(t))N (24)j,k=1 

Ω 

and assume that A is invertible with inverse A−1 = (µjk )N . Set j,k=1

N

KN (u, v) = ψk(u)µkj φj (v) . (25) 
j,k=1 

The arguments in [36] show that, writing f = 1 + g, 

ZN [1 + g] 
= det(I + KN g)L2 (Ω,µ) , (26)

ZN [1] 

where the right hand side is a Fredholm determinant on L2(Ω, µ) and KN g is the 
operator which is first multiplication by g and the application of the operator with 
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kernel KN (u, v). Think of 

1 
j,k=1 det(ψj (tk ))NρN (t1, . . . , tN )dµN (t) = 

N !ZN [1] 
det(φj (tk ))N 

j,k=1dµ
N (t) (27) 

as a complex measure on ΩN . It follows from (26), [36], that ρN dµ
N has marginal 

distributions given by 

.
ρk(t1, . . . , tk )dµ k(t) = ρN (t)dµ(tk+1 . . . dµ(tN ) 

ΩN −k 

=
(N − k)! 

det(KN (ti, tj ))k 
i,j=1dµ

k (t). (28)
N ! 

Let A(jk) be the matrix obtained by deleting row j and column k in the matrix 
A. Then, by (25) and the standard formula for the inverse of a matrix, 

N� det A(jk) 

KN (u, v) = (−1)j+k ψk(u) φj (v) . (29)
det A 

j,k=1 

vIf we take φj (v) = yj , ψk (u) = xu and dµ to be the counting measure on N,k 
then (27) becomes the Schur measure. To see this use the second equality in (20), 
the Jacobi­Trudi identity, set tj = λj + N − j, and note that the Schur measure 
is a symmetric function of the ti :s. Hence we can regard the Schur measure, (22) 
as a measure on NN , which we denote by ρSc 

N (t1, . . . , tN ), t ∈ NN . Note that with 
this choice, � 1∞

t tZN [1] = det A = det( yj xk) = det(
1 − yj xk 

) 
t=0 

ΔN (x)ΔN (y)= , (30)�N 
j,k=1(1 − xj yk) 

by the formula for a Cauchy determinant, so we really get (22) with the right nor­
malization. We see that det A(jk) is also a Cauchy determinant and (29) becomes, 
after cancellation of common factors, 

N� 
j (1 − xj ys)(1 − xr yj ) 

KN (u, v) = y v x u � (31)s r (1 − xr ys) (xr − xj ) 
� 

(ys − yj ) 
. 

r,s=1 j=� r j=s

We can rewrite this using the residue theorem. Let γ2 be the circle |w = 1 and |
γ� the circle |ζ| = (1 + �)−1, where � > 0 is chosen so that |yj | < (1 + �)−1 for1 
1 ≤ j ≤ N . Both curves have positive orientation. An application of the residue 
theorem shows that the right hand side of (31) is � � N � � � �

1 
KN (u, v) = 

(2πi)2 
dζ dw

wuζv � 1 − wyj 1 − xj ζ
. (32)

1 − ζw 
1γ� γ2 j=1 

w − xj ζ − yj 
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If γ1 is the circle |z| = 1 + � and we put z = 1/ζ, we get from (32) � � � � �
1 

� 
wu 1 

N

KN (u, v) = dζ dw
zv+1 

� 1 − wyj z − xj 

(2πi)2 
γ1 γ2 

z − w 
j=1 

w − xj 1 − yj z
, (33) 

and we have rederived the result in [27]. 
By (21), the definition of the Schur measure and the remarks above, we obtain 

N

P ScP [G(N,N) ≤ n] = N (t1, . . . , tN ) (1 − χ[n+N,∞)(tj )) . (34) 
t∈NN j=1 

Hence, by (26), 

P [G(N,N) ≤ n] = det(I − KN )�({n+N,n+N +1,... }) (35) 

with KN given by (33). If we put yi = 0, M < i ≤ N , yi = 
√
q, 1 ≤ i ≤ M 

and xi = 
√
q, 1 ≤ j ≤ N , this formula can be used to prove theorem 1.1. The 

asymptotics can be analyzed by a saddle­point argument of the integral in the rght 
hand side of (33). Note that in this approach we do not need to know anything 
about Meixner polynomials. After some manipulation, where we use the integral 
formula for Meixner polynomials, it is possible to obtain the representation (15) 
for the kernel, see [7]. 

Let λ� denote the conjugate partition to λ, i.e. λ� = the length of the j:thj 

column in λ, and let �(λ) denote the number of non­zero­parts in λ. We have 

sλ(x)sλ(y) = sµ� (x)sµ� (y) . (36) 
λ;λ1 ≤n µ;�(µ)≤n 

Let ek(x) denote the k:th elementary symmetric function, i.e. 

N N
k(1 + zxj ) = ek(x)z , (37) 

j=1 k=0 

and ek (x) = 0 if k < 0, k > N . Then, there is a third formula for the Schur 
polynomial, [31, 34], 

sµ� (x) = det(eti −j (x))N 
i,j=1 , (38) 

where µ = (µ1, . . . , µN ) and ti = µi + N − i. As described in [3], we can now use 
formula (23) to derive Gessel’s formula. Inserting (38) into (36) and using (23) 
gives 

∞

sλ(x)sλ(y) = det( em−j (x)em−k (y))n 
j,k=1 . (39) 

m=0λ;λ1 ≤n 

Using (21) we find, 

N ∞

P [G(N,N) ≤ n] = (1 − xj yk) det( em(x)em+j−k (y))n 
j,k=1 . (40) 

j,l=1 m=0 
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Note that the determinant in the right hand side of (40) is a Toeplitz determinant. 
If we set 

N

f (z) = (1 + xj /z)(1 + yj z) ,	 (41) 
j=1 

then, by (37) and (40), 

N

P [G(N, N ) ≤ n] = (1 − xj yk)Dn(f (e iθ )) . (42) 
j,l=1 

If we take xj = yj = 
√
α/N and let N →∞ we obtain (16). Combining (35) and 

(42) we find, 

N

(1 − xj yk ) 
det(I −KN )�2 ({n+N,n+N +1,... }) . 

j,l=1 

This is the Borodin­Okounkov identity, which can be extended to more general f 
by taking appropriate limits, [7], see also [9] for a completely different derivation. 
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bridge University Press, 1992, 479–582. 

[24] C. Licea, C. M. Newman, M. S. T. Piza, Superdiffusivity in first­passage percolation, 
Probab. Th. and Rel. Fields, 106 (1996), 559–591. 

[25] M. L. Mehta, Random Matrices, 2nd ed., Academic Press, San Diego 1991. 

[26] C. M. Newman, M. S. T. Piza, Divergence of shape fluctuations in two dimensions, 
Ann. Prob., 23 (1995), 977–1005. 

[27] A. Okounkov, Infinite wedge and measures on partitions, math.RT/9907127. 

[28] M. Prähofer, H. Spohn, Universal distributions for growth processes in 1+1 dimen­
sions and random matrices, preprint 1999, cond­mat/9912264. 

[29] D. Richardson, Random growth in a tesselation, Proc. Camb. Phil. Soc., 74 (1973), 
515–528. 

[30] H. Rost, Non­Equilibrium Behaviour of a Many Particle Process: Density Profile and 
Local Equilibria, Zeitschrift f. Wahrsch. Verw. Geb., 58 (1981), 41–53. 

[31] B. Sagan, The Symmetric Group, Brooks/Cole Publ. Comp., 1991. 

[32] T. Sepp¨ ainen, Coupling the totally asymmetric simple exclusion process with aal¨

moving interface, Markov Process. Rel. Fields, 4 (1998), 592–628.


[33] A. Soshnikov, Determinantal random point fields, math.PR/0002099. 

[34] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999. 



12 K. Johansson 

[35] C. A. Tracy, H. Widom, Level Spacing Distributions and the Airy Kernel, Commun. 
Math. Phys., 159, (1994), 151–174. 

[36] C. A. Tracy, H. Widom, Correlation Functions, Cluster Functions, and Spacing Dis­
tributions for Random Matrices, J. Statist. Phys., 92, (1998), 809–835. 
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