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Abstract

Let (1) denote square of the largest singular value of an n x p matrix X, all of
whose entries are independent standard Gaussian variates. Equivalently, z(;) is the
largest principal component of the covariance matrix X’ X, or the largest eigenvalue of
a p variate Wishart distribution on n degrees of freedom with identity covariance.

Consider the limit of large p and n with n/p = v > 1. When centered by p, =

(vV/n — 14+/p)? and scaled by 7, = (v/n — 14++/p)(1/v/n — 14+1//p)*/3 the distribution
of z(1y approaches the Tracy-Widom law of order 1, which is defined in terms of the
Painlevé II differential equation, and can be numerically evaluated and tabulated in
software. Simulations show the approximation to be informative for n and p as small
as 5.

The limit is derived via a corresponding result for complez Wishart matrices using
methods from random matrix theory. The result suggests that some aspects of large p
multivariate distribution theory may be easier to apply in practice than their fixed p
counterparts.

1 Introduction

The study of sample covariance matrices is fundamental in multivariate analysis. With
contemporary data, the matrix is often large, with number of variables comparable to
sample size. In this setting, relatively little is known about the distribution of the largest
eigenvalue, or principal component, especially in null cases. A second impetus for this work
comes from random matrix theory, a domain of mathematical physics and probability that
has seen exciting recent development - for example the long sought asymptotic distribution
of the length of the longest increasing subsequence in a random permutation (Baik et al.,
1999). Some of these remarkable tools can be borrowed for covariance matrices. A surprise
is that the results seem to give useful information about principal components for quite
small values of n and p.

Let X be an n by p data matrix. Typically, one thinks of n observations or cases Z; of a
p dimensional row vector which has covariance matrix . For definiteness, assume that the
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rows &; are independent Gaussian N,(0,X). In particular, the mean has been subtracted
out. If we also don’t worry about dividing by n, then we can call X’X a covariance matrix.
Under the Gaussian assumptions, X’X is said to have a Wishart distribution W, (n,X).
If ¥ = I, the “null” case, we call it a white Wishart, in analogy with time series settings
where a white spectrum is one with the same variance at all frequencies.

Large sample work in multivariate analysis has traditionally assumed that n/p, the
number of observations per variable, is large. Today it is common for p to be large or
even huge, and so n/p may be moderate to small, and in extreme cases less than one. For
example,

a) Climate studies: n might be the number of time points, and p the number of obser-
vation stations. Principal components analysis is widely used under the name “empirical
orthogonal functions”. Preisendorfer (1988) is a book length treatment that emphasises
n/p moderate.

b) Financial data: large covariance and correlation matrices, with p &~ 400 financial
indicators, are publicly posted daily (e.g. riskmetrics.com) and used for value-at-risk
calculations.

c) IR /search engines: A common search engine strategy forms huge term by document
incidence matrices (n and p at least in the thousands) and then does a truncated singular
value decomposition. This example is far from the Gaussian, but illustrates the huge
matrices that arise.

d) Functional data analysis: Each data point is a curve, and so typically high dimen-
sional. In the example of Figure 1, extracted from Buja et al. (1995), a small speech dataset
consists 162 instances of a phoneme “dcl” spoken by about 50 males. Each instance is cal-
culated as a periodogram on 256 points. So here n = 162, and p = 256.

Basic notation and phenomena. The eigenvalue-eigenvector decomposition of the sample
covariance matrix S

S=X'X=ULU' =) ljuu},

with eigenvalues in the diagonal matrix L and orthonormal eigenvectors collected as the
columns of U. There is a corresponding decomposition of the population covariance matrix
¥ = TAY' with eigenvalues \;.

A basic phenomenon is that the sample eigenvalues /; are more spread out than the
population A;. This effect is strongest in the null cases when all population eigenvalues are
the same. As a simple example, consider one random draw of a 10 x 10 matrix X with i.i.d
N(0,1) entries. The ordered sample eigenvalues [; of S were:

(I;) = 3.07, 1.40, 1.12, .78, .51, .30, .16, .095, .036, .003

In this case, extreme because n = p, the ratio of largest to smallest is about 1000.

While our focus is on eigenvalues, there are two essentially equivalent points of view that
are of importance. In the singular value decomposition of a data matrix X = UDV’, the
singular values D = diag(d;) are just the square roots of the eigenvalues [;. The condition
number of X is just the ratio of largest to smallest singular value. The distribution of the
smallest singular value was given in certain cases by Edelman (1988) and studied in detail
by Forrester (2000).

Eigenvalues also occur in principal components analysis, also widely known as the
Karhunen-Loéve transform. One seeks the successively orthogonal directions that maxi-



mally explain the variation in the data. In this case,

u'Su

u'u

l; = max{ tuLug, .. w50
Here a key practical question emerges: how many principal components should be retained
as being ‘significant’?

The “scree plot” (e.g. Mardia et al. (1979)) is one of the many graphical and informal
methods that have been proposed. One plots the ordered sample eigenvalues or singular
values, and looks for an “elbow”, or other break between presumably significant and pre-
sumably unimportant components. In the phoneme example, Figure 1(c) there are clearly
three large values, but what about the fourth, fifth etc.?
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Figure 1: Panel (a): a single instance of a periodogram from the phoneme dataset, (b) ten instances,
to indicate variability, (c) Screeplot of eigenvalues in phoneme example

In the study of eigenvalue distributions, two general areas can be distinguished: the
bulk, which refers to the properties of the full set I; > l... > [,, and the extremes, which
addresses the (first few) largest and smallest eigenvalues. To provide context for later
results, here is a brief and necessarily selective account.

1.1 Bulk spectrum

For square symmetric random matrices, the celebrated semi-circle law of Wigner (1955,
1958) describes the limiting density of eigenvalues. There is an analog for covariance ma-
trices due to Maréenko and Pastur (1967), and independently, Stein (1969).

The Maréenko-Pastur result is stated here for Wishart matrices with identity covariance
3. = I, but is true more generally, including non-null cases. Suppose that both n and p
tend to oo, in some ratio n/p — v > 1. Then the empirical distribution of the eigenvalues
converges almost surely:

1
Gp(t) = —#{l; 1 [; <nt} = G(t) (1.1)
p
and the limiting distribution has a density g(t) = G'(t):
— T =D
o)=LV Di-a), a<i<h (12)

where @ = (1 — v~ Y/%)% and b = (1 + v~'/)%2. Compare Figure 2(a). Thus, the smaller
n/p, the more spread the eigenvalues — even asymptotically, the spread of the empirical



eigenvalues doesn’t disappear. For n = p, the largest normalized eigenvalue approaches
4, and the smallest approaches 0, which accounts for the large spread seen in the 10 X
10 example earlier. There has been a significant literature rediscovering and extending
this theorem, with contributions, among others, by Bai, Grenander, Jonsson, Krishnaiaih,
Silverstein, Wachter, and Yin. Bai (1999) provides details in a comprehensive recent survey.

Wachter (1976) advocated a nice data-analytic use of this result to yield a simple, but
informative modification of the screeplot: make a probability plot of the ordered observed
eigenvalues /,1_; against the quantiles G_l(ﬂ) of the predicted “semi-circle” type dis-
tribution (1.1) - (1.2). Figure 2(b) shows the phoneme data (actually on the singular value
scale). One sees the three large values as before, but it is notable that the bulk of the
distribution follows the semi-circle law. There is an uptick at the right hand edge, which
looks like there is extra variance in the directions corresponding to the 4th through 12th
eigenvalues. Without variability information on the null distribution, one cannot say with
rigor whether this is real.
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Figure 2: Panel (a). Limiting densities (1.2) corresponding to n = 4p,y = 4 and n = p,y = 1
(monotone line). Panel (b) Wachter plot of the empirical singular values of the phoneme data.

1.2 Largest Eigenvalue

Consider now the right hand edge, and particularly the largest eigenvalue. Why the interest
in extremes? In the estimation of a sparse mean vector, the maximum of n i.i.d Gaussian
noise variables plays a key role. Similarly, in distinguishing a “signal subspace” of higher
variance from many noise variables, one expects the largest eigenvalue of a null (or white)
sample covariance matrix to play a basic role.

The bulk limit (1.2) points to a strong law for the largest eigenvalue. Indeed, Geman
(1980) shows that

nl = (149792 as,

i.e. Iy ~ (y/n+,/p)?. Later Bai, Krishnaiah, Silverstein and Yin established that strong
convergence occurred iff the parent distribution had zero mean and finite 4th moment. Bai
(1999) has more details, and results on smallest eigenvalue.

However these results say nothing about the variability of the largest eigenvalue, let
alone about its distribution. Muirhead (1982, Sec.9.7) surveys existing results. For example,
Constantine (1963, p.1284) gives an exact expression in terms of a zonal polynomial series
for a matrix hypergeometric function:

P(ly <nt) = dpmtp”/QlFl(%n; %(n +p+1); —%nﬂp),



[cf. also Muirhead (1982, p. 421)]. There are explicit evaluations for p = 2,3 (Sugiyama,
1972), but in general the alternating series converges very slowly, even for small n and p,
and so is difficult to use in practice. For fixed p and large n, the classic paper by Anderson
(1963) gives the limiting joint distribution of the roots, but the marginal of /; is hard to
extract in the null case ¥ = J. Muirhead (1974) gives a series approximation again for
p = 2,3. In general, there are upper bounds on the d.f. using p independent X%’n)' Overall,
there is little that helps numerically with approximations for large p.

1.3 Main result

We now turn to what can be derived from random matrix theory (RMT) methods. Sup-
pose that X = (X,x)nx, has entries which are i.i.d. X;; ~ N(0,1). Denote the sample
eigenvalues of the Wishart matrix X'X by l; > ... > [,. Define center and scaling constants

finp = (V=14 /p)?, (1.3)

_ 1 L yis
onp = (Vn = 14 Vp)( n—1+ﬁ) : (1.4)

The Tracy-Widom law of order 1 has distribution function defined by

Fi(s) = exp{—%/ q(z) + (z — 5)¢*(z)dz}, s € R,
where ¢ solves the (non-linear) Painlevé II differential equation

q"(z) = zq(z) + 2¢°(2) (15)
q(z) ~ Ai(z) as r — 400, '

and Ai(z) denotes the Airy function. This distribution was found by Tracy and Widom

(1996) as the limiting law of the largest eigenvalue of an n by n Gaussian symmetric matrix.

The main result states that the same limiting distribution applies to covariance matrices

X X' derived from rectangular data matrices X where both dimensions n and p are large.

In fact, we assume that n = n(p) increases with p in such a way that both y,, and o,, are
increasing in p.

Theorem 1.1. Under the above conditions, if n/p — v > 1, then

l_n
17/”2}1/]/1 ~ I

Tnp

The theorem is stated for situations in which n > p. However, it applies equally well if
n < p are both large, simply by reversing the roles of n and p in (1.3) — (1.4). We write
TWi(n, p) for the law of p,,, + 0,,,W1, which we use to approximate the distribution of /;.

The mean growth of /; is as described earlier, except for a slight adjustment in (1.3)
which is suggested by the proof and makes a distinct improvement to the quality of ap-
proximation for small n.

The scale behavior is noteworthy. A sum of i.i.d variables with positive mean grows
with mean of order n and standard deviation of order y/n. Here, the lead eigenvalue of a
p x p Wishart grows with mean of order p, but with SD about that mean only of order p'/3.
Thus its distribution is relatively much more tightly clustered about its mean than in the
case of sums.



From numerical work, Tracy and Widom (2000) report that the Fy distribution, plotted
in Figure 3, has mean = —1.21, and SD = 1.27. The density is asymmetric and Appendix
A1 shows that its left tail has exponential order of decay like e_|5|3/24, while its right tail
is of exponential order e L

Numerical table look up for this distribution is analogous to using the traditional statis-
tical distributions such as chi-square, normal or I'. Work is in progress to provide publicly
downloadable MATLAB and S-PLUS routines for the Tracy-Widom cumulative, density and

quantile functions.
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Figure 3: Density of the Tracy-Widom distribution F;

Remarks. 1. The equation (1.5) is one of the six exceptional differential equations
identified by Painlevé at the end of the 19th century. Further detail may be found in the
expository article Deift (1999a).

2. An heuristic argument derives the p'/? scaling for I; from the bulk density (1.2).
Indeed, let f(¢) denote the limiting density of ¢; = b — p~'l; (where < denotes exact order
behavior). Suppose that the spacing of the smallest few #; is of order p~©, so that the interval
[0,p~®) contains O(1) out of p eigenvalues. The cumulative of f, namely F, then satisfies
F(p~) =< p~'. But from (1.2) we have f(t) < t'/% for t — 0, so also F(p~) < p~3%/2. This
fixes a = 2/3, so that the largest few [; should have spacing p cp 23 = pl/s,

Theorem 1.1 relies heavily on the RMT literature. But first we focus on some of its
statistical implications.

1.4 Statistical Implications

Quality of approximation for moderate n and p. As a check on the practical appli-
cability of Theorem 1.1, some simulations were done, first for square cases n = p = 5,10
and 100, using R = 10,000 replications, with results shown in Table 1 and Figure 4.

Even for 5 x5 and 10 x 10, the approximation seems to be quite good in the right hand
tail at conventional significance levels of 10%, 5% and 1%. At 100 x 100, the approximation
seems to be reasonable throughout the range.

The same general picture holds for n/p in the ratio 4 : 1. Even for 5 x 20 matrices, the
approximation is reasonable, if not excellent, at the conventional upper significance levels.

A further summary message from these computations is that in the null Wishart case,
about 80 % of the distribution lies below fi,,,, and 95 % below fi,,, plus one oy,.

Non-null cases: empirical results. In practice, as in the phoneme example, there are
often one or more large eigenvalues clearly separated from the bulk. This raises the question:
if there were, say, only one or a small number of non-unit eigenvalues in the population,
would they pull up the other values? Consider, therefore, a “spiked” covariance model,



Percentile TW | 5x5 10x10 100x100 | 5x20 10x40 100x400 |2 * SE
-3.90 .01 | .000 .001 .007 .002 .003 .010 (.002)
-3.18 .05 | .003 .015 .042 .029 .039 .049 (.004)
-2.78 .10 | .019 .049 .089 075 .089 .102 (.006)
-1.91 30 | 211 251 .299 304 307 303 (.009)
-1.27 50 | 458 480 500 539 524 508 (.010)
-0.59 70 | .697 707 703 739 733 714 (.009)
0.45 .90 | .901 .907 .903 .919 .918 .908 (.006)
0.98 .95 | .948 .954 .950 .960 .961 .957 (.004)
2.02 .99 | .988 .991 .991 .992 .993 .992 (.002)

Table 1: First column shows the probabilities of the Fy limit distribution corresponding to fractions
in second column. Next three columns show estimated cumulative probabilities for {; in R = 10, 000
repeated draws from W, (n,I) with n = p = 5,10 and 100. The following three cases have n : p
in the ratio 4 : 1. Final column gives approximate standard errors based on binomial sampling.
Bold font highlights some conventional significance levels. The Tracy-Widom distribution F; was
evaluated on a grid of 121 points —6(.1)6 using the Mathematica package p2Num written by Craig
Tracy. Remaining computations were done in MATLAB, with with percentiles obtained by inverse
interpolation, and using randn() for normal variates and norm() to evaluate largest singular values.
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Figure 4: First panel: probability plots of R = 10,000 observed replications of /; drawn from
Wp(n,I) for n = p = 10 and 100. That is, the 10,000 ordered observed values of [; are plotted
against F;'((i — .5)/R),i = 1,..., R. The line for n = p = 10 is the one elevated in the left tail.
The vertical dashed lines show 5th, 95th and 99th percentiles. The dotted line is the 45 degree
line of perfect agreement of empirical law with asymptotic limit. Second panel: same plots for

n =40,p = 10 and n = 400, p = 100.



with a fixed number, say r, eigenvalues greater than 1:

¥, =diag(rg, ..., 75 1,...,1). (1.6)
In fact, the (r+ 1) eigenvalue in the spiked model is stochastically smaller than the largest
eigenvalue in the null model with p — r variables.

st
Proposition 1.2. L(Ly1|n,p, X)) < L(L|n,p—r,1,—,).

This non-asymptotic result follows directly from interlacing properties of eigenvalues
(Appendix A2). Use of L(!y|n,p — r,1,_,) provides a conservative p—value for testing
Hy: Tf_l_l =1 in the spiked model, in the sense that the correct p—value for /,4; is always
smaller. And Theorem 1.1 and the simulations say that the p—value for £({y |n,p—1,1,_;)
can be numerically approximated using TWy(n,p — r).

In fact, empirical evidence from Figure 5 below, suggests that if 72 well separated from 1,
then the distributions in Proposition 1.2 are approximately shifted by a constant ¢ = ¢, p ;:

'C(ZT+1 |n7p7 E’T) ~ ’C(ll |n7p - T, IP—T) - Cn7p’7-'

In the phoneme data example, of particular interest is a spiked model corresponding
p = 161 and the three obviously separated singular values. Thus, for 3, set the top values
T1, T2, T3 equal to the observed data, and the remaining 7; all equal to one. The dashed line
is corresponds to the fourth largest eigenvalue from this distribution, and the solid one to
the largest eigenvalue from the 158 x 256 white case.

In addition, Proposition 1.2 shows that the 4th (and presumably down to 12th) eigen-
values in the data are significantly larger than would be expected under the null model. In
other words, this uptick in the Wachter plot is a genuine departure from equal variances.

PCA on correlations. Principal components analysis is not invariant to changes in
scale of the variables. For this reason, it is often recommended that principal components be
calculated after standardizing the variables to have unit standard deviation. Equivalently,
one performs PCA on the sample correlation matrix. This is problematic for distribution
theory (e.g. Anderson (1963)). In particular, Theorem 1.1 does not directly apply.

An ad hoc construction may, however, be based on the Tracy-Widom approximation.
Let the n x p data matrix X consist of n i.i.d draws of a row vector &; with distribution
N,(0,%). View the data matrix in terms of its columns: X = [z; - -2z,] and standardize:

wj = —, s; = ||z;]|-

Set W = [wy - - - w,]. Performing PCA on W'W amounts to PCA on the sample correlations
of the original data, with population correlations R = (p;).

To create a test of Hy : R = I based on W, observe that under Hg, the vectors
w; are i.i.d. on the unit sphere S"~!. Now synthesize a standard Gaussian data matrix
X =[%;--- Z,] by multiplying each w; by an independent chi-distributed length:

ind
T; =rjw; r? P i

Under Hg the Tracy-Widom approximation then applies to the largest sample eigenvalue
of S = X'X: so that /1(S) has approximately the T'W;(n, p) distribution.
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Figure 5: (a) 10 unit roots and one with 7 = 10 in model (1.6). p = 10,n = 40, with N = 10,000
replications. The dashed line is a qqplot of the second largest value against the TW distribution.
For comparison, the solid line is the simulated null distribution for 10 x 40 white Wishart case. The
two lines essentially differ by a vertical shift. Dotted line i1s the 45 degree line of perfect agreement.
(b) 99 unit roots and one with 7 = 10 in model (1.6). N = 1,000 replications. Dashed line is
second largest from this distribution, and the solid is the 100 x 100 white case. (c) Singular values
of phoneme data n = 256, p = 161. (d) Dashed line is qqplot of fourth largest eigenvalue from spiked
covariance model with top three values set at the observed values in the phoneme data. Solid line is
qqplot of largest eigenvalue from a null Wishart with p = 158 and n = 256. N = 1,000 replications.



1.5 Complex Matrices

We now return to the main theorem. Data matrices with complex (Gaussian entries are
also of interest in statistics and signal processing. Suppose now that X = (Xj;),x,, with
ReX;;, ImX;; ~ N(0, —) all independently of one another. The matrix S = X*X has the
complex Wishart distribution, and we again suppose that its (real) eigenvalues are ordered
lh>...> lp.

While studying a random growth model of interest in probability, Kurt Johansson (2000)
stated without detailed proof a limit theorem which could be reinterpreted as giving the
limit behavior of the largest eigenvalue of a complex Wishart matrix. First, define slight
modifications of (1.3) - (1.4):

th, = (Vn +/p)?,

= (Vi + ﬁa)(7 + 7)”?

Assume that n = n(p) increases with p so that both u;,, and a7,

Theorem 1.3 (Johansson, 2000). Under the above conditions, if n/p — v > 1 then

are increasing in p.

L=y D
# - Wy ~F
Unp

The center and scale are essentially the same as in the real case (but see Remark 4.1),
however the limit distribution is now

= exp{— / z — 8)¢*(z)dz), (1.7)

where ¢ is still the Painlevé II function defined at (1.5). This distribution was also first
found by Tracy and Widom in the Wigner matrix setting to be recalled below.

Remark. The definition (1.7) implies %log Fy(s) = —q*(s), and ¢*(s) is monotone
decreasing, asymptotic to |s|/2 as s = —o0, and to 6_552/3/47r\/§ as s — o0. (Appendix
A1). This should be compared with the Pearson family of distributions (which contains
most of the familiar laws) and the extreme value family, given respectively by

d ats
1 _ d
ds og f(s) = o+ 18+ cos?’ an
log F(s) = —e*;0r — |s|*.

1.6 Remarks on Proof and Outline of Paper

A central problem in random matrix theory has been the study of so-called Wigner matrices.
In the real case, these are symmetric with i.i.d. elements, up to modifications on the
diagonal. For example, p X p Gaussian Wigner matrices have

Y=Y Vi R N@OLI+2) <k
In fact, it is simpler to derive results for complex matrices first. A complex Gaussian Wigner
matrix is Hermitian, Y = Y*, with Y;; and ReYj;, ImYj;,j < k all i.i.d. N(0, %) It was
here that Tracy and Widom (1994) identified the F, distribution, and showed that

h-2/F p
W = 1/6 — FQ.
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This was based on determinant representations of the distributions for finite p, followed by
asymptotics of Hermite polynomials H,(u, + 0,5), where y, = 2,/p and 0, = pt/6. Finally,
Tracy and Widom showed that the limiting distribution satisfied the Painleve Il equation.

Later, Tracy and Widom (1996) derived the F; distribution for real matrices as a conse-
quence of the complex case. One cannot do justice to their method in a single sentence, but
essentially they derive the square of Iy as a low rank perturbation of the complex setting.

For the covariance matrices S = X’X studied in this paper, the same broad strategy
works. Although the result for complex matrices is again the easier to derive, the conclusion
for real matrices is what is needed for most statistical settings. A new aspect, also important
in statistics, is that in the n x p data matrix X, both p and n are separately large, which
leads to nonstandard asymptotics in Laguerre polynomials L (pin, + 0pps) — large degree
p, large order & = n — p and argument near the largest zero. Along the way, we give a
separate proof of Johansson’s result, based on Liouville-Green asymptotics of differential
equations, rather than steepest descent methods applied to contour integrals.

Section 2 first describes some of the remarkable determinant formulas that have been
developed in RMT and then makes some heuristic remarks about the Laguerre asymptotics.
Section 3 assembles the operator theoretic tools need to complete our alternate proof of
the complex case, Theorem 1.3. Section 4 establishes the main result, Theorem 1.1 by
sketching how the arguments of Tracy and Widom (1996) are extended from the Gaussian
to the Laguerre ensemble. Section 5 gives details of the Laguerre polynomial asymptotics.

1.7 Discussion

The main conclusion of this paper is that the Tracy-Widom distribution F} provides a
useable numerical approximation to the null distribution of the largest principal component
from Gaussian data even for quite moderate values of n and p. In particular, we have the
following simple approximate rules of thumb:

1) about 83% of the distribution is less than pi,, = (vn — 1+ /p)%;

2) about 95% and 99% lie below p,, + 0.y, and gy, + 20, respectively.

A second important conclusion is that in non-null cases in which the population covari-
ance Y has precisely r eigenvalues greater than 1, then the distribution of the (r + 1)st
sample eigenvalue /.47 can be approximately bounded above by the Tracy-Widom law
appropriate to an n X (p — r) matrix, leading to approximately conservative P—values.

Practical problems of data analysis often have covariance matrices with much more
structure than assumed here. It may be, however, that such structure can be decomposed
into subparts to which the Tracy-Widom approximation is relevant. For example, separate
spherical Gaussian models can be appropriate for subsets of coefficients in an orthogonal
wavelet decomposition of non-white Gaussian process data. In this respect, it is encouraging
that the sizes of the subparts would not need to be particularly large. Specific examples
must, however, await future work.

This paper raises other issues for future work, among which we mention:

a) what happens if the elements of the data matrix X are i.i.d. from a non-Gaussian
distribution? Soshnikov (1999) established “universality” of the Tracy-Widom limit for
square Wigner matrices. Does the same hold for X’X for large n and p? Preliminary
simulations are encouraging, though the quality of approximation (if not the actual rate of
convergence in n and p) naturally appears to depend on the specific parent distribution.

b) RMT has a formalism for deriving the distribution of the kth largest eigenvalue
(k fixed) - see for example Tracy and Widom (1998, 1994), where the latter carries this

11



through for Gaussian Hermitian Wigner matrices. Presumably this can be extended to null
Gaussian covariance matrices.

c) Many techniques of classical multivariate analysis are based on the roots of deter-
minantal equations such as det[A; — [(A; + A3)] = 0, with A; ~ W, (n;, ) independently.
Thus, one might ask, for example, for an approximation to the distribution of the largest
canonical correlation when p, ny and ny are large.

2 Determinant Formulas, Laguerre heuristics

The joint density of the latent roots of a real Wishart matrix was found in 1939, in a
remarkable instance of simultaneous publication, independently by each of Fisher, Girshick,
Hsu, Mood and Roy — see Wilks (1962) for citations and Section 4 below. For reasons just
given, we start with the complex version of this density. So, let X be an n x N complex
normal matrix with Re X;;, Im X;; all independently and identically distributed as N (0, %)
(Eaton, 1983). The cross products matrix X*X then has the complex Wishart distribution
with identity covariance matrix. The eigenvalues z = (z1,...,zx) of X*X are real and
non-negative, and have density (James, 1964)

PN(xl,...,;rN):c]_\,}n H (.rj—mk)ZHa;?e_zﬂ, a=n-—N. (2.1)

1<j<k<N j=1

[Warning! Notation change: to accord with the RMT literature, we henceforth write the
sample eigenvalues as z1 > ... > zn, rather than [; > ... > [,.]

Efforts to use density (2.1) directly to get information on the largest eigenvalue are

frustrated by the high dimensionality and the Jacobian term [, . (z; — 2x)*. Random

matrix theory (RMT) addresses this by starting with the Vandermonde determinant identity

[T Gi-w)= det [2F71. (2.2)

, 1<5,k<N
1<5,k<p - -

One sees polynomials in each of the eigenvalues with degrees up to N — 1. Let w(z) =
z%e~" be the Laguerre weight function, and ¢i(z) = ¢i(z; @) be functions obtained by
orthonormalizing the sequence z¥w'/?(z) in L?(0, 00): in fact

o (z) = ﬁxa/%—f/%g(@«) (2.3)

where L{(z) are the Laguerre polynomials, defined as in, e.g. Szegd (1967).
A standard argument [e.g. Mehta (1991, Ch. 5), Deift (19996, Ch. 5.)] yields a
remarkable determinant representation for the joint density

1
= det
Ni<j k<N

Px(z1,...,2N) S(z;, k),

where the bilinear kernel S = Sy is given by

N-1
S(z,y) =Y drl(z)dr(y). (2.4)
k=0
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A kernel A(z,y) defines an operator A on functions g as usual via (Ag)(y) = [ A(z, y)g(y)dy.
For suitable functions f, denote by S f the operator with kernel S(z,y)f(y). A further key
RMT formula [e.g. Tracy and Widom (1998), Deift (19995))], valid in particular for (2.1),
states that

N
En [0+ f(z))] = det(I + Sf), (2.5)

i=1

where the right side is a Fredholm determinant of the operator Sf [Riesz and Sz.-Nagy
(1955), Gohberg and Krein (1969, Ch. 4.)].

The choice f = —y, where y = I{z : z > t}, yields the determinantal expression for the
distribution of z(yy:

Frna(t) = P{lg;aéV z; <t} =det(l — Sx). (2.6)

[The subscript 2 recalls the exponent 2 in (2.1). In fact Fys = Fi 2 depends on n also,
but this will not always be shown explicitly.]

Tracy and Widom showed that these operator determinants satisfy differential equations
which in the large N limit involve the Painlevé functions. We refer to Tracy and Widom
(1994, 1996) (and the expositions in Tracy and Widom (1999, 2000) for the full story, and
turn to indicating where the centering and scaling constants come from, as well as the Airy
functions.

Laguerre Heuristics. Consider the mode z* of the density Py, with components z7 >
x5 > ... > %y in decreasing order. According to Stieltjes’ “electrostatic interpretation,”
(Szegd, 1967, p. 141) these components are precisely the zeros L%_l(:c,}“) = 0 of the degree
N Laguerre polynomial of order o« — 1. Thus, the “typical” positions of the eigenvalues
correspond to the zeros of orthogonal polynomials, and in particular the largest eigenvalue
should be sought in the neighborhood of the largest zero of L]av_l. The largest zero of an
orthogonal polynomial of high degree marks a transition in the behavior of the polynomial
from oscillation (z < z7) to rapid growth (z > 7). In turn, this can be studied using the
differential equations that characterize the Laguerre polynomials.

Begin with the Airy equation: Ai”(¢) = (Ai({) — this has a turning point at 0: { positive
corresponds to the region of exponential behaviour of the solution and { negative to the
oscillatory zone.

Figure 6 shows that an appropriately weighted Laguerre polynomial wy(z/k) =
x(a"'l)/?e_””/?l,?{,(m) looks very similar to the Airy function near largest zero: the polynomial
passes from oscillation to exponential decay (because of e™* damping factor). Although
the similarity does not extend throughout the range, it is the neigborhood of the largest
zero that is of interest here. Note also the relatively small values n = N = 10.

The center and scaling constants uy,on arise through aligning these two functions.
Laguerre polynomials and hence the function wy satisfy a second order differential equation
(e.g. Szegd (1967, Ch. V) and Section 5 below). We write this in a form with a large
parameter k = N + CYTH:

wi (&) = [K*F(€) + g(&)]w,
where £ = z/k and

e N GEE
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Figure 6: Top panel: Airy function Ai(¢). Lower panel: Laguerre polynomial wy(z/k) =
zlotD)/2e=2/2 1% (£) as a function of z. Here n = N = 10.

The function f(§) has upper turning point at & = 24 /4 — (a/k)? and it is easily verified
that uy ~ (v/n + \/ﬁ)2 On the z scale, this occurs at x = k€ = ppn, and this fixes the
centering constant. Now, transform the independent variable £ into ¢ so that if ¢ is ignored,
then the Laguerre equation turns into the Airy equation, using ¢ = f1/2(£)d§. Then
wy can be approximated by the Airy function in the new variable :

wi (€) = cAi(k¥%¢) + error.

On the z scale, we are interested in values x = pn 4+ ons close to the turning point. On the
& scale, £ = &+ (o /k)s and we linearize ((£) about ((£2) = 0. The scale o is then chosen
so that #2/3C(€) = s— calculations at (5.20) and (5.21) below show that o = k'/3/{(&,),
and so in particular oy is of order N'/3. This is certainly not a stochastic argument, but
the picture does give some of the flavor of an approximation valid for quite small V.

There is an explicit error term from the Liouville-Green method for asymptotic approx-
imation of ordinary differential equations (Olver, 1974) and this allows rigorous operator
theoretic proofs to go through as in the Wigner matrix case.

3 Complex case

The goal of this section is to establish Theorem 1.3, the Tracy-Widom limit for the largest
eigenvalue of a large complex Wishart matrix. First, the strategy. The starting point is the
fixed N formula (2.6) which we write as det(/ —S), regarding S as an operator on L?(¢, 00).
To show the existence of a limit, adopt the scaling t = 7(s) = un + ons suggested earlier.
Define therefore

S:(z,y) = onS(un + onz, un + oNY).
As an operator on L%(s,00), S, has the same eigenvalues as does S on L?(f, ). Hence

Fnao(pn + ons) =det(I = S;).

Let S denote the Airy operator on L%(s, 00) with kernel

(e, y) = Ai(m)Ai’(y; : 2i(y)Ai'(m) .

(3.1)
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Tracy and Widom (1994) showed that the distribution F, satisfies Fy(s) = det(/ — S), so
that Theorem 1.3 follows if we show

det(I — S;) — det(I — ). (3.2)

Since the Fredholm determinant det(/ — A) is a continuous function of A in the trace class
norm on operators (e.g. Gohberg and Krein (1969, p. 160)), it suffices to show that S; — S
in trace class norm.

Now for the details. Let D denote the differentiation operator, (D f)(z) = f'(z). Widom
(1999) derives a formula for the commutator [D,S] = DS — SD in a class of unitary
ensembles: for the Laguerre ensemble (2.1), this operator has kernel

(55 + 3)8(0.0) = ~0(@) ) - P(x)o(w). (33)

Here ¢ is a function required to belong to Hy = span{¢g, ¢1,...,0én—1} and @ turns
out then to be orthogonal to Hy and to satisfy [;~¢ = 0. Let {n(z) = ¢n(z)/z and

ay = /N(N + ay). For the Laguerre ensemble, Widom finds that
é(z) = (~)N | THVN +an én (@) - VN En-a (@) (3.4)
b(@) = ()N | AN evle) = VN + an v (2)) (3.5)

[of course ¢(z) = ¢(z;an, N) and ¢ (z) = ¥(z;an, N) depend on N and ap, but this is
not shown explicitly].
From (3.3) follows a useful integral representation

S = [ olat et )+ blo+ )l + 2)de (3.6)

this is proved in the same manner as the formula for Gaussian unitary ensembles Tracy and

Widom (1996, Sec. VII).

Laguerre asymptotics. The large N behavior of ¢ and ¥ in the scaling z = uxy + son
is determined by the asymptotics of the Laguerre polynomials L3/ and the corresponding
weighted polynomials ¢ near the turning point uy. Using the notation ¢, (s) = oné(un +
son) in Section 5 we show for each fixed s, that as N — oo,

1.
@r(s), r(s) = AN (3.7)

and, uniformly in N and in intervals of s that are bounded below,

¢r(5), ¥r(s) = O(e™). (3-8)
Operator convergence. 1t follows from (3.6)—(3.8) that
Selesn) = [ orlatu)dn(y+u) + due + 0)ony + u)du, (3.9)
0
— /00 Ai(z + u)Ai(y + u)du = S(z,y), (3.10)
0
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where S is shown in Tracy and Widom (1994) to be the Airy kernel (3.1).
In terms of operators on L%(s, o), the integral formulas (3.9) and (3.10) may be written

S, =G;H,+ H,G, S =262,
where the corresponding kernels

Gr(z,y) = d:(x +y — s), G(z,y)=27"?Ai(z + y),
Ho(z,y) = ¢r(z+y —s).

Write |A]; for the trace class norm on operators (f; norm on singular values), and |A];
for the Hilbert-Schmidt norm ({3 norm on singular values). Then by a standard inequality
(Cauchy-Schwartz on singular values)

|ST — 5|1 < 2|GT|2|HT — G|2 + 2|GT — G|2|G|2 —0

since (3.7) and (3.8) show that G, and H, — G in Hilbert-Schmidt norm on L2(s, c0).
This completes the proof of (3.2) and hence of Theorem 1.3.

Remark. The scaling limit (3.1) for S;(z,y) was stated by Johansson (2000), and for
fixed o by Forrester (1993).

4 Real Case

In this section, suppose that X is an N xXn real normal matrix with X;; all independently and
identically distributed as N (0, 1). The cross products matrix A = X X’ has the real Wishart
distribution Wy (n,I). The eigenvalues (z1,...,2zx) of A are real and non-negative, and
according to the classical formula of Fisher, Girshick, Hsu, Mood and Roy have density

N
Py(z1,...,2n8) = dy, H |$]‘—$k|H$?/2€_rj/2, a=n—1-N, (4.1)
1<j<k<N =1

This is again an example of a Laguerre ensemble, now corresponding to the orthogonal
case (sometimes abbreviated LOE), with the differences z; — z, raised to power g = 1,
in contrast with the complex Wishart case, which corresponds to the Laguerre unitary
ensemble (LUE) with g = 2.

A determinant representation for 5 = 1 analogous to (3.3) was developed by Dyson
(1970). We refer to Tracy and Widom (1998), which gives a self-contained derivation of the
formula

N
Ex I+ f2))] = Vdet(I + Kn ), (4.2)
7=1
which has as consequence for f = —y;,
Fni(t) = P{ max z; <t} = \/det({ — KnXx). (4.3)

1<;<N

Remark 4.1. As in the complex case, Fy; depends on n also, and should be written
more carefully as Fx,_1,1 to emphasize that the exponent in (4.1) « =n —1— N. Here,
the appropriate complex distribution is F ,—1,2 and so in determining the centering and
scaling constants uy and oy, the indicated value for v = (n — 1)/N.
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The major differences from (3.3) are the appearance of the square root, and the fact
that K is now an operator with kernel a 2 X 2 matrix. Building on Tracy and Widom
(1998), Widom (1999) shows that Knf : L3(0,00) — L%(0,00) can be represented as a
matrix of operators

) Step@es  SD—v® ¢
KNf:(eS—eerﬁ@eqb S+e¢®'¢)f 4
Here S, 7 and ¢ are as defined earlier at (2.4), (3.5) and (3.4) respectively. The function
¢(z) = isgnz and the operator € denotes convolution with the kernel ¢(z —y). The notation
a @ 8 denotes the rank one operator defined by (a®@ 8)f = (8, f)a.

Formula (4.4) has exactly the same form as that derived for the Gaussian orthogonal
ensemble in Tracy and Widom (1996, Section V), hereafter [TW96]. Indeed, it turns out
that much of the limiting argument can be made to follow the pattern of [TW96] exactly,
so only a brief summary is given here.

The strategy is to derive the real case from the complex. Thus the complex Wishart
probability Fyq(t) = det(! — Sx) is treated as ‘known’. The same manipulations as in
[TW96] convert the matrix determinant appearing in (4.3) and (4.4) into a scalar determi-
nant. After factoring out I — Sy, one obtains a rank two perturbation of the identity:

FN1 (t)Q/FNQ(t) = det([ — ® 51 — Q9 ® 52) = 1<djekt<2((s]‘k - (Of],ﬂk)) (45)

To write out this determinant explicitly, we define certain quantities associated with
the operator (I — Sy)~!. The notation is patterned after [TW96], though the formulas now
refer to the Wishart setting.

P=(I-Sy) ", Q.= (I—-Sx) e,
775 = (QE?XT/))’ qe = Qe(t)v (46)
Cp = %fooo 2

Let R(z,y) be the kernel of the resolvent operator for Sy, thus (I — Sx)™' = I + R. Set

P = /t P(z)dz, R = /t R(z,t)dx. (4.7)
Then (4.5) is given by
Eni(8)?/Fwa(t) = (1= ) (1 = §R) = 3(g: — cy) P- (4.8)

Note that all the quantities just defined depend on ¢ (with the exception of ¢y), though this
is not shown explicitly. The right side of (4.8) is a finite NV formula, although we do not have
a more explicit evaluation for it. Nevertheless, by using the same scaling ¢t = uy + ons,
s fixed, as in the complex case, we may evaluate the large N limit. Indeed, there is an

invariance principle: (4.8) converges to the same limit as occurs in the GOE setting.
Define

a(z) = 27112 — 27172 /OO Alyydy, Q= (I-5Sx)"'a.

xr

Then, as N — oo, arguing as in [TW96],

QE%QZQ(S)a ﬁe_>7222_1/2(@7XA)7
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and similarly R — R, and P — P, where in view of (3.7) and (3.8) and what has been said,
the barred quantities are exactly those occurring in the GOE case. A separate argument
(A7) is required to establish that c¢s — 27'/2 as N — oo through even values. Tt follows
then that

lim Fy (t)/ Fiva(t) = FE(s)/Fa(s) = (1= a)(1 = 3R) — (g — 27'/%)P.
Setting u = [ q(z)dx, [TW96] identify
2W=R=—V2P=1-V24=1-¢*,

and so
FH6)/as) = e =exp{= [ q(a)da).

Remark. [TW96] derive systems of differential equations satisfied by the functions in
(4.6) and (4.7). The scaling limit of these finite N equations is then shown to exist and
is solved to yield explicit formulas for the scaling limit of (4.6). In the Wishart-Laguerre
setting, similar finite IV differential equations could be derived, though this is not necessary
for this proof — all we need is to show that the limit of (4.6) is the same as the GOE limit,
which is already identified. [Of course, if the finite N equations, including those for Fiyz (%)
could be solved exactly or numerically, then one would have a direct evaluation of Fn(?).]

5 Laguerre polynomial asymptotics

In this section, we establish (3.7) and (3.8). The key to these results are certain asymptotics
for Laguerre polynomials of both large order and large degree, in the neighborhood of
the largest zero. These asymptotics are nonstandard since statistical applications require
ay =n — N large, as well as N.

Specifically, consider the Laguerre polynomials L% (z), as defined in Szegd (1967), but
with @ = ay ~ (y—1)N for N large and v > 1 fixed. With the abbreviations Ny = N+1/2
and np =n+1/2= N+ ay + 1/2, define a rescaling 2 = uy + ons with

pn = (VNi +v/ag)?.

on = (vNy + \/H)(\/LN—+ + \/%)1/3-

Writing p =y~ /61 + \/'7)4/3, we show that, as N — oo,

(~)NN=YS/N/(N + ay)! a@n+D/2e=e/2 10N (4)

— /pAi(s) VseR (5.1)
=0(e™®)  uniformly in [sg, ), sp € R. '
Compare Figure 6. Note that when ay = « is fixed, the pointwise result reduces to

the classical Plancherel-Rotach type formula of Szegé (1967, p. 201): for example uy =
4N + 2042+ O(N~1). Also helpful for fixed o is Erdélyi (1960).

We use a standard differential equation approach, based on heuristics sketched in Section
2 and exploiting existing literature. Indeed, pointwise convergence was studied by Temme
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(1990), based on work of Dunster (1989), in turn building on Olver (1974). We give an
account starting from Olver (1974) (i) to correct a consequential typographical error in
the first two references, (ii) to derive the uniform bound in (5.1), which is needed for the
operator theoretic arguments of Section 3, and (iii) to focus on real asymptotics for Laguerre
polynomials rather than the more general setting of Whittaker functions in the complex
domain of Dunster (1989).

The differential equation satisfied by wy (z) = 2(@+1)/2e=#/2[3 () is, from Szegd (1967,
p 100),

d? 1 A2 —1/4 +1
d—;:{i_g+T/}w’ /@:N—I—QQ , )\:%. (5.2)
Rescaling the z axis via £ = z/k puts this equation into the form
d2
e L GRIGNT (5.3
where
_E-&)E-&) _ 1
G I GEELt (5.4

The turning points of the equation are given by zeros of f, namely
51:2— 4—w2, 52:2—|—\/4—w2, (55)
with

Q_ «
K _N—i—(oz—l—l)/Q'

w= (5.6)
Since N and n = v N are large, kK ~ %(1+7)N will be a large parameter, while w approaches
a finite limit, w — 2(y — 1)/(y+ 1) € [0, 2).

Liouville-Green. This classical method, modified to the case of turning points, describes
how the solutions of equations such as (5.3) — (5.4) are approximated by Airy functions.
This theory, along with error bounds, is described in detail by Olver (1974), referred to as
[O] below. We summarize and specialize the part we need here. A change of independent
variable in (5.3) is made by the Liouville-Green transformation (({) defined on an interval
containing &; (say (2,00)) by

2,+3/2 _ ¢ 1/2
o= [, (5.7)

Define also a new dependent variable W by w = (dC/df)_l/QVV. These choices put (5.3)
into the form

d?
o = (KB (58)
where the perturbation term ¢ (¢) = f_1/4(d2/df2)(f1/4) + g/f Here f is defined by
2o (AN F(E)
f(&= (d_g) == (5.9)
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with the second equality following from (5.7). [O,Lemma 11.3.1] guarantees that {(£)/(§ —
&;) is positive and twice continuously differentiable for £ € (2, o0).

If the perturbation term #({) in (5.8) were absent, the equation d*W/d(? = k*¢W
would have linearly independent solutions in terms of Airy functions, traditionally de-
noted by Ai(k2/3¢) and Bi(xk?/3¢). Our interest is in approximating the recessive solution
Ai(k?/3¢), so write the relevant solution of (5.8) as Wy(¢) = Ai(k%/3¢) + n(¢). In terms of
the original dependent and independent variables £ and w, the solution W5 becomes

wa(r,€) = fTHOLAIR) + ek, €) ) (5.10)

[O, Theorem 11.3.1] provides an explicit bound for 7(¢) and hence €3 in terms of the
function V(¢) = fcoo |4 (v)v="/?|dv. (A3 has more on V.) To describe this error bound even

in the oscillatory region of Ai(z), [O] introduces a modulus function M(z) and a positive
weight function F(z) such that if E=1(z) = 1/E(z) then Ai(z) < M(z)E~!(x) for all z.
In addition,

Aifz) = %M(m)E‘l(m), v > =037, (5.11)

and the asymptotics as z — oo are given by
2,.3/2

E(z) ~V2e57 7 M(z) ~ a2V 4 (5.12)

The key bound of [O, Theorem 11.3.1] is then
e, O < MEPOE WPOexp 02V} - 1), €€ (2%)  (5.13)

where A\g = 1.04. For £ > &, (5.11) shows that the coefficient is just ﬂAi(HQ/SC).

Identifying Laguerre polynomials. (5.13) has a useful double asymptotic character in &
and &. First, suppose that NV and hence x are held fixed. As & — 0o, we have ( — oo also,
since f(&) ~ 1/4. Consequently V(¢) — 0 and so from (5.13) and its following remark,

(k&) = o(Ai(k¥3¢))  as & — oo. (5.14)

Since the weighted Laguerre polynomial wy (z) = z(®+1)/2¢=#/2[% (z) is a recessive solution
of (5.2), it must be proportional to ws:

wy (KE) = cpws(k,§), (5.15)
and we can use (5.10), (5.14) and the asymptotics of Ai(z) to evaluate ¢, (see A4). This
yields
S (2m) /2Rl 6 greo (5.16)

where ¢y = cp(w) is given explicitly at (6.3) below.

Let us summarize the situation so far. Recalling from (2.3) that ¢n (z) = )/N!/(N + a)!
22/2e=/12 % (), observe that the left side of (5.1) becomes (—1)VN~=1/6z12¢x(z). From
(5.15) and (5.16) we have

2 2o (z) = )'wN(x) = (=N rnwy(r, €), (5.17)

(N + a)!
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where

) Cr N!
k6N (N + a)!

ry = (-1 — 1, as N — oo, (5.18)

(and the convergence is shown in A5.) Bringing in (5.10), we have then, for fixed N and z,

(~D)YNTVo 20y (2) = rv (i /N) VOO AIRPE0) + ek, €) ) (5.19)

N1/3 scaling about the largest zero. On the original z scale, we are interested in values

x = uN +ons, where uny = k€, is the upper turning point. We now choose the scale o so
that .Ai(/@Q/SC) — Ai(s). Expand (&) about the turning point &;, at which {(&;) = 0, and
put ¢ = ((&2). For s fixed, we have the approximation

K3C(€) = K3(& + onkts) = onk T 3s(. (5.20)
Equating the right side with s yields the N1/3 scaling:
on = k'3/C ~ pN3, (5.21)

where the final limit follows from explicit evaluation of C(fg) in A6. As noted earlier,
& = C(&)/(€ - &) is positive and C? near &, and from this it follows that uniformly in
s < §N?/3 we have k2/3¢ = s+ O(N_Q/S). Since Ai is continuous, for each fixed s,

Jim Ai(K23¢) = Ai(s). (5.22)

Negligibility of error term. Return to the error term in Olver’s bound (5.13). First
note that s > sq is equivalent to & > & 4 spon/k = & + O(N~2/3). On the ¢ scale, this
means for any fixed ;g < 0, and for N large enough, that s > sg entails { > (p. Letting
c1 = AV((o), the final term in (5.13) can be bounded

exp{AV(()/k} — 1< e/ — 1= exy =0 as N — o0.
Consequently, (5.13) becomes, uniformly in s € [sg, 00),

lea(k, &) < M(K3Q) E~H (K23 en = o(Ai(k¥3¢)). (5.23)

Pointwise limit in (5.1). From (5.19), by combining (5.18), (5.22) and (5.23) with the
limit (kn/N)Y6f=1/4(€) — /p, (see (6.11) in Appendix A6),

(—1)NN=Y612¢ 5 (2) — /pAi(s). (5.24)

As remarked earlier, the definition of ¢ shows that this is (5.1).

Uniform bound in (5.1). From (5.19) and (5.23), and recalling that Ai < ME™!, we
have

(~D)NNTE 2 ()| < Cy) FO M (PO ETH ().

It remains to show that the right side, which we denote by Tn(s), satisfies Ty (s) < Ce™
for s > sp. This is done in A8. We remark here only that for { > 0, (5.12) shows that
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E-Y(s*3¢) < coe_gﬁcs/i), and a (by no means sharp) argument shows that (2/3)x¢%? > s
for s large enough.

Large N asymptotics of ¢, and ., needed for Section 3, are now straightforward to
derive from (5.24). Returning to (3.4) and (3.5), write

¢r = OI.N + OIIN, Y. = YIN + YIIN, (5.25)
where, for example,
(—1)Norn(2) = on[an(N + an)]on(z)/V2e = N=Y62 g (2) - dn () (5.26)
where
An () = du(a/un) ™%, dy = oy NYSHAN +an) Vo

As N — oo, it is easily seen that z/u =1+ son/uny — 1 and

- 103/273/4 _ i . 9—1/2
V. TTRaYC E R T ey Bl

Using, (5.24) this establishes the first part of

— 271/2b_Ai(s)

<C(p)e. 27

o1N(uN + ons) {

The second part follows from (5.26), the second part of (5.1) and the simple bound
(2/pn) 32 = (1 + son /uy) =32 < e~ Gon/2un)s

It is easily verified that all the other terms (5.25) can be written in terms of ¢r n.
Indeed, setting uy = (on/0on_1)y/an/an_1, then ny = N + ay and vy = (N/ny)"/?, we

have
YN = UN PIN,
orr,N = UNUN—1 @I N-1; (5.28)
VIILN = UNUN UN—1 OIN-1.
Let us show how (3.7) and (3.8) follow from these and (5.28). First, note that writing
UN + ons = pun_1 + on_18 yields
UN — UN—-1 n ON — ON-1
ON-1 ON-1

s'=s+ s=s54+O0O(N73). (5.29)

From this it follows that limy_o ¢7,n—1(pn + ons) is the same as (5.27). Since uy — 1
and vy® = ny/N — v as N — 0o, we obtain immediately from (5.28)

Jim N (un + ons) = 27Y2(1 = b)) Ai(s). (5.30)
—00

Adding (5.27) and (5.30) yields (3.7) for ¢,. The corresponding result for ), follows from
(5.28) in a similar way. Turning now to the uniform bounds (3.8), note first that since puy
and o are increasing with N, (5.29) implies that s’ > s, and so, for example

b1 N_1(un + ons) = drn_1(pn_1 + on_18") < Ce™ < Ce™>.
Now (3.8) follows directly from this, (5.25) and (5.28).

Remark. It can be shown if n?/N is increasing in N, then so also are both uy and op.
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6 Appendix

Al. Tails of the Tracy-Widom density of order 1. Write f(s) & ¢(s) when f(s) ~ r(s)g(s)

and r(s) involves at most rational powers of s. The density of [} is
fi(s) = 3P (s)als) + [J7 ¢* () da}.

For large positive s, from (1.5), ¢(s) ~ Ai(s) ~ 2_17r_1/25_1/4e_ . Since [ ¢*(z)dx ~

4
(871'5)_16_553/2 = o(q(s)), we have fi(s) ~ ¢q(s) = e 3" as s = 00, For large nega-
tive s, Hastings and McLeod (1980) show that ¢(s) ~ /—s/2, so it follows that [ ¢ ~
(v/2/3)|s]>/% and [ (z — s)q*(z)dz ~ |s[?/12. Hence, fi(s) ~ e~ Is1°/24 for large negative s.

A2. Proof of Proposition 1.2. For a square symmetric p X p matrix A, write [1(A) > I3(A4) >

. > l,(A) for the ordered eigenvalues. Let r be an integer with 1 < r < p, and let A,_,
be a (p—r) x (p—r) submatrix obtained by deleting r rows and the corresponding columns
from A. Then the “inclusion principle” (e.g. Horn and Johnson (1985, Thm. 4.3.15)) states
that for each integer k such that 1 < k£ <p—r,

Lar(A) € L(Aper) < L(A). (6.1)

Now let Y be an n X p data matrix with rows independently drawn from N (0, 3;), where
¥, =diag(rf,..., 72, 1,...,1). Partition Y = [Y; : Y3] with the n x r matrix Y; containing
the first r columns and Y; the remaining n — r ones. Now simply apply (6.1) with k=1 to
A=Y'Y and A,_, = Y)Y, ~ W,_,(n, I,_,;). The first inequality is precisely the assertion
of the Proposition.

A3. Details on V(¢). Since () is continuous, finiteness of V(() follows from the continuity
of ¥(¢) in (¢(2),0) ([O,Lemma 11.3.1]) together with observation that ¥ (¢) ~ —1/(4¢?)
as ¢ — oo. [The latter comes from calculation with the formula for ¢ preceding (5.9) after

observing that f(C) ~ 1/(4¢) for large ¢ and that ¢3? ~ 3¢/4 for large €]

A{. Evaluation of c,. Since wy(z) = 2(@+D/2e=2/2[% (z) and L% (z) ~ (=1)N2N/N! for
large z, we have

o) ~ e ) DT g e,

From (5.12) Ai(z) ~ 9 1g=1/25-1/4c=52"" o large z, and so

1
wa(s.8) ~ 5o g PR € oo
Since K = QTH + N,
/
(=1)Ve, = 2T o P (r) expln(2CY? — €72} (6.2)

To evaluate this limit, we need the large & asymptotics of ((€). Set R(&) = (&€ — &)"/2(¢ -
£)/2. According to Dunster (1989, formula (4.6)), (5.7) is given by

C3/2 R(f)—l—wl i{#}—}—ln{g 2+R )}
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Noting that R(§) = & — (& + &) /2 + O(€71), and that & + & = 4, we arrive at

%4‘3/2 = g —Iné+ ¢ —}—0(5_1),

where
252 — w2
52 (2 — w)

[The value of ¢ corrects Dunster (1989, formula (4.7)), which omits the —1.] Since f(§) ~
1/4 as & — oo, the previous display and (6.2) yield

&

00:—1—|—%10g —|—log(2 —1). (6.3)

2rkl/6

() e =5

&" lim exp[teg + O(E7Y)]
E—o0
which reduces to (5.16).

A5. Proof of (5.18): We first rewrite the constant cg, using (5.5) along with w? = £ &,
(5.6) and (5.2) and n = N + « to obtain

26 —w?  2-& (2—|—w)1/2_ (2/{—|—a)1/2_ (n—|—1/2)1/2’

HE2-w) 2-w \2-w 26 — N+1/2
and
& _ | _ C+w)22-w)? 2+ )22k - )2 (n+1/2)V3(N +1/2)1/?
2 B 2 B 25 B K ‘

Since wk/2 = /2, it follows that
R2E0% = 72 (4 1/2) V(N 4 1/2)N /2, (6.4)
By Stirling’s formula
NI(N 4 a)! ~ 21 e72N=a pnt1/2 NN+1/2 (6.5)

and so as N — o0,

9 2 K2R g2rco 14 1 \nt+1/2 . 1 \N+1/2 .
NENINta)! ¢ ( +%) ( +W) ~

Ab6. FEvaluation ofgl, un and o We first derive formulas for fixed N and then evaluate the
large N limits. From (5.9), and using L’Hépital’s rule as £ — &,

{e) = %[(5 - 52)(§ —52)}1/2 . %(52 _51)1/2'

¢

Solving for C yields

& —51}1/3' (6.6)



We use the abbreviations Ny = N + 1/2,n4 = n+ 1/2. It follows from (5.2) that

AN
:#7 HZ—A2:N+77,+.
Hence, since rw = 2A,
pn = k€ = 26 + 2/ K2 — A2 = (\/Ny + /ny)2 (6.7)

Note that
k(&2 —&) =4VK2 =2 =4\/Nyn,.
Using (5.21) and (6.6),

FoAkG)? (/NG )

3 _ _ _
oN — =3 )

¢ K& -&)  VNing

so that

aN=<¢N_++m>(¢}V_++%)”3.

We now turn to large N approximations. Since n = vN, we immediately find from (6.7)

and (6.8),

(6.8)

i ~ (VF 4 V) ~ (14 V7PN (6.9)
on ~ pN'P p =751 4 )R, (6.10)

In addition, (5.9) again shows that f_1/4(€) = 6_1/2(5) and so, as N — oo,

K16 F=1/4(8) ~ (511312 ~ \/5N1/6. (6.11)

A7. Limiting value of c¢4. Throughout this argument, o = an = (y — 1)N, and we set
B = (y—1)/2. We will assume v > 1. [For v = 1, (essentially « fixed) the same result can
be established by a more direct argument.] From (4.6) and (3.4), we have

V2cy = j/an[VN +a [én = VN [En ]
Since [ =0, (3.5) yields VN + a [&n_1 = \/ﬁf&v, and hence

= () s o= 3 () e

The large N behavior of

cN:/ 2?2 1% () dx
0

follows via generating functions and the saddlepoint method. By Szegd (1967, eq. (5.1.9)),

S L (@)Y = (1 1) exp{—at/(1 - 1)},

N=0
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and so, after evaluating a gamma integral,

h(t) := i ent™y =220 (a/2) (1 — t) 71 (1 — t3) /2,
N=0

By Cauchy’s theorem, for a suitable contour C encircling 0,

1 h(t) 29121 (r/2)
CN = — d = -
211 Jo tNH1 271

In, (6.13)
where, on setting p(t) = log{t(1 — )%} and q(t) =t~ (1 — )71,
In = / e NP g (t)dt.
C

The saddlepoints, being the (simple) zeros of p'(t), are given by t1 = +~71/2. On the
circular contour ¢ = t(u) = y~'/2e", traversed counterclockwise, 2Rep(t) = —logy +
Blog{1++~% — 2y~ cos 2u} has equal global minima at ¢+. Consequently, the saddlepoint
approximation [e.g. Olver (1974, Thm 4.7.1)] yields, as N — oo,

where the sum is over the two cases t4 and ¢_. In forming [p”(¢4)]'/?, the branches wq + of
arg{p”(t+)} are chosen to satisfy |wo + +2ws| < 7/2, where wy = +7/2 are limiting values
of arg(t — t4) as t — t+ clockwise along the contour. Thus, since p” (1) = —29%/(y — 1),

we have wo+ = Fr and so [p”(t+)]""/? = +iy/y — 1/9V/2. Since e?(t+) = (y — 1)7714—7
and ¢(t+) = £v(y/7 £ 1)7', we have, for large even N, after combining the two terms in

(6.14),
(20) ~ sl
27 TNy —1Ll(y—1)71] ~
Returning at last to ¢y, collecting (6.12) and (6.13) gives v/2¢c4 = by In/(27i), where

by = (NX a) " (N]—V}—!oz)! {(%> !} 2

m NN+laot! Nl [(7 - 1)”‘1]N
~N —————————————— — T/
2 (N 4 a)N+ott o 7 ’

1/2

after using Stirling’s formula. Since by and Iy /(277) > 0, it follows that ¢y — 1/V2.

A8. Uniform bound for Tn(s). In the following, the constant ¢ = ¢(v) is not necessarily the
same at each appearance.

1. We first construct s; such that if N is large and s > 2s;, then E_l(/@Q/SC) < Ce™s.
Indeed, writing £ = & + son/k and using the definition of f, we find

o% B o fg—fl—l—saN/ﬁN s

_ 5% as N — oo.
4 K [Sa+son/E]E c(y)
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For a fixed § > 0, set s; = ¢(7)(1+9). For large N and s > s; we then have \/f(§) > 2/on

and hence

%HCS/ZZH \/—>.‘£ S—sl)UN 2(s —s1) > s
K

if s > 2s;. Since F(z) > Coeng/‘z for z > 0, we have E~1(x%/3() < o e FRC <cyle® as
claimed.

2. For s > 2s1, f(§) > f(&a+2s10n/K) > c(on/k) f'(&2)- Since f'(&2) = &% (& — &) —
¢(y) > 0 as N — oo, we have for large N and such s, /@2/3]‘(5) > c. Since M (z) < ca—1/4
for 2 > 0, we have (using the definition of f)

FEOVAMK2BO) < [f (ORI < e (6.15)

Combining with 1. we obtain the bound for Tx(s) for s > 2s;.

3. For s € [80,251] we have § € [&2 + SoUN/H & + 2s20n /K] = & + O(N 2/3) But
limg_sg, f(f) = (2, so for large N, f(g) 1/4 < (=12, Since M < 1 and F > 1, we obtain
from the definition of T that TN(f) <2<
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