
PHYSICAL REVIEW E, VOLUME 64, 026704 
Spectra of ‘‘real-world’’ graphs: Beyond the semicircle law 
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Many natural and social systems develop complex networks that are usually modeled as random graphs. The 
eigenvalue spectrum of these graphs provides information about their structural properties. While the semi­
circle law is known to describe the spectral densities of uncorrelated random graphs, much less is known about 
the spectra of real-world graphs, describing such complex systems as the Internet, metabolic pathways, net­
works of power stations, scientific collaborations, or movie actors, which are inherently correlated and usually 
very sparse. An important limitation in addressing the spectra of these systems is that the numerical determi­
nation of the spectra for systems with more than a few thousand nodes is prohibitively time and memory 
consuming. Making use of recent advances in algorithms for spectral characterization, here we develop meth­
ods to determine the eigenvalues of networks comparable in size to real systems, obtaining several surprising 
results on the spectra of adjacency matrices corresponding to models of real-world graphs. We find that when 
the number of links grows as the number of nodes, the spectral density of uncorrelated random matrices does 
not converge to the semicircle law. Furthermore, the spectra of real-world graphs have specific features, 
depending on the details of the corresponding models. In particular, scale-free graphs develop a trianglelike 
spectral density with a power-law tail, while small-world graphs have a complex spectral density consisting of 
several sharp peaks. These and further results indicate that the spectra of correlated graphs represent a practical 
tool for graph classification and can provide useful insight into the relevant structural properties of real 
networks. 
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I. INTRODUCTION	

Random graphs �1,2� have long been used for modeling 
the evolution and topology of systems made up of large as-
semblies of similar units. The uncorrelated random graph 
model—which assumes each pair of the graph’s vertices to 
be connected with equal and independent probabilities— 
treats a network as an assembly of equivalent units. This 
model, introduced by the mathematicians Paul Erdős and Al-
fréd Rényi �1�, has been much investigated in the mathemati-
cal literature �2�. However, the increasing availability of 
large maps of real-life networks has indicated that real net-
works are fundamentally correlated systems, and in many 
respects their topology deviates from the uncorrelated ran-
dom graph model. Consequently, the attention has shifted 
towards more advanced graph models which are designed to 
generate topologies in line with the existing empirical results 
�3–14�. Examples of real networks, that serve as a bench-
mark for the current modeling efforts, include the Internet 
�6,15–17�, the World-Wide Web �8,18�, networks of collabo-
rating movie actors and those of collaborating scientists 
�13,14�, the power grid �4,5�, and the metabolic network of 
numerous living organisms �9,19�. 
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These are the systems that we will call ‘‘real-world’’ net­
works or graphs. Several converging reasons explain the en-
hanced current interest in such real graphs. First, the amount 
of topological data available on such large structures has 
increased dramatically during the past few years thanks to 
the computerization of data collection in various fields, from 
sociology to biology. Second, the hitherto unseen speed of 
growth of some of these complex networks—e.g., the 
Internet—and their pervasiveness in affecting many aspects 
of our lives has created the need to understand the topology, 
origin, and evolution of such structures. Finally, the in-
creased computational power available on almost every
desktop has allowed us to study such systems in unpre­
cedented detail. 

The proliferation of data has lead to a flurry of activity 
towards understanding the general properties of real net-
works. These efforts have resulted in the introduction of two 
classes of models, commonly called small-world graphs 
�4,5� and the scale-free networks �10,11�. The first aims to 
capture the clustering observed in real graphs, while the sec-
ond reproduces the power-law degree distribution present in 
many real networks. However, until now, most analyses of 
these models and data sets have been confined to real-space 
characteristics, which capture their static structural properties 
e.g., degree sequences, shortest connecting paths, and clus­
tering coefficients. In contrast, there is extensive literature 
demonstrating that the properties of graphs and the associ­
ated adjacency matrices are well characterized by spectral 
methods, that provide global measures of the network prop­
erties �20,21�. In this paper we offer a detailed analysis of the 
04-1	 ©2001 The American Physical Society 
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most studied network models using algebraic tools intrinsic 
to large random graphs. 

The paper is organized as follows. Section II introduces 
the main random graph models used for the topological de­
scription of large assemblies of connected units. Section III 
lists the—analytical and numerical—tools that we used and 
developed to convert the topological features of graphs into 
algebraic invariants. Section IV contains our results concern­
ing the spectra and special eigenvalues of the three main 
types of random graph models: sparse uncorrelated random 
graphs in Sec. IV A, small-world graphs in Sec. IV B, and 
scale-free networks in Sec. IV C. Section IV D gives simple 
algorithms for testing the graph’s structure, and Sec. IV E 
investigates the variance of structure within single random 
graph models. 

II. MODELS OF RANDOM GRAPHS 

A. The uncorrelated random graph model 
and the semicircle law 

1. Definitions 

Throughout this paper we will use the term ‘‘graph’’ for a 
set of points �vertices� connected by undirected lines �edges�; 
no multiple edges and no loops connecting a vertex to itself 
are allowed. We will call two vertices of the graph ‘‘neigh­
bors,’’ if they are connected by an edge. Based on Ref. �1�, 
we shall use the term ‘‘uncorrelated random graph’’ for a 
graph if �i� the probability for any pair of the graph’s vertices 
being connected is the same, p; �ii� these probabilities are 
independent variables. 

Any graph G can be represented by its adjacency matrix 
A(G), which is a real symmetric matrix: Ai j�A ji�1, if 
vertices i and j are connected, or 0, if these two vertices are 
not connected. The main algebraic tool that we will use for 
the analysis of graphs will be the spectrum—i.e., the set of 
eigenvalues—of the graph’s adjacency matrix. The spectrum 
of the graph’s adjacency matrix is also called the spectrum of 
the graph. 

2. Applying the semicircle law for the spectrum of the 
uncorrelated random graph 

A general form of the semicircle law for real symmetric 
matrices is the following �20,22,23�. If  A is a real symmetric 
N�N uncorrelated random matrix, �Ai j��0 and �Ai j  

2 ���2 

for every i� j , and with increasing N each moment of each 
�Ai j� remains finite, then in the N�� limit the spectral 
density—i.e., the density of eigenvalues—of A/�N con­
verges to the semicircular distribution 

� �2��2 ��1�4�2��2 if ����2� 
����� �1� 

0 otherwise. 

This theorem is also known as Wigner’s law �22�, and its 
extensions to further matrix ensembles have long been used 
for the stochastic treatment of complex quantum-mechanical 
systems lying far beyond the reach of exact methods �24,25�. 
02670
FIG. 1. If N�� and p�const, the average spectral density of 
an uncorrelated random graph converges to a semicircle, the first 
eigenvalue grows as N, and the second is proportional to �N �see 
Sec. II A�. Main panel: The spectral density is shown for p�0.05 
and three different system sizes: N�100 �—�, N�300 �– –�, and 
N�1000 �- - -�. In all three cases, the complete spectrum of 1000 
graphs was computed and averaged. Inset: At the edge of the semi­
circle, i.e., in the ���2�Np(1� p) regions, the spectral density 
decays exponentially, and with N�� , the decay rate diverges 
�20,29�. Here, F(�)�N� 1 �� i��1 is the cumulative spectral distri­
bution function, and 1�F is shown for a graph with N�3000 
vertices and 15 000 edges. 

Later, the semicircle law was found to have many applica­
tions in statistical physics and solid-state physics as well 
�20,21,26�. 

Note, that for the adjacency matrix of the uncorrelated 
random graph many of the semicircle law’s conditions do not 
hold, e.g., the expectation value of the entries is a nonzero 
constant: p�0. Nevertheless, in the N�� limit, the re-
scaled spectral density of the uncorrelated random graph 
converges to the semicircle law of Eq. �1� �27�. An illustra­
tion of the convergence of the average spectral density to the 
semicircular distribution can be seen on Fig. 1. It is neces­
sary to make a comment concerning figures here. In order to 
keep figures simple, for the spectral density plots we have 
chosen to show the spectral density of the original matrix A 
and to rescale the horizontal ��� and vertical ��� axes by 
��1N�1/2��Np(1� p) ��1/2 and �N1/2��Np(1� p)�1/2. 

Some further results on the behavior of the uncorrelated 
random graph’s eigenvalues, relevant for the analysis of real-
world graphs as well, include the following: The principal 
eigenvalue �the largest eigenvalue �1) grows much faster 
than the second eigenvalue: limN��(�1 /N)� p with prob­
ability 1, whereas for every ��1/2, limN��(�2 /N�)�0 �see 
Refs. �27,28� and Fig. 1�. A similar relation holds for the 
smallest eigenvalue �N : for every ��1/2, limN��(�N /N

�) 
�0. In other words, if �ki� denotes the average number of 
connections of a vertex in the graph, then �1 scales as pN 
��ki�, and the width of the ‘‘bulk’’ part of the spectrum, the 
set of the eigenvalues ��2 ,  . . . ,�N�, scales as ��N . Lastly, 
the semicircular distribution’s edges are known to decay 
4-2 
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exponentially, and the number of eigenvalues in the � 
�O(�N) tail has been shown to be of the order of 1 �20,29�. 

B. Real-world graphs 

The two main models proposed to describe real-world 
graphs are the small-world model and the scale-free model. 

1. Small-world graphs 

The small-world graph �4,5,30� is created by randomly 
rewiring some of the edges of a regular �31� ring graph. The 
regular ring graph is created as follows. First draw the ver­
tices 1,2, . . . ,N on a circle in ascending order. Then, for 
every i, connect vertex i to the vertices lying closest to it on 
the circle: vertices i�k/2, . . . ,i�1,i�1, . . . ,i�k/2, where 
every number should be understood modulo N (k is an even 
number�. Figure 9 will show later that this algorithm creates 
a regular graph indeed, because the degree �31� of any vertex 
is the same number k. Next, starting from vertex 1 and pro­
ceeding towards N, perform the rewiring step. For vertex 1, 
consider the first ‘‘forward connection,’’ i.e., the connection 
to vertex 2. With probability p r , reconnect vertex 1 to an­
other vertex chosen uniformly at random and without allow­
ing multiple edges. Proceed toward the remaining forward 
connections of vertex 1, and then perform this step for the 
remaining N�1 vertices also. For the rewiring, use equal 
and independent probabilities. Note that in the small-world 
model the density of edges is p��ki�/(N�1)�k/N . 
Throughout this paper, we will use only k�2. 

If we use p r�0 in the small-world model, the original 
regular graph is preserved, and for p r�1, one obtains a ran­
dom graph that differs from the uncorrelated random graph 
only slightly: every vertex has a minimum degree of k/2. 
Next, we will need two definitions. The separation between 
vertices i and j, denoted by Li j  , is the number of edges in the 
shortest path connecting them. The clustering coefficient at 
vertex i, denoted by Ci , is the number of existing edges 
among the neighbors of vertex i divided by the number of all 
possible connections between them. In the small-world 
model, both Li j  and Ci are functions of the rewiring prob­
ability p r . Based on the above definitions of Li j( p r) and 
Ci( p r) , the characteristics of the small-world phenomenon, 
which occurs for intermediate values of p r , can be given as 
follows �4,5�: �i� the average separation between two verti­
ces, L( p r) , drops dramatically below L( p r�0), whereas �ii� 
the average clustering coefficient C( p r) remains high, close 
to C( p r�0). Note that the rewiring procedure is carried out 
independently for every edge; therefore, the degree sequence 
and also other distributions in the system, e.g., path length 
and loop size, decay exponentially. 

2. The scale-free model 

The scale-free model assumes a random graph to be a 
growing set of vertices and edges, where the location of new 
edges is determined by a preferential attachment rule 
�10,11�. Starting from an initial set of m0 isolated vertices, 
one adds one new vertex and m new edges at every time step 
t. �Throughout this paper, we will use m�m0.� The m new 
02670
edges connect the new vertex and m different vertices chosen 
from the N old vertices. The ith old vertex is chosen with 
probability ki / � j�1,Nk j , where ki is the degree of vertex i. 
�The density of edges in a scale-free graph is p��ki�/(N 
�1)�2m/N .� In contrast to the small-world model, the dis­
tribution of degrees in a scale-free graph converges to a 
power law when N�� , which has been shown to be a com­
bined effect of growth and the preferential attachment �11�. 
Thus, in the infinite time or size limit, the scale-free model 
has no characteristic scale in the degree size �14,32–37�. 

3. Related models 

Lately, numerous other models have been suggested for a 
unified description of real-world graphs �14,32–35,37–40�. 
Models of growing networks with aging vertices were found 
to display both heavy tailed and exponentially decaying de­
gree sequences �34–36� as a function of the speed of aging. 
Generalized preferential attachment rules have helped us bet­
ter understand the origin of the exponents and correlations 
emerging in these systems �32,33�. Also, investigations of 
more complex network models—using aging or an additional 
fixed cost of edges �12� or preferential growth and random 
rewiring �37�—have shown, that in the ‘‘frequent rewiring, 
fast aging, high cost’’ limiting case, one obtains a graph with 
an exponentially decaying degree sequence, whereas in the 
‘‘no rewiring, no aging, zero cost’’ limiting case the degree 
sequence will decay as a power law. According to studies of 
scientific collaboration networks �13,14� and further social 
and biological structures �12,19,41�, a significant proportion 
of large networks lies between the two extremes. In such 
cases, the characterization of the system using a small num­
ber of algebraic constants could facilitate the classification of 
real-world networks. 

III. TOOLS 

A. Analytical 

1. The spectrum of the graph 

The spectrum of a graph is the set of eigenvalues of the 
graph’s adjacency matrix. The physical meaning of a graph’s 
eigenpair �an eigenvector and its eigenvalue� can be illus­
trated by the following example. Write each component of a 
vector v� on the corresponding vertex of the graph: v i on 
vertex i. Next, on every vertex write the sum of the numbers 
found on the neighbors of vertex i. If the resulting vector is a 
multiple of v � is an eigenvector, and the multiplier is � , then v
the corresponding eigenvalue of the graph. 

The spectral density of a graph is the density of the eigen­
values of its adjacency matrix. For a finite system, this can 
be written as a sum of � functions 

N 

����ª 
1 

� ����� j �, �2�
N j �1 

which converges to a continuous function with N�� (� isj 
the j th largest eigenvalue of the graph’s adjacency matrix�. 
4-3 
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The spectral density of a graph can be directly related to 
the graph’s topological features: the kth moment M k of ���� 
can be written as 

1 
N 

1

M k� � �� j �

k�
N

Tr� Ak �

N j�1


1 
� � Ai1 ,i2 

Ai2 ,i3 
•••Aik ,i1

. �3�
N i1 ,i2 ,••• ,ik 

From the topological point of view, Dk�NM k is the num­
ber of directed paths �loops� of the underlying— 
undirected—graph, that return to their starting vertex after k 
steps. On a tree, the length of any such path can be an even 
number only, because these paths contain any edge an even 
number of times: once such a path has left its starting point 
by choosing a starting edge, no alternative route for returning 
to the starting point is available. However, if the graph con­
tains loops of odd length, the path length can be an odd 
number, as well. 

2. Extremal eigenvalues 

In an uncorrelated random graph the principal eigenvalue 
�1 shows the density of edges and �2 can be related to the 
conductance of the graph as a network of resistances �42�. 
An important property of all graphs is the following: the 
principal eigenvector e� 1 of the adjacency matrix is a non­
negative vector �all components are non-negative�, and if the 
graph has no isolated vertices, e� 1 is a positive vector �43�. 
All other eigenvectors are orthogonal to e� 1, therefore they all 
have entries with mixed signs. 

3. The inverse participation ratios of eigenvectors 

The inverse participation ratio of the normalized j th ei­
genvector e� j is defined as �26� 

N 

I j� � ��  e j �k �
4. �4� 

k�1 

If the components of an eigenvector are identical, (e j) i 

�1/�N for every i, then I j�1/N . For an eigenvector with 
one single nonzero component, (e j) i�� i ,i� , the inverse par­
ticipation ratio is 1. The comparison of these two extremal 
cases illustrates that with the help of the inverse participation 
ratio, one can tell whether only O(1) or as many as O(N) 
components of an eigenvector differ significantly from 0, 
i.e., whether an eigenvector is localized or nonlocalized. 

B. Numerical 

1. General real symmetric eigenvalue solver 

To compute the eigenpairs of graphs below the size N 
�5000, we used the general real symmetric eigenvalue 
solver of Ref. �44�. This algorithm requires the allocation of 
memory space to all entries of the matrix, thus to compute 
the spectrum of a graph of size N�20 000 (N�1 000 000) 
using this general method with double precision floating 
point arithmetic, one would need 3.2 GB �8 TB� memory 
02670
� � � 

space and the execution of approximately 30N2�1.2�1010 

(3�1013) floating point operations �44�. Consequently, we 
need to develop more efficient algorithms to investigate the 
properties of graphs with sizes comparable to real-world net­
works. 

2. Iterative eigenvalue solver based on the thick-restart 
Lanczos algorithm 

The spectrum of a real-world graph is the spectrum of a 
sparse real symmetric matrix; therefore, the most efficient 
algorithms that can give a handful of the top nd 
eigenvalues—and the corresponding eigenvectors—of a 
large graph are iterative methods �45�. These methods allow 
the matrix to be stored in any compact format, as long as 
matrix-vector multiplication can be carried out at a high 
speed. Iterative methods use little memory: only the nonzero 
entries of the matrix and a few vectors of size N need to be 
stored. The price for computational speed lies in the number 
of the obtained eigenvalues: iterative methods compute only 
a handful of the largest �or smallest� eigenvalues of a matrix. 
To compute the eigenvalues of graphs above the size N 
�5 000, we have developed algorithms using a specially 
modified version of the thick-restart Lanczos algorithm 
�46,47�. The modifications and some of the main technical 
parameters of our software are explained in the following 
paragraphs. 

Even though iterative eigenvalue methods are mostly used 
to obtain the top eigenvalues of a matrix, after minor modi­
fications the internal eigenvalues in the vicinity of a fixed 
���0 point can be computed as well. For this, extremely 
sparse matrices are usually ‘‘shift-inverted,’’ i.e., to find 
those eigenvalues of A that are closest to �0, the highest and 
lowest eigenvalues of (A��0I)�1 are searched for. How­
ever, because of the extremely high cost of matrix inversion 
in our case, for the computation of internal eigenvalues we 
suggest using the ‘‘shift-square’’ method with the matrix 

B���*/2�� A��0I �2� 2n�1. �5� 

Here �* is the largest eigenvalue of (A��0I)2, I is the iden­
tity matrix, and n is a positive integer. Transforming the 
matrix A into B transforms the spectrum of A in the follow­
ing manner. First, the spectrum is shifted to the left by �0. 
Then, the spectrum is ‘‘folded’’ �and squared� at the origin 
such that all eigenvalues will be negative. Next, the spectrum 
is linearly rescaled and shifted to the right, with the follow­
ing effect: �i� the whole spectrum will lie in the symmetric 
interval ���*/2,�*/2� and �ii� those eigenvalues that were 
closest to �0 in the spectrum of A will be the largest now, 
i.e., they will be the eigenvalues closest to �*/2. Now, rais­
ing all eigenvalues to the (2n�1)st power increases the 
relative difference, 1�� i /� j , between the top eigenvalues 
� i and � j by a factor of 2n�1. This allows the iterative 
method to find the top eigenvalues of B more quickly. One 
can compute the corresponding eigenvalues �those being 
closest to �0) of the original matrix, A: if  b1,b2 ,  . . . ,bnd 

are 

the normalized eigenvectors of the nd largest eigenvalues of 
4-4 



SPECTRA OF ‘‘REAL-WORLD’’ GRAPHS: BEYOND . . . PHYSICAL REVIEW E 64 026704 
� � � � � � 
B, then for A the nd eigenvalues closest to �0 will be, not 
necessarily in ascending order, b1Ab1 ,b2Ab2 ,  . . . ,bnd 

Abnd
. 

The thick-restart Lanczos method uses memory space for 
the nonzero entries of the N�N large adjacency matrix, and 
ng�1 vectors of length N, where ng (ng�nd) is usually be­
tween 10 and 100. Besides the relatively small size of re­
quired memory, we could also exploit the fact that the non­
zero entries of a graph’s adjacency matrix are all 1’s: during 
matrix-vector multiplication—which is usually the most 
time-consuming step of an iterative method—only additions 
had to be carried out instead of multiplications. 

The numerical spectral density functions of large graphs 
(N�5000) of this paper were obtained using the following 
steps. To compute the spectral density of the adjacency ma­
trix A at an internal ���0 location, first the nd eigenvalues 
closest to �0 were searched for. Next, the distance between 
the smallest and the largest of the obtained eigenvalues was 
computed. Finally, to obtain �(�0) this distance was multi­
plied by N/(nd�1), and was averaged using nav different 
graphs. We used double precision floating point arithmetic, 
and the iterations were stopped if �i� at least n it iterations had 
been carried out and �ii� the lengths of the residual vectors 
belonging to the nd selected eigenpairs were all below � 
�10�12 �46�. 

IV. RESULTS 

A. Sparse uncorrelated random graphs: 
The semicircle law is not universal 

In the uncorrelated random graph model of Erdős and 
Rényi, the total number of edges grows quadratically with 
the number of vertices: Nedge�N�ki��Np(N�1)� pN2. 
However, in many real-world graphs edges are ‘‘expensive,’’ 
and the growth rate of the number of connections remains 
well below this rate. For this reason, we also investigated the 
spectra of such uncorrelated networks, for which the prob­
ability of any two vertices being connected changes with the 
size of the system using pN��c�const. Two special cases 
are ��0 �the Erdős-Rényi model� and ��1. In the second 
case, pN�const as N�� , i.e., the average degree remains 
constant. 

For ��1 and N�� , there exists an infinite cluster of 
connected vertices �in fact, it exists for every ��1 �2��. 
Moreover, the expectation value of any ki converges to in­
finity, thus any vertex is almost surely connected to the infi­
nite cluster. The spectral density function converges to the 
semicircular distribution of Eq. �1� because the total weight 
of isolated subgraphs decreases exponentially with growing 
system size. �A detailed analysis of this issue is available in 
Ref. �48�.� 

For ��1 and N�� �see Fig. 2�, the probability for a 
vertex to belong to a cluster of any finite size remains also 
finite �49�. Therefore, the limiting spectral density contains 
the weighted sum of the spectral densities of all finite graphs 
�50�. The most striking deviation from the semicircle law in 
this case is the elevated central part of the spectral density. 
The probability for a vertex to belong to an isolated cluster 
of size s decreases exponentially with s �49�; therefore, the 
02670
FIG. 2. If N�� and pN�const, the spectral density of the 
uncorrelated random graph does not converge to a semicircle. Main 
panel: Symbols show the spectrum of an uncorrelated random 
graph �20 000 vertices and 100 000 edges� measured with the itera­
tive method using nav�1, nd�101, and ng�250. A solid line 
shows the semicircular distribution for comparison. �Note that the 
principal eigenvalue �1 is not shown here because here at any �0 

point the average first-neighbor distance among nd�101 eigenval­
ues was used to measure the spectral density.� Inset: Strength of � 
functions in ���� ‘‘caused’’ by isolated clusters of sizes 1, 2, and 3 
in uncorrelated random graphs �see Ref. �50� for a detailed expla-
nation�. Symbols are for graphs with 20 000 vertices and 20 000 
edges ���, 50 000 edges ���, and 100 000 edges ���. Results were 
averaged for three different graphs everywhere. 

number of large isolated clusters is low. The eigenvalues of a 
graph with s vertices are bounded by ��s�1 and �s�1. 
For these two reasons, the amplitudes of � functions decay 
exponentially, as the absolute value of their locations, ���, 
increases. 

The principal eigenvalue of this graph converges to a con­
stant: limN��(�1)� pN�c , and ���� will be symmetric in 
the N�� limit. Therefore, in the limit, all odd moments 
(M 2k�1), and thus the number of all loops with odd length 
(D2k�1), disappear. This is a salient feature of graphs with 
tree structure �because on a tree every edge must be used an 
even number of times in order to return to the initial vertex�, 
indicating that the structure of a sparse uncorrelated random 
graph becomes more and more treelike. This can also be 
understood by considering that the typical distance �length of 
the shortest path� between two vertices on both a sparse un-
correlated random graph and a regular tree with the same 
number of edges scales as ln(N). So except for a few short­
cuts a sparse uncorrelated random graph looks like a tree. 

B. The small-world graph 

Triangles are abundant in the graph 

For p r�0 the small-world graph is regular and also pe­
riodical. Because of the highly ordered structure, ���� con­
tains numerous singularities, which are listed in Sec. VI A 
�see also Fig. 3�. Note that ���� has a high third moment. 
�Remember, that we use only k�2.� 
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FIG. 3. Spectral densities of small-world graphs using the com­
plete spectra. The solid line shows the semicircular distribution for 
comparison. �a� Spectral density of the regular ring graph created 
from the small-world model with p r�0, k�10, and N�1000. �b� 
For p r�0.01, the average spectral density of small-world graphs 
contains sharp maxima, which are the ‘‘blurred’’ remnants of the 
singularities of the p r�0 case. Topologically, this means that the 
graph is still almost regular, but it contains a small number of im­
purities. In other words, after a small perturbation, the system is no 
longer degenerate. �c� The average spectral density computed for 
the p r�0.3 case shows that the third moment of ���� is preserved 
even for very high values of p r , where there is already no sign of 
any blurred singularity �i.e., regular structure�. This means that even 
though all remaining regular islands have been destroyed already, 
triangles are still dominant. �d� If p r�1, then the spectral density 
of the small-world graph converges to a semicircle. In �b�, �c�, and 
�d�, 1000 different graphs with N�1000 and k�10 were used for 
averaging. 

If we increase p r such that the small-world region is 
reached, i.e., the periodical structure of the graph is per­
turbed, then singularities become blurred and are trans­
formed into high local maxima, but ���� retains a strong 
skewness �see Fig. 3�. This is in good agreement with the 
results of Refs. �30,51�, where it has been shown that the 
local structure of the small-world graph is ordered; however, 
already a very small number of shortcuts can drastically 
change the graph’s global structure. 

In the p r�1 case the small-world model becomes very 
similar to the uncorrelated random graph: the only difference 
is that here, the minimum degree of any vertex is a positive 
constant k/2, whereas in an uncorrelated random graph the 
degree of a vertex can be any non-negative number. Accord­
ingly, ���� becomes a semicircle for p r�1 �Fig. 3�. Never­
theless, it should be noted that as p r converges to 1, a high 
value of M 3 is preserved even for p r close to 1, where all 
local maxima have already vanished. The third moment of 
���� gives the number of triangles in the graph �see Sec. 
III A 1�; the lack of high local maxima, i.e., the remnants of 
singularities, shows the absence of an ordered structure. 
From the above we conclude, that—from the spectrum’s 
point of view—the high number of triangles is one of the 
most basic properties of the small-world model, and it is 
preserved much longer than regularity or periodicity if the 
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FIG. 4. Main panel: The average spectral densities of scale-free 
graphs with m�m0�5 and N�100 �—�, N�1000 �– –�, and N 
�7000 �- - -� vertices. �In all three cases, the complete spectrum of 
1000 graphs was used.� Another continuous line shows the semicir­
cular distribution for comparison. Observe that �i� the central part of 
the scale-free graph’s spectral density is trianglelike, not semicircu­
lar and �ii� the edges show a power-law decay, whereas the semi­
circular distribution’s edges decay exponentially, i.e., it decays ex­
ponentially at the edges �20�. Inset: The upper edge of the spectral 
density for scale-free graphs with N�40 000 vertices, the average 
degree of a vertex being �ki��2m�10 as before. Note that both 
axes are logarithmic, indicating that ���� has a power-law tail. Here 
we used the iterative eigenvalue solver of Sec. III B 2 with nd 

�21, nav�3, and ng�60. The line with the slope �5 in this figure 
is a guide to the eye. 

level of randomness p r is increased. This is in good agree­
ment with the results of Ref. �19� where the high number of 
small cycles is found to be a fundamental property of small-
world networks. As an application, the high number of small 
cycles results in special diffusion on small-world graphs 
�61�. 

C. The scale-free graph 

For m�m0�1, the scale-free graph is a tree by definition 
and its spectrum is symmetric �43�. In the  m�1 case ���� 
consists of several well distinguishable parts �see Fig. 4�. 
The ‘‘bulk’’ part of the spectral density—the set of the eigen­
values ��2 ,  . . . ,�N�—converges to a symmetric continuous 
function which has a trianglelike shape for the normalized � 
values up to 1.5 and has power-law tails. 

The central part of the spectral density lies well above the 
semicircle. Since the scale-free graph is fully connected by 
definition, the increased number of eigenvalues with small 
magnitudes cannot be accounted to isolated clusters, as be­
fore in the case of the sparse uncorrelated random graph. As 
an explanation, we suggest, that the eigenvectors of these 
eigenvalues are localized on a small subset of the graph’s 
vertices. �This idea is supported by the high inverse partici­
pation ratios of these eigenvectors, see Fig. 7.� 

1. The spectral density of the scale-free graph decays 
as a power law 

The inset of Fig. 4 shows the tail of the bulk part of the 
spectral density for a graph with N�40 000 vertices and 
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FIG. 5. Comparison of the length of the longest row vector �k1 

and the principal eigenvalue �1 in scale-free graphs. Open symbols 
show �1 /(�mN1/4), closed symbols show �k1/(�mN1/4). The pa­
rameter values are m�1 ���, m�2 ���, m�4 ���, and m�8 
���. Each data point is an average for nine graphs. For the reader’s 
convenience, data points are connected. If m�1 and the network is 
small, the principal eigenvalue �1 of a scale-free graph is deter­
mined by the largest row vectors jointly: the largest eigenvalue is 
above �k1 and the growth rate of �1 stays below the maximum 
possible growth rate, which is �1 �N1/4. If  m�1, or the network is 
large, the effect of row vectors other than the longest on �1 van­
ishes: the principal eigenvalue converges to the length of the long­
est row vector, and it grows as �1 �N1/4. Our results show a cross­
over in the growth rate of the scale-free model’s principal 
eigenvalue. 

200 000 edges �i.e., pN�10). Comparing this to the inset of 
Fig. 1, where the number of vertices and edges is the same as 
here, one can observe the power-law decay at the edge of the 
bulk part of ����. As shown later, in Sec. IV D, the power-
law decay in this region is caused by localized eigenvectors; 
these eigenvectors are localized on vertices with the highest 
degrees. The power-law decay of the degree sequence, i.e., 
the existence of very high degrees, is, in turn, due to the 
preferential attachment rule of the scale-free model. 

2. The growth rate of the principal eigenvalue shows 
a crossover in the level of correlations 

Since the adjacency matrix of a graph is a non-negative 
symmetric matrix, the graph’s largest eigenvalue �1 is also 
the largest in magnitude �see, e.g., Theorem 0.2 of Ref. �43��. 
Considering the effect of the adjacency matrix on the base 
vectors (bi) j�� i j  (i�1,2, . . . ,N), it can be shown that a 
lower bound for �1 is given by the length of the longest row 
vector of the adjacency matrix, which is the square root of 
the graph’s largest degree k1. Knowing that the largest de­
gree of a scale-free graph grows as �N �11�, one expects �1 
to grow as N1/4 for large enough systems. 

Figure 5 shows a rescaled plot of the scale-free graph’s 
largest eigenvalue for different values of m. In this figure, �1 

is compared to the length of the longest row vector �k1 on 
the ‘‘natural scale’’ of these values, which is �mN1/4 �11�. It  
is clear that if m�1 and the system is small, then through 
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several decades �a� �1 is larger than �k1 and �b� the growth 
rate of �1 is well below the expected rate of N1/4. In the m 
�1 case, and for large systems, �a� the difference between 
�1 and �k1 vanishes and �b� the growth rate of the principal 
eigenvalue will be maximal, too. This crossover in the be­
havior of the scale-free graph’s principal eigenvalue is a spe­
cific property of sparse growing correlated graphs, and it is a 
result of the changing level of correlations between the long­
est row vectors �see Sec. VI B�. 

3. Comparing the role of the principal eigenvalue 
in the scale-free graph and the �Ä1 uncorrelated random 

graph: A comparison of structures 

Now we will compare the role of the principal eigenvalue 
in the m�1 scale-free graph and the ��1 uncorrelated ran­
dom graph through its effect on the moments of the spectral 
density. On Figs. 4 and 5 one can observe that �i� the prin­
cipal eigenvalue of the scale-free graph is detached from the 
rest of the spectrum, and �ii� as N�� , it grows as N1/4 �see 
also Secs. IV C 2 and VI B�. It can be also seen that in the 
limit, the bulk part will be symmetric, and its width will be 
constant „Fig. 4 rescales this constant width merely by an­
other constant, namely � Np(1� p) ��1/2. Because of the sym­
metry of the bulk part, in the N�� limit, the third moment 
of ���� is determined exclusively by the contribution of the 
principal eigenvalue, which is N�1(�1)3�N�1/4. For each 
moment above the third �e.g., for the lth moment�, with 
growing N, the contribution of the bulk part to this moment 
will scale as O(1), and the contribution of the principal ei­
genvalue will scale as N�1�l/4. In summary, in the N�� 
limit, the scale-free graph’s first eigenvalue has a significant 
contribution to the fourth moment; the fifth and all higher 
moments are determined exclusively by �1: the lth moment 
will scale as N�1�l/4. 

In contrast to the above, the principal eigenvalue of the 
��1 uncorrelated random graph converges to the constant 
pN�c in the N�� limit, and the width of the bulk part also 
remains constant �see Fig. 2�. Given a fixed number l the 
contribution of the principal eigenvalue to the lth moment of 
the spectral density will change as N�1cl in the N�� limit. 
The contribution of the bulk part will scale as O(1), there­
fore all even moments of the spectral density will scale as 
O(1) in the N�� limit, and all odd moments will converge 
to 0. 

The difference between the growth rate of the moments of 
���� in the above two models �scale-free graph and ��1 
uncorrelated random graph model� can be interpreted as a 
sign of different structure �see Sec. III A 1�. In the  N�� 
limit, the average degree of a vertex converges to a constant 
in both models: limN���ki�� pN�c�2m . �Both graphs 
will have the same number of edges per vertex.� On the other 
hand, in the limit all moments of the ��1 uncorrelated ran­
dom graph’s spectral density converge to a constant, whereas 
the moments M l (l�5,6, . . . )  of  the  scale-free graph’s ���� 
will diverge as N�1�l/4. In other words: the number of loops 
of length l in the ��1 uncorrelated random graph will 
grow as Dl�NM l�O(N), whereas for the scale-free graph 
for every l�3, the number of these loops will grow as 
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Dl�NM l�O(Nl/4). From this we conclude that in the 
limit, the role of loops is negligible in the ��1 uncorrelated 
random graph, whereas it is large in the scale-free graph. In 
fact, the growth rate of the number of loops in the scale-free 
graph exceeds all polynomial growth rates: the longer the 
loop size �l� investigated, the higher the growth rate of 
the number of these loops (Nl/4) will be. Note that the rela­
tive number of triangles �i.e., the third moment of the spec­
tral density, M l /N) will disappear in the scale-free graph, if 
N�� . 

In summary, the spectrum of the scale-free model 
converges to a trianglelike shape in the center, and the edges 
of the bulk part decay slowly. The first eigenvalue is 
detached from the rest of the spectrum, and it shows an 
anomalous growth rate. Eigenvalues with large magnitudes 
belong to eigenvectors localized on vertices with many 
neighbors. In the present context, the absence of triangles, 
the high number of loops with length above l�3, and the 
buildup of correlations are the basic properties of the scale-
free model. 

D. Testing the structure of a ‘‘real-world’’ graph 

To analyze the structure of a large sparse random graph 
�correlated or not�, here we suggest several tests that can be 
performed within O(N) CPU time, use O(N) floating point 
operations, and can clearly differentiate between the three 
‘‘pure’’ types of random graph models treated in Sec. IV. 
Furthermore, these tests allow one to quantify the relation 
between any real-world graph and the three basic types of 
random graphs. 

1. Extremal eigenvalues 

In Sec. III A 2 we have already mentioned that the ex­
tremal eigenvalues contain useful information on the struc­
ture of the graph. As the spectra of uncorrelated random 
graphs �Fig. 1� and scale-free networks �Fig. 4� show, the 
principal eigenvalue of random graphs is often detached 
from the rest of the spectrum. For these two network types, 
the remaining bulk part of the spectrum, i.e., the set 
��2 ,  . . . ,�N�, converges to a symmetric distribution, thus 
the quantity 

Rª 
�1��2 

�2��N 
�6� 

measures the distance of the first eigenvalue from the 
main part of ���� normalized by the extension of the main 
part. (R can be connected to the chromatic number of the 
graph �52�.� 

Note that in the N�� limit the ��0 sparse uncorrelated 
random graph’s principal eigenvalue will scale as �ki�, 
whereas both �2 and ���N� will scale as 2��ki�. Therefore, 
if �ki��4, the principal eigenvalue will be detached from 
the bulk part of the spectrum and R will scale as (��ki� 
�2)/4. If, however, �ki��4, �1 will not be detached from 
the bulk part, it will converge to 0. 

The above explanation and Fig. 6 show that in the �ki� 
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FIG. 6. The ratio R�(�1 ��2)/(�2��N) for sparse uncorre­
lated random graphs ���, small-world graphs with p r�0.01 ���, 
and scale-free networks ���. All graphs have an average degree of 
�ki��10, and at each data point, the number of graphs used for 
averaging was 9. Observe, that for the uncorrelated random graph, 
R converges to a constant �see Sec. III A 2�, whereas it decays 
rapidly for the two other types of networks, as N�� . On the other 
hand, the latter two network types �small-world and scale-free� dif­
fer significantly in their magnitudes of R. 

�4 sparse uncorrelated random graph model and the scale-
free network, �1 and the rest of the spectrum are well sepa­
rated, which gives similarly high values for R in small sys­
tems. In large systems, R of the sparse uncorrelated random 
graph converges to a constant, while R in the scale-free 
model decays as a power-law function of N. The reason for 
this drop is the increasing denominator on the right-hand side 
of Eq. �6�: �2 and �N are the extremal eigenvalues in the 
lower and upper long tails of ����, therefore, as N increases, 
the expectation values of �2 and ��N grow as quickly as 
that of �1. On the other hand, the small-world network 
shows much lower values of R already for small systems: 
here, �1 is not detached from the rest of the spectrum, which 
is a consequence of the almost periodical structure of the 
graph. 

On Fig. 6 graphs with the same number of vertices and 
edges are compared. For large (N�10 000) systems and for 
sparse uncorrelated random graphs R converges to a con­
stant, whereas for scale-free graphs and small-world net­
works it decays as a power law. The latter two networks 
significantly differ in the magnitude of R. In summary, the 
suggested quantity R has been shown to be appropriate for 
distinguishing between the following graph structures: �i� pe­
riodical or almost periodical �small world�, �ii� uncorrelated 
nonperiodical, and �iii� strongly correlated nonperiodical 
�scale free�. 

2. Inverse participation ratios of extremal eigenpairs 

Figure 7 shows the inverse participation ratios of the 
eigenvectors of an uncorrelated random graph, a small-world 
graph with p r�0.01, and a scale-free graph. Even though all 
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FIG. 7. Main panel: Inverse participation ratios of the eigenvec­
tors of three graphs shown as a function of the corresponding ei­
genvalues: uncorrelated random graph ���, small-world graph with 
p r�0.01 ���, and scale-free graph ���. All three graphs have N 
�1000 vertices, and the average degree of a vertex is �ki��10. 
Observe that the eigenvectors of the sparse uncorrelated random 
graph and the small-world network are usually nonlocalized � I(�) 
is close to 1/N�. On the contrary, eigenvectors belonging to the 
scale-free graph’s extremal eigenvalues are highly localized with 
I(�) approaching 0.1. Note also that for ��0, the scale-free graph’s 
I(�) has a significant ‘‘spike’’ indicating again the localization of 
eigenvectors. Inset: Inverse participation ratios of the first, second, 
and Nth eigenvectors of an uncorrelated random graph ���, a small-
world graph with p r�0.01 ���, and a scale-free graph ���. For 
each data point, the number of vertices was N�300 000 and the 
number of edges was 1 500 000. Clearly, the principal eigenvector 
of the scale-free graph is localized, while the principal eigenvector 
of the other two systems �the uncorrelated models� is not. Note also 
that the inverse participation ratios of the second and Nth eigenvec­
tors clearly differ in the small-world graph—the spectrum of this 
graph has already been shown to be strongly asymmetric—whereas 
in the uncorrelated random graph the inverse participation ratios of 
e � N are approximately the same. Thus, with the help of the � 2 and e
inverse participation ratios of e � 2, and e� 1 , e � N , one can identify the 
three main types of random graphs used here. 

three graphs have the same number of vertices (N�1000) 
and edges �5000�, one can observe rather specific features 
�see also the inset of Fig. 7�. 

The uncorrelated random graph’s eigenvectors show very 
little difference in their level of localization, except for the 
principal eigenvector, which is much less localized than the 
other eigenvectors; I(�2) and I(�N) are almost equal. For 
the small-world graph’s eigenvectors, I(�) has many differ­
ent plateaus and spikes; the principal eigenvector is not lo­
calized, and the second and Nth eigenvectors have high, but 
different, I(�) values. The eigenvectors belonging to the 
scale-free graph’s largest and smallest eigenvalues are local­
ized on the ‘‘largest’’ vertices. The long tails of the bulk part 
of ���� are due to these vertices. All three investigated eigen­
vectors (e � 2, and e� 1 , e � N) of the scale-free graph are highly 
localized. Consequently, the inverse participation ratios of 
the eigenvectors e � 2, and e� 1 , e � N are handy for the identifica­
tion of the three basic types of random graph models used. 
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FIG. 8. Size dependence of the relative variance of the principal 
eigenvalue, i.e., �(�1)/E(�1), for sparse uncorrelated random 
graphs ���, small-world graphs with p r�0.01 ���, and scale-free 
graphs ���. The average degree of a vertex is �ki��10, and 1000 
graphs were used for averaging at every point. Observe that in the 
uncorrelated random graph and the small-world model 
�(�1)/E(�1) decays with increasing system size; however, for 
scale-free graphs with the same number of edges and vertices, it 
remains constant. 

E. Structural variances 

Relative variance of the principal eigenvalue for different types 
of networks: The scale-free graph and self-similarity 

Figure 8 shows the relative variance of the principal ei­
genvalue, i.e., �(�1)/E(�1), for the three basic random 
graph types. 

For nonsparse uncorrelated random graphs (N�� and 
p�const� this quantity is known to decay at a rate which is 
faster than exponential �28,53�. Comparing sparse graphs 
with the same number of vertices and edges, one can see that 
in the sparse uncorrelated random graph and the small-world 
model the relative variance of the principal eigenvalue drops 
quickly with growing system size. In the scale-free model, 
however, the relative variance of the principal eigenvalue’s 
distribution remains constant with an increasing number of 
vertices. 

In fractals, fluctuations do not disappear as the size of the 
system is increased, while in the scale-free graph, the relative 
variance of the principal eigenvalue is independent of system 
size. In this sense, the scale-free graph resembles self-similar 
systems. 

V. CONCLUSIONS 

We have performed a detailed analysis of the complete 
spectra, eigenvalues, and the eigenvectors’ inverse participa­
tion ratios in three types of sparse random graphs: the sparse 
uncorrelated random graph, the small-world model, and the 
scale-free network. Connecting the topological features of 
these graphs to algebraic quantities, we have demonstrated 
that �i� the semi circle law is not universal, not even for the 
uncorrelated random graph model; �ii� the small-world graph 
is inherently noncorrelated and contains a high number of 
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FIG. 9. The regular ring graph obtained from the small-world 
model in the p r�0 case: rotations ( P ( n) for every n�0,1, . . . ,  N 
�1) are symmetry operations of the graph. The P (n) operators 
�there are N of them� can be used to create a full orthogonal basis of 
the adjacency matrix A: taking any P ( n ), it commutes with A, there­
fore they have a common full orthogonal system of eigenvectors. 
�For a clear illustration of symmetries, this figure shows a graph 
with only N�15 vertices and k�4 connections per vertex.� 

triangles; �iii� the spectral density of the scale-free graph is 
made up of three, well distinguishable parts �center, tails of 
bulk, first eigenvalue�, and as N�� , triangles become neg­
ligible and the level of correlations changes. 

We have presented practical tools for the identification of 
the above-mentioned basic types of random graphs and fur­
ther, for the classification of real-world graphs. The robust 
eigenvector techniques and observations outlined in this pa­
per combined with previous studies are likely to improve our 
understanding of large sparse correlated random structures. 
Examples for algebraic techniques already in use for large 
sparse correlated random structures are analyses of the Inter­
net �6,18� and search engines �54,62� and mappings �55,56� 
of the World-Wide Web. Besides the improvement of these 
techniques, the present work may turn out to be useful for 
analyzing the correlation structure of the transactions be­
tween a very high number of economical and financial units, 
which has already been started in, e.g., Refs. �57–59�. Lastly, 
we hope to have provided quantitative tools for the classifi­
cation of further ‘‘real-world’’ networks, e.g., social and bio­
logical networks. 

Note added in proof. Recently, we were made aware of a 
manuscript by Goh, Kahng, and Kim �63� investigating the 
spectral properties of scale-free networks. Also, our attention 
has been drawn to a recent publication of Bauer and 
Golinelli �64� on the spectral properties of uncorrelated ran­
dom graphs. 
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APPENDIX A: THE SPECTRUM OF A SMALL-WORLD 
GRAPH FOR prÄ0 REWIRING PROBABILITY 

1. Derivation of the spectral density 

If the rewiring probability of a small-world graph is p r 
�0, then the graph is regular, each vertex is connected to its 
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k nearest neighbors, and the eigenvalues can be computed 
using the graph’s symmetry operations. Rotational symmetry 
operations can be easily recognized, if the vertices of the 
graph are drawn along the perimeter of a circle �see Fig. 9�: 
let P (n) (n�0,1, . . . ,N�1) denote the symmetry operation 
that rotates the graph by n vertices in the anticlockwise di­
rection. Being a symmetry operation, each P (n) commutes 
with the adjacency matrix A, and they have a common full 
orthogonal system of eigenvectors. 

Now, we will create a full orthogonal basis of A. �We will 
treat only the case when N is an even number; odd N’s can 
be treated similarly.� It is known that the eigenvalues of A are 
real; however, to simplify calculations, we will use complex 

P (n)numbers first. The eigenvectors of every are 
e � 2 ,  . . . ,e� 1 ,e � N , 

j l  
�el � j�exp 2�i �A1�� � ,N 

where l�0,2, . . . ,N�1 and i���1. The eigenvalue of 
P (n) on e� l is 

nl 
s (

l
n)�exp� 2�i � . �A2�

N 
By adding these values pairwise, one can obtain the N 

eigenvalues of the graph 

k/2 
j l

� l�2 � cos 2� �A3�� � . 
j�1 N 

In the previous exponential form the right-hand side is a 
summation for a geometrical series; therefore, 

sin��k�1 �l�/N � 
�1. �A4�� l� 

sin� l�/N � 

In the N�� limit, this converges to 

sin��k�1 �x � 
��x �� �1, �A5�

sin�x � 

where x is evenly distributed in the interval �0,��. 

2. Singularities of the spectral density 

The spectral density is singular in ���(x), if and only if 
(d�/dx)(x)�0, which is equivalent to 

�k�1 �tan�x ��tan��k�1 �x � . �A6� 

Since k is an even number, both this equation and Eq. 
�A5� are invariant under the transformation x���x , there­
fore only the x��0,�/2� solutions will give different � val­
ues. If k�10 �see Fig. 3�, Eq. �A6� has k/2�1�6 solutions 
in �0,�/2�, which are x�0, 0.410, 0.704, 0.994, 1.28, and 
�/2. Therefore, according to Eq. �A5�, in the N�� limit the 
spectral density will be singular in the following points: 

� i��3.46,�2.19,�2,0.043,0.536, and k�10. �A7� 
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APPENDIX B: CROSSOVER IN THE GROWTH RATE 
OF THE SCALE-FREE GRAPH’S 

PRINCIPAL EIGENVALUE 

The largest eigenvalue is influenced only by the longest 
row vector if and only if the two longest row vectors are 
almost orthogonal: 

v � 2�� � 1��v� 1v v � 2�. �B1� 

For m�1, the left-hand side �lhs� of Eq. �B1� is the num­
ber of simultaneous 1’s in the two longest row vectors, and 
the rhs can be approximated with �v� 1�2�k1, the largest de­
gree of the graph. It is known �11� that for large j ( j �i), the 
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j th vertex will be connected to vertex i with probability Pi j  

�m/(2�i j  ). Thus, we can write Eq. �B1� in the following 
forms: 

N N 
2� P1t� � P1t �B2� 

t�1 t�1 

or 

�Nc m 
�B3�

ln Nc 
� 

4
, 

where Nc is the critical system size. 
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