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Environmental Issues for MIMO Capacity 
Daniel W. Bliss, Keith W. Forsythe, Alfred O. Hero, III, Fellow, IEEE, and Ali F. Yegulalp 

Abstract—Wireless communication using multiple-input mul-
tiple-output (MIMO) systems enables increased spectral efficiency 
for a given total transmit power. Increased capacity is achieved 
by introducing additional spatial channels that are exploited using 
space–time coding. In this paper, the environmental factors that af­
fect MIMO capacity are surveyed. These factors include channel 
complexity, external interference, and channel estimation error. 
The maximum spectral efficiency of MIMO systems in which both 
transmitter and receiver know the channel (using channel estimate 
feedback) is compared with MIMO systems in which only the re­
ceiver knows the channel. Channel complexity is studied using both 
simple stochastic physical scattering and asymptotic large random 
matrix models. Both uncooperative (worst-case) and cooperative 
(amenable to multiuser detection) interference are considered. An 
analysis for capacity loss associated with channel estimation error 
at the transmitter is introduced. 

Index Terms—Channel capacity, channel phenomenology, infor­
mation theory, interference cancellation, MIMO communication, 
multiuser detection, space–time coding. 

I. INTRODUCTION 

MULTIPLE-INPUT multiple-output (MIMO) systems are 
a natural extension of developments in antenna array 

communication. While the advantages of multiple receive an­
tennas, such as gain and spatial diversity, have been known and 
exploited for some time [1]–[3], the use of transmit diversity 
has more recently been investigated [4], [5]. Finally, the advan­
tages of MIMO communication, exploiting the physical channel 
between many transmit and receive antennas, are currently re­
ceiving significant attention [6]–[9]. While it is possible for the 
channel to be so nonstationary that it cannot be estimated in any 
useful sense [10], in this paper, a quasistationary channel as­
sumption is employed. 

MIMO systems provide a number of advantages over 
single-antenna communication. Sensitivity to fading is reduced 
by the spatial diversity provided by multiple spatial paths. 
Under certain environmental conditions, the power require­
ments associated with high spectral efficiency communication 
can be significantly reduced by avoiding the compressive 
region of the information theoretic capacity bound. Here, 
spectral efficiency is defined as the total number of bits per 
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Fig. 1. Spectral efficiency bound as a function of noise density normalized 
energy per bit (� �� ) comparison of � 2 � MIMO systems assuming 
channel matrices with flat SVD. 

second per Hertz transmitted from one array to the other. 
Capacity increases linearly with signal-to-noise-ratio (SNR) at 
low SNR but increases logarithmically with SNR at high SNR. 
A given total transmit power can be divided among multiple 
spatial paths (or modes), driving the capacity closer to the linear 
regime for each mode, thus increasing the aggregate spectral 
efficiency. As seen in Fig. 1, which assumes an optimal high 
spectral efficiency MIMO channel [a channel matrix with a 
flat singular value distribution (SVD)], MIMO systems enable 
high spectral efficiency at much lower required energy per bit. 
Because MIMO systems use antenna arrays, interference can 
be mitigated naturally. 

A. Environment 

The environmental factors that affect MIMO system capacity, 
namely channel complexity, external interference, and channel 
stationarity, are addressed in this paper in Sections III–V, re­
spectively. The first category (channel complexity) is a function 
of the richness of scatterers. In general, capacity increases as the 
singular values of the channel matrix increase. The distribution 
of singular values is a measure of the usefulness of various spa­
tial paths through the channel. 

The second category (external interference) adversely affects 
the usefulness of paths through the channel. Given that the most 
useful portion of the channel lives in a subspace of the channel 
matrix, capacity loss is a function of the overlap of the inter­
ference with this subspace. Generally, interference is assumed 
to be uncooperative (worst-case). However, if the interference 
source is cooperative, that is, the various users share system pa­
rameters and control, the adverse effects of interference can be 
reduced significantly through the use of multiuser detectors. 

The third category is channel stationarity. If the environment 
is stationary, then channel estimation error vanishes asymptoti­
cally. However, in practical systems, channel stationarity limits 
the useful period over which a channel can be estimated. Be­
cause the transmitter will generally have access to older channel 
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estimates than the receiver, one would expect the channel esti­
mation error to be greater at the transmitter. 

B. Channel Estimation Feedback 

In implementing MIMO systems, one must decide whether 
channel estimation information will be fed back to the trans­
mitter so that it can adapt. Most MIMO communication research 
has focused on systems without feedback. A MIMO system 
with an uninformed transmitter (without feedback) is simpler 
to implement, and at high SNR, its spectral efficiency bound 
approaches that of an informed transmitter (with feedback). 

C. Space–Time Coding 

The focus of this paper is the environmental sensitivity 
of MIMO communication; however, for completeness, a 
few space–time coding references are discussed. In order 
to implement a MIMO communication system, a particular 
coding scheme must be selected. Most space–time coding 
schemes have a strong connection to well-known single-input 
single-output (SISO) coding approaches and assume an unin­
formed transmitter. Space–time coding can exploit the MIMO 
degrees of freedom to increase redundancy, spectral efficiency, 
or some combination of these characteristics [11]. Preliminary 
ideas are discussed in [6]. A simple and elegant solution that 
maximizes diversity and enables simple decoupled detection is 
proposed in [12]. More generally, orthogonal space–time block 
codes are discussed in [13] and [14]. A general discussion of 
distributing data across transmitters (linear dispersive codes) is 
given in [15]. High SNR design criteria and specific examples 
are given for space–time trellis codes in [16]. Unitary codes op­
timized for operation in Rayleigh fading are presented in [17]. 
More recently, MIMO extensions of turbo coding have been 
suggested [18], [19]. Finally, coding techniques for informed 
transmitter systems have received some interest [20], [21]. 

II. INFORMATION THEORETIC CAPACITY 

The information theoretic capacity of MIMO systems has 
been widely discussed, for example, in [7]. The development of 
the informed transmitter “water filling” and uninformed trans­
mitter approaches is repeated here. This is useful as an introduc­
tion to MIMO capacity and to the notation used in this paper. In 
addition, the spectral efficiency bounds in the presence of inter­
ference are introduced. 

A. Informed Transmitter (IT) 

For narrowband MIMO systems, the coupling between the 
transmitter and receiver for each sample in time can be modeled 
using 

(1) 

where 
complex receive array output; 

(number of receive by transmit antenna)

channel matrix;

transmit array vector;

zero mean complex Gaussian noise.


The capacity is defined as the maximum of the mutual infor­
mation [22] 

(2) 

subject to average 
transmit power constraints, where the expectation value is indi­
cated using the notation 

over the source probability density 

. Noting that the mutual informa­
tion can be expressed as the difference between two conditional 
entropies 

(3) 

that , and that 
is maximized for a zero mean Gaussian source 
is given by 

, the capacity 

(4) 

where 
determinant; 
Hermitian conjugate; 
identity matrix of size . 

There are a variety of possible constraints on , depending 
on the assumed transmitter limitations. Here, it is assumed 
that the fundamental limitation is the total power transmitted. 
The optimization of the noise-normalized transmit 
covariance matrix is constrained by the 
total noise-normalized transmit power . Allowing different 
transmit powers at each antenna, this constraint can be enforced 
using the form tr . The channel capacity is achieved 
if the channel is known by both the transmitter and receiver, 
giving 

tr 
(5) 

To avoid radiating negative power, the additional constraint 
is imposed by using only a subset of channel modes.

Substituting
 , the magnitude-ordered singular value 

decomposition, for , (5) can be written as 

(6) 
tr 

(7) 

where is a diagonal matrix, 
, and and are and 

matrices containing the selected columns of unitary matrices. 
The maximum under the total power constraint can be found 
by differentiating with respect to an arbitrary parameter of 

tr (8) 

is the undetermined parameter associated with the La­
grangian constraint. Evaluating the derivative 
where 

tr (9)tr 
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this relationship is satisfied for all if is a diagonal 
matrix given by 

(10) 

This discussion assumes that is full rank. The additional pos­
itive power constraint is satisfied by employing only a subset of 
channel modes. This intuitively satisfying but arbitrary enforce­
ment of the positive power constraint is justified with greater 
precision in the Appendix. The total power is given by 

tr 

tr (11) 

tr 
(12) 

is enforced by employing only the top 
modes of the 
The constraint 

channel modes. The optimum is given 
by 

(13) 

tr 
(14) 

in the diagonal matrix contain the 
top eigenvalues of 
where the entries 

(or, equivalently, of ). The values 
must satisfy 

(15) 

(16)
tr 

If (16) is not satisfied for some , it will not be satisfied for 
any smaller . The resulting capacity is given by 

(17)
tr 

The receive and transmit beamforming pairs are given by the 
columns of and associated with the selected eigenvalues 
contained in . 

In this discussion, it is assumed that the environment is sta­
tionary over a period long enough for the error associated with 
channel estimation to vanish asymptotically. In order to study 
typical performance of quasistationary channels sampled from 
a given probability distribution, capacity is averaged over an en­
semble of quasistationary environments. Under the ergodic as­
sumption (that is, the ensemble average is equal to the time av­
erage), the mean capacity is the channel capacity. 

B. Uninformed Transmitter (UT) 

If the channel is not known at the transmitter, then the op­
timal transmission strategy is to transmit equal power with each 
antenna , [7]. Assuming that the receiver can 
accurately estimate the channel but the transmitter does not at-
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tempt to optimize its output to compensate for the channel, the 
maximum spectral efficiency is given by 

(18) 

This a common transmit constraint as it may be difficult to pro­
vide the transmitter channel estimates. 

C. Capacity Ratio 

At high SNR, and converge. This can be observed 
in the large limit of the ratio of (17) and (18) 

tr 

(19) 

If , then the convergence to one is logarithmically 
slow. 

At low SNR, the ratio is given by 

tr 

(20)
tr 

using (17) with and (18). Given this asymptotic result, 
a few observations can be made. The spectral efficiency ratio is 
given by the maximum to the average eigenvalue ratio of . 
If the channel is rank one, such as in the case of a multiple-
input single-output (MISO) system, the ratio is approximately 
equal to . Finally, in the special case where has a flat 
eigenvalue distribution, the optimal transmit covariance matrix 
is not unique. Nonetheless, the ratio approaches one. 

D. Interference 

Extending the previous discussion [8], [23], capacity is calcu­
lated in the presence of uncooperative (worst-case) external in­
terference in addition to the spatially-white complex Gaussian 
noise , which was considered previously. The mutual informa­
tion is again given by (2) and (3), where entropy in 
the presence of the external interference becomes 

(21) 

and is the spatial interference covariance matrix. Equality 
is achieved if and only if the interference amplitudes have a 
Gaussian distribution. Thus, the worst-case informed capacity 
(the maximum–minimum mutual information) 

(22) 
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becomes 

(23) 

using 

tr 

(24) 

Gaussian interference corresponds to a saddle point of the 
mutual information at which the maximum–minimum capacity 
is achieved. The capacity in the presence of Gaussian inter­
ference has a form identical to (17) under the transformation 

, where contains the eigenvalues of . The 
transmitted noise-normalized power covariance matrix is 
calculated using . Similarly, the uninformed transmitter 
spectral efficiency bound in the presence of noise is given by 
the same transformation of . 

E. Other Performance Metrics 

The information-theoretic capacity is not the only possible 
metric of performance. As an example, another useful perfor­
mance metric is the “outage capacity” [16]. “Outage capacity” 
is the achievable spectral efficiency bound, assuming a given 
probability of error-free decoding of a frame. In many practical 
situations, this metric may be the best measure of performance, 
for example, in the case where the system can resend frames 
of data. However, this metric is dependent on particular system 
choices (allowable probability of outage and frame size). For 
this paper, the information theoretic capacity is employed. 

III. CHANNEL COMPLEXITY 

A variety of techniques are used to simulate the channel ma­
trix [24]. The simplest approach is to assume that all the entries 
in the channel matrix are sampled from identical independent 
complex Gaussians . While this approach is convenient 
from the perspective of performing analytic calculations, it may 
provide a channel eigenvalue distribution that is too flat. At the 
other extreme, channels can be characterized by a diversity order 
[25], which is used to indicate an effective cutoff in the eigen­
value distribution induced by spatial correlation. A number of 
approaches that introduce spatial correlations have been sug­
gested. One approach uses the form 

(25) 

The above model results in a covariance matrix of the Kronecker 
product form for the entries in the channel ma­
trix . This product structure can arise from a spherical Green’s 
function model of propagation such as that used in Section III-C, 
provided several additional conditions are met. First, scatterers 
are concentrated around (but not too close to) the transmitter and 
receiver. Second, multiple scattering of a particular kind (from 
transmitter element to transmitter scatterer to receiver scatterer 
to receiver element) dominates propagation. Third, scatterers 
are sufficiently separated in angle when viewed by their asso­
ciated array. Finally, all transmitter scatterers couple with all re­
ceiver scatterers. Ray-tracing models of urban propagation in­
dicate that the latter assumption, in particular, is often violated. 

Fig. 2. Eigenvalues of �� for a 2 2 2 line-of-sight channel as a function of 
antenna separation. 

For this discussion, three approaches will be explored: 

• line-of-sight toy physical model; 
• large dimension random matrix model; 
• stochastic physical single scattering model. 

2 Channel Model A. Toy 2 

Because the distribution of channel matrix eigenvalues is 
essential to the effectiveness of MIMO communication, a toy 
example is employed for the purposes of introduction. The 
eigenvalue distribution of a 2 2 narrowband MIMO system 
in the absence of environmental scatterers is discussed. To 
visualize the example, one can imagine two receive and two 
transmit antennas located at the corners of a rectangle. The 
ratio of channel matrix eigenvalues can be changed by varying 
the shape of the rectangle. The columns of the channel matrix 

can be viewed as the receiver array response vectors (one 
vector for each transmit antenna) 

(26) 

where and are constants of proportionality (equal to the 
root mean squared transmit-to-receive attenuation for transmit 
antennas 1 and 2 respectively) that take into account geometric 
attenuation and antenna gain effects, and and are unit 
norm array response vectors. For the purpose of this discussion, 
it is assumed that , which is valid if the rectangle 
deformation does not significantly affect overall transmitter-to-
receiver distances. 

The capacity of the 2 2 MIMO system is a function of 
the channel singular values and the total transmit power. Eigen­
values of are given by 

(27) 

where the absolute value norm is denoted by . The sep­
aration between receive array responses can be described in a 
convenient form in terms of generalized beamwidths [26] 

(28) 

For small angular separations, this definition of beamwidths 
closely approximates many ad hoc definitions for physical ar­
rays. The eigenvalues and are displayed in Fig. 2 as a func­
tion of generalized beamwidth separation. When the transmit 
and receive arrays are small, as indicated by small separation 
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Fig. 3. Informed transmitter capacity of a 2 2 2 line-of-sight channel, 
assuming antenna beamwidth separations of 0.1 (solid) and 0.9 (dashed). 

in beamwidths, one eigenvalue is dominant. As the array aper­
tures become larger, which is indicated by larger separation, one 
array’s individual elements can be resolved by the other array. 
Consequently, the smaller eigenvalue increases. Conversely, the 
larger eigenvalue decreases slightly. 

Equations (16) and (17) are employed to determine the ca­
pacity for the 2 2 system. The water-filling technique first 
must determine if both modes in the channel are employed. Both 
modes are used if the following condition is satisfied: 

(29) 

. 
If the condition is not satisfied, then only the stronger channel 

mode is employed, and the capacity, from (17), is given by 

assuming 

(30) 

Otherwise, both modes are used, and the capacity is given by 

(31) 

The resulting capacity as a function of for two 
beamwidth separations 0.1 and 0.9, is displayed in Fig. 3. 
At low , the capacity associated with small beamwidth 
separation performs best. In this regime, capacity is linear 
with receive power, and small beamwidth separation increases 
the coherent gain. At high , large beamwidth separation 
produces a higher capacity as the optimal MIMO system 
distributes the energy between modes. 
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In complicated multipath environments, small arrays employ 
scatterers to create virtual arrays of a much larger effective aper­
ture. The effect of the scatterers on capacity depends on their 
number and distribution in the environment. The individual an­
tenna elements can be resolved by the larger effective aper­
ture produced by the scatterers. As was demonstrated in Fig. 2, 
the ability to resolve antenna elements is related to the number 
of large singular values of the channel matrix and, thus, the 
capacity. 

1) Received Power: The choice of for the horizontal 
axis of Fig. 3 is convenient because it can be employed to easily 
compare performance using different constraints and environ­
ments. This choice corresponds to the typical noise-normalized 
received power for a single receive and single transmit antenna 
radiating power . However, this choice can be mildly 
misleading because the total received power will, in general, 
be much larger than . In general, is defined by the 
Frobenius norm squared of the channel matrix normalized by 
the number of transmitters and receivers 

tr 
(32) 

The total received noise-normalized power produced by a 
set of orthogonal receive beamformers is given by tr . 
The uninformed transmitter rate is maximized by sending equal 
power to all transmit antennas so that tr becomes 

tr . It is worth noting that is not, 
in general, optimized by the informed transmitter to maximize 
received power but to maximize capacity. For the 2 2 toy ex­
ample, the total received power is given by 
and when using one or two 
modes, respectively. In both cases, the total received power is 
much larger than . 

The total received power for the capacity-optimized informed 
transmitter, given an arbitrary channel matrix, is 

tr 
tr tr 

tr tr tr 
(33) 

using (14). The first term in (33) is bounded from below by 

tr tr 

(34) 

The second term in (33) is bounded from below by zero. Con­
sequently, the total received power is greater than or equal to 

. 
For very small , far from the nonlinear regime of the 

Shannon limit, the optimal solution is to maximize received 
power. This is done by transmitting the best mode only, setting 

. In this regime, the total received power is given by 

maxeig (35)tr 

, which is 
achieved if there is only a single nontrivial mode in the channel. 
This result is bounded from above by 
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B. Large Dimension Gaussian Channel 

A common channel modeling approach is to construct a ma­
trix by independently drawing matrix elements from a unit-
variance complex Gaussian distribution, mimicking indepen­
dent Rayleigh fading 

(36) 

This matrix is characterized by a relatively flat distribution of 
singular values and is an appropriate model for very rich mul­
tiple scattering environments. 

In the limit of a large channel matrix, the eigenvalue 
probability density function for asymptotically 
approaches a variant of the Wigner distribution [27]–[31]. 
Of course, implemented systems will have a finite number of 
antenna elements; however, because the shape of the typical 
eigenvalue distributions quickly converges to that of the 
asymptotic distribution, insight can be gained by considering 
the infinite-dimensional case. The probability that a randomly 
chosen eigenvalue of the matrix is 
less than is given by . Here, is an matrix, 
and the ratio of to is given by . In the 
limit of , the probability measure is 

(37) 

where the constant associated with the “delta function” at 0 is 
given by 

(38) 

The first term of the probability measure is given by 

(39) 

otherwise 

where 

(40) 

The eigenvalue probability density function for this matrix ex­
pressed using a decibel scale is displayed in Fig. 4. Using the 
probability density function, the large matrix eigenvalue spec­
trum can be constructed and is depicted in Fig. 5. 

1) Uninformed Transmitter Spectral Efficiency Bound: In 
the large matrix limit, the uninformed transmitter spectral 
efficiency bound, which is defined in (18) and discussed in [9] 
and [31], can be expressed in terms of a continuous eigenvalue 
distribution 

(41) 

Fig. 4. Eigenvalue probability density function for the complex Gaussian 
channel ����� assuming an equal number of transmitters and 
receivers �� � ��  in the infinite dimension limit. 

��� �, 

Fig. 5. Peak-normalized eigenvalue spectrum for the complex Gaussian 
channel ����� assuming an equal number of transmitters and 
receivers �� � ��  in the infinite dimension limit. 

��� � 

where the continuous form is asymptotically exact. This integral 
is discussed in [31].1 The normalized asymptotic capacity as a 
function of and is given by , 

(42) 

In the special case of , the capacity is given 
by 

(43) 

where is the generalized hypergeometric function [32]. 
2) Informed Transmitter Capacity: Similarly, in the large 

matrix limit, the informed transmitter capacity, which is defined 
in (17), can be expressed in terms of a continuous eigenvalue 

1Equation (42) is expressed in terms of bits rather than nats as it is in [31]. 
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distribution [9]. To make connection with the continuous eigen­
value probability density defined in (37), from (17) is re­
placed with , where diagonal entries of contain 
the selected eigenvalues of . 

tr 

(44) 

where is the fraction of channel modes used by the transmitter 

(45) 

and is the minimum eigenvalue used by the transmitter, 
given by the continuous version of (16) 

(46) 

The approximations are asymptotically exact in the limit of large 
. 

For a finite transmit power, the capacity continues to increase 
as the number of antennas increases. Each additional antenna 
increases the effective area of the receive system. Eventually, 
this model breaks down as the number of antennas becomes so 
large that any additional antenna is electromagnetically shielded 
by existing antennas. However, finite random channel matrices 
quickly approach the shape of the infinite model. Consequently, 
it is useful to consider the antenna-number normalized capacity 
as a function of and , which is given by , 

(47) 

Using the asymptotic eigenvalue probability density function 
given in (39), the integrals in (46) and (47) can be evaluated. 
The relatively concise results for are displayed here as 

(48) 

and 

(49) 
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Fig. 6. Asymptotic large dimension Gaussian channel antenna-number-
normalized spectral efficiency bounds � �� (solid) and � �� 
(dashed) (b/s/Hz/M) as a function of attenuated noise-normalized power 

), assuming an equal number of transmitters and receivers (� � �, 
� � � 
(� � 

� � ). 

To calculate the capacity, the following integral must also be 
evaluated: 

arcsec 

Implicitly solving for , capacity as a function of 

(50) 

is 
displayed in Fig. 6. The uninformed transmitter spectral effi­
ciency bound is plotted for comparison. For small , 
approaches the maximum eigenvalue supported by . In  
this regime, the ratio of approaches 4. Conversely, 
at large , the normalized informed transmitter and unin­
formed transmitter spectral efficiency bounds converge. 

C. Stochastic Physical Scattering Model 

For many physical environments, the random channel matrix 
assumption may be inappropriate because it produces an eigen­
value spectrum that is overly optimistic in terms of the number 
of large eigenvalues. To investigate more realistic channel ma­
trices, a simple scattering model is employed. This model was 
relatively successful in matching the spatial decorrelation of 
antenna elements measured at cellular phone frequencies and 
bandwidths [33]. Assuming a particular density, a field of point 
scatterers is generated randomly, and the channel matrix is cal­
culated explicitly using 

(51) 

where distances and between antennas and 
scatterers are expressed in terms of wavelengths, and , , and 

index the receive antenna, transmit antenna, and scatterer, re­
spectively. The model does not include multiple scattering. 

Given an ensemble of matrices constructed using this tech­
nique, the distribution of channel matrices is primarily a func­
tion of the number of transmit and receive antennas and the 
density of scatterers in units of , where is the distance 
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Fig. 7. (a) Median eigenvalue distribution of �� for 2 2 2, 4 2 4, 8 2 
8, and 16 2 16 channel MIMO systems, assuming a dense field of scatterers 
������� � and an antenna array separation �. The median eigenvalue 
distribution for a 16 2 16 random matrix MIMO system is provided for 
comparison. (b) IT capacity ratio with respect to the 16 2 16 random Gaussian 
channel. 

between the arrays. If the field of scatterers is large compared 
with , the size of the field does not overwhelm the contribu­
tion to an element in the scattering matrix. At some large dis­
tance , the contribution of a scatterer to 
an entry in the channel matrix is attenuated by the inverse of 
the distance squared . The number of scatterers in a differ­
ential annulus increases linearly with distance, but the effects 
of the scatterers combine incoherently so that the contribution 
grows more slowly than 
radius 

, and the integrated contribution from 
to is finite. 

The local distribution of antenna elements has a subtle ef­
fect on the channel SVD. As was discussed in Section III-A, 
the eigenvalue distribution depends on the ability of one array 
to resolve the individual elements of the opposing array. In the 
presence of scatterers, the issue is whether or not the virtual 
array (consisting of scatterers) can resolve the antennas in the 
opposing array. However, the effect is dominated by the density 
of scatterers. Assuming that the array is not oversampled spa­
tially, the dependence on intra-array spacing is weak. 

1) Eigenvalue Spectrum Examples: The sensitivity of 
eigenvalue spectra and capacity to variations in the dominant 
parameters (number of antennas and scatterer density) of 
the model are analyzed here. The median eigenvalues of an 
ensemble of eigenvalue spectra are displayed with the largest 
eigenvalue normalized to 0 dB in Figs. 7(a) and 8(a). The th 
point in the median eigenvalue distribution indicates the median 
of the th eigenvalue for each spectrum in the ensemble. The 
median eigenvalues are a helpful diagnostic tool but cannot be 
used as an input to other calculations because of correlations 
between eigenvalues. In Figs. 7(b) and 8(b), the corresponding 
capacities are displayed. 

The median eigenvalue distribution as a function of the 
number of MIMO antenna elements is displayed in Fig. 7(a) 
for the same total aperture (16 wavelengths). As the number 
of antennas increases, in a fixed environment, the value of 
the smallest eigenvalue in each spectrum decreases. There are 

Fig. 8. (a) Median eigenvalue distributions of �� for an 8 2 8 channel 
MIMO systems, assuming scatterer densities of ��� , ���� , and ����� for 
antenna array separations of �. The median eigenvalue distribution for an 8 2 
8 random matrix MIMO system is provided for comparison. (b) Capacity ratio 
with respect to 8 2 8 random Gaussian channel. 

two reasons for this. First, the typical ratio of the maximum to 
minimum of a set of random numbers grows as the number in 
the set grows. Second, as the number of antennas increases, 
more scatterers are required to take advantage of the new 
degrees of freedom. The informed transmitter capacity ratio 
for each array size to the 16 16 random matrix is displayed 
in Fig. 7(b). Over a wide range of SNR, the performance is a 
simple function of the number of antennas. 

The median eigenvalue distribution as a function of scatterer 
density is displayed in Fig. 8(a). At low density, the relatively 
low number of scatterers dominate the channel matrix with 
strong spatial correlation at the transmit and receive arrays. This 
causes the eigenvalue distribution to decrease quickly. As the 
density of scatterers increases, the environment becomes more 
random, and the eigenvalue distribution of moves closer 
to the random matrix distribution. However, the distribution 
does not converge to the random matrix distribution. In the 
figure, it can be observed that once the density of scatterers (in 
units of ) has exceeded the number of antennas, there is 
little effect on the distribution. The channel matrix in the high 
scatterer density limit is affected by two fields of scatterers: 
one near the transmit array and one near the receive array. 
This is because at high density, there are a large number of 
scatterers near both the transmit and receive arrays, and the 
contribution increases inversely with distance. A scatterer near 
one of the arrays is necessarily far from the other. The field 
of scatterers near the transmit array is spatially uncorrelated 
from the transmit array’s perspective, but this field of scatterers 
subtends a small angle from the receiver’s perspective and 
is consequently highly correlated. Similarly, there is a dense 
field surrounding the receive array. These scattering fields 
contribute low rank components to the channel matrix. This 
effect competes with the much larger number of scatterers 
far from both arrays. The corresponding informed transmitter 
physical scatterer to the informed transmitter random matrix 
spectral efficiency bound ratios and the uninformed transmitter 
physical scatterer to the uninformed transmitter random matrix 
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capacity spectral efficiency bound ratios are displayed in 
Fig. 8(b). At low SNR, the relative performance of the informed 
transmitter is better in simpler environments, taking advantage 
of the dominant mode. At higher SNR, channels with higher 
complexity perform better. 

IV. INTERFERENCE EFFECTS 

A. Interference Model 

A given MIMO communication system may be required to 
operate in the presence of other MIMO or wireless commu­
nication systems. This is certainly true in the case of wireless 
local area networks operating in the uncontrolled industrial, sci­
entific, and medical (ISM) bands [34]. The effects of interfer­
ence will be addressed using random infinite dimension and sto­
chastic physical scattering models. 

While one can certainly imagine a nearly limitless number of 
interference scenarios, three interference regimes are of partic­
ular interest: 

• small number of strong interferers; 
• uncooperative competing MIMO system; 
• cooperative interfering MIMO system. 

1) Strong Interference: In an environment populated by 
a relatively small number of strong interferers, the spatial 
whitening performed in (24) can be replaced with a pro­
jection operator, removing the spatial subspace associated 
with the interferers. Noting that the Hermitian interference 
matrix can be expressed as some power scaling multi­
plied by the outer product of two matrices so that 

, in the limit of high power, 
becomes 

(52) 

where is a projection matrix, which projects onto the com­
plement of the column space of . Because projection matrices 
are idempotent, this is also the solution for . 

The strong interference-mitigated spectral efficiency bound 
can be written as 

(53) 

The effect of strong interference on capacity is calculated, ex­
ploiting the fact that unitary transformation of independent iden­
tically distributed (i.i.d.) Gaussian matrices produces matrices 
with the same Gaussian statistics and that there exists a unitary 
matrix that transforms the projection matrix to a diagonal ma­
trix with the form 

(54) 

degrees of freedom. 
Using the large dimension limit discussed in Section III-B, this 
where the projection removes 
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�Fig. 9. Asymptotic interference loss capacity ratio � �� (dashed) and 
�� �� (solid) assuming an equal number of transmitters and receivers 
(� � �) for the surviving degree of freedom fraction � � ��� (gray) and 
0.5 (black). 

bound is explicitly calculated. For the uninformed transmitter, 
the spectral efficiency bound is given by 

(55) 

where is a matrix with entries sampled from a 
unit-norm complex Gaussian distribution, is defined in 
(42), and is defined in Section III-B. For the informed trans­
mitter, the spectral efficiency bound is given by modifying (44) 
as 

tr 

(56) 

where the diagonal elements of contain the selected 
eigenvalues of 

(57) 

and is given by 

(58) 

ofThe spectral efficiency loss ratio is depicted in Fig. 9 for 
0.9 and 0.5. In the limit of large , the ratio converges 
to . 

2) Competing MIMO Systems: A reasonable model for the 
interference is to assume that it is associated with a channel 
matrix that is statistically independent of, but otherwise has 
characteristics similar to, the channel matrix associated with 
the intended transmitters. Using the statistical scattering model, 
an ensemble of channel matrix pairs is constructed. The first 
of the pair is associated with the intended transmitter, and the 
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��Fig. 10. Median eigenvalue distribution of � � for an 8 2 8 channel for 
random, dense, and sparse scattering fields, assuming random interference of 
(a) 20 dB and (b) 40 dB total noise-normalized power. 

second is associated with the interfering MIMO system. De­
pending on the nature of the interference, the received signal 
can be much stronger or weaker than the intended signal. In 
Fig. 10, the median eigenvalue distribution is displayed for envi­
ronments that contain competing MIMO systems with total in-
terference-to-noise ratios tr of 20 and 40 dB. The eigenvalue 
distributions are peak-normalized in the absence of interference. 
The effect of interference changes the shape of the distribution 
and causes an overall downward shift. 

In the case of the interfering MIMO system displayed in 
Fig. 10, the story is somewhat complicated. As one would 
expect, the adverse effects of the interference on the eigenvalue 
spectra become worse for stronger interference. Because the 
interfering MIMO system uses multiple transmit antennas, the 
interference affects all of the modes of the channel matrix. 
Interestingly, the loss of large eigenvalues for the sparse field 
matrix is less severe than that for the random channel matrices 
because the dominant portions of both the signal of interest 
and the interference occupy smaller fractions of the total space 
in the sparse scatterer environment. This decreases the typical 
overlap between the associated subspaces and thus reduces the 
detrimental effects of mitigation. Of course, the channel matrix 
associated with the sparse scatterer environment had fewer 
useful modes to lose. 

It is interesting to compare the capacity of an 8 8 MIMO 
communication system with a 1 8 SIMO system under the 
constraint that the total transmit power is equal. It is common 
to compare the capacity of MIMO systems to single-antenna 
transmit and receive systems. However, in the presence of strong 
interference, the capacity of single-to-single antenna systems is 
poor. The spectral efficiency bound ratio 

tr 
(59) 

is displayed in Fig. 11 for both informed and uninformed trans­
mitter bounds, where the expectation is evaluated over an en­
semble of scatterers and interferers for a given environment. 

Fig. 11. Spectral efficiency bound ratio of 8 2 8 MIMO to 1 2 8 SIMO 
systems for random, dense, and sparse scattering fields, assuming (a) no 
interference, (b) interference of 20 dB, and (c) 40 dB total noise-normalized 
power for both informed and uninformed transmitter. 

In Fig. 11, the sensitivity of MIMO capacity to environment 
is demonstrated. At very high SNR, the uninformed spectral ef­
ficiency bound and informed transmitter capacities converge. 
At low SNR, the informed transmitter avoids modes with small 
singular values, whereas the uninformed transmitter randomly 
spreads energy between modes. The loss is most significant for 
environments with relatively few large channel matrix singular 
values. 

3) Infinite-Dimension Competing MIMO System: The max­
imum spectral efficiency for the uninformed transmitter in the 
presence of an uncooperative (worst-case) interfering MIMO 
system [9] is given by 

(60) 

where the noise-normalized interference plus noise covariance 
matrix is given by 

(61) 
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The notation indicates the spectral efficiency bound in the 
presence of interference. The interference transmitter-to-re-
ceiver channel matrix is , which is similar to the 
channel matrix defined in (36). The interfering transmitters 
have total power . 

A particularly interesting interference environment occurs 
when a MIMO system attempts to operate in the presence of 
an uncooperative competing MIMO, where the average receive 
power per transmit antenna is equal for the interferer and the 
intended transmitter . In this case, 
the spectral efficiency bound can be written using 

(62) 

is . Assuming that 
and 
where the shape of 

are independent and that the complex entries of each are 
selected from a unit-variance complex Gaussian distribution, as 
was previously assumed, the spectral efficiency bound can be 
expressed as 

(63) 

The asymptotic form of (63) can be expressed as the differ­
ence between two terms using (42) with two different sets of 
parameters. The maximum spectral efficiency bound in the pres­
ence of this interference for the uninformed transmitter is given 
by 

(64) 

is defined in (42). The effects of the interference 
for an uncooperative interfering equivalent MIMO system are 
displayed in Fig. 12. The effect can be significant. 

4) Cooperative MIMO Interference: Assuming knowledge 
of the interfering MIMO system parameters (for example, all 
channel matrices) and cooperative control of the interfering 
users, the interference treated above can be mitigated by 
employing a MIMO extension to the multiuser detector (MUD) 
[30], increasing the capacity of each MIMO user beyond that 
achievable with the spatial interference cancellation alone. 
A simple example is provided by a system of uninformed 
transmitter MIMO users, each utilizing 

where 

transmitters com­
municating with a single receiver array fielding elements. 
It is assumed that is the same for all users, which can be 
achieved using power control. 
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Fig. 12. Infinite-dimension antenna normalized capacity for an equal number 
of transmitters and receivers (� � �) given: no interference (black), cooperative 
interference (dashed), and an equivalent uncooperative interfering MIMO 
system (gray). 

The MIMO extension to the MUD spectral efficiency bound 
is given by the convex hull of a set of inequalities. In particular, 
the rates of all users must satisfy 

(65) 

where denotes the spectral efficiency of the th user, and 
has dimensions and has i.i.d. complex Gaussian 

elements with zero mean and unit complex variance. Denoting 
, the bound becomes 

(66) 

Using this relationship, the following asymptotic inequality is 
constructed: 

This asymptotic bound is achievable for a particular set of rates 
by a receiver employing successive interference cancellation 
(SIC). Recall that SIC detects signals (in this case, MIMO sig­
nals) in order, treating yet undetected signals as interference 
in the manner of Section IV-A3 and subtracting previously de­
tected signals. More specifically, note that 

where the th term in the summand represents an achiev­
able spectral efficiency bound after the previously 
detected (lower ) signals have been subtracted, and the 
remaining signals (higher ) are treated as interference as in 
Section IV-A3. Thus, in the asymptotic limit, one can achieve 
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. By averaging over all possible 
SIC orderings and controlling the corresponding user rates, the 
spectral efficiency bound is the same for all users: 

(67) 

The spectral efficiency bound of a single user of the multiuser 
MIMO network described above (for two users and 

), given a MIMO multiuser detector as a receiver, is depicted 
in Fig. 12. Note that MUD receivers substantially increase ca­
pacity at higher SNRs over the capacity achieved using spatial 
interference cancellation alone. 

V. CHANNEL ESTIMATION ERROR 

Channel estimation accuracy is limited by channel station­
arity. For the purpose of this discussion, channel estimation error 
is modeled as a perturbing matrix with i.i.d. elements. The 
estimated channel is then given by . Here, 

indicates the Frobenius norm. The validity of this model 
depends on the details of the error source. It is assumed that 
there is no correlation between the source of error and the modes 
of channel matrix. While both informed and uninformed trans­
mitter MIMO systems suffer loss as a result of channel estima­
tion error, the informed transmitter suffers a loss due to using 
incorrect transmit spatial coding. 

The losses peculiar to informed transmitter MIMO systems 
can be investigated by assuming that the receiver has an accurate 
estimate of the channel but that the transmitter has an inaccurate 
estimate. This model is reasonable for nonstationary channels. 
Assuming data is transmitted in blocks, the receiver can perform 
channel estimation using the current block of data; however, 
the transmitter must wait for that information to be fed back. 
Ignoring the possibility of channel prediction, the transmitter 
will employ channel estimates from a previous block. Using this 
estimated channel with error , the “optimal” noise-normalized 
transmit covariance is constructed, solving for , using (7) and 
(13), assuming the estimated channel is the true channel. As 
a result, the spectral efficiency bound with channel estimation 
error at the transmitter is given by 

(68) 

where the expectation is evaluated over an ensemble of scat­
terers and channel errors. 

In Fig. 13, the fraction of the optimal capacity assuming 
transmit channel estimation error for 0.01, 0.1, and 1 is 
displayed as a function of . For this analysis, an ensemble 
of errors and realizations of the dense scatterer environment 
is used. For comparison, the spectral efficiency bound of the 
uninformed transmitter is presented. At high SNR, MIMO 
systems are very forgiving of transmit-channel estimation error 
for the same reason that the uninformed transmitter spectral 
efficiency bound approaches the optimal capacity at high 
SNR. At low SNR, the spectral efficiency remains remarkably 
insensitive to channel estimation error. Relatively few modes 

Fig. 13. Fraction of stationary capacity for an 8 2 8 MIMO system with 
transmitter channel estimation error, assuming a dense scattering field and no 
interferers. 

are used by the optimal transmitter. It is apparently difficult for 
random noise to significantly disturb the transmit beamformers 
even when the channel estimation error and the channel have 
the same Frobenius norm. 

VI. SUMMARY 

The sensitivity of spectral efficiency bounds to environmental 
factors has been discussed. In Section II, the information theo­
retic capacity for MIMO communication systems was reviewed 
for both the informed and uninformed transmitter. The spec­
tral efficiency bounds in the presence of worst-case interfer­
ence were discussed. In Section III, the complexity of chan­
nels expressed in terms of channel matrix SVDs was discussed. 
Line-of-sight and stochastic physical scattering models were 
introduced. Using the stochastic physical model, channel ma­
trix SVDs and capacity sensitivity to the number of antennas 
and scatterer density were investigated. The asymptotic large 
Gaussian matrix channel SVD and corresponding uninformed 
transmitter spectral efficiency bound was reviewed. The cor­
responding informed transmitter capacity was introduced. In 
Section IV, three regimes of interference were investigated: 

• strong interference; 
• uncooperative competing MIMO system; 
• cooperative MIMO interference. 

A strong interference asymptotic large Gaussian matrix capacity 
result was introduced for both the informed and uninformed 
transmitter. A competing MIMO interference, asymptotic large 
Gaussian matrix uninformed transmitter capacity result was in­
troduced. Using the stochastic physical scattering model, the 
competing MIMO interference spectral efficiency bounds were 
investigated for both the informed and uninformed transmitter. 
Exploiting MUD, a competing cooperative MIMO interference 
asymptotic large Gaussian matrix uninformed transmitter ca­
pacity result was introduced. Finally, in Section V, the effects of 
channel estimation error on performance of the informed trans­
mitter was investigated using the stochastic physical scattering 
model. 

APPENDIX 

This appendix provides a more rigorous derivation of the in­
formed transmitter capacity given in (17). The starting point is 
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once again (5). Applying the generic matrix identity 
, it can be rewritten as 

tr 
(69) 

where , and . The matrices and both 
have dimensions . Note that positivity for is now 
automatic. The maximum in (69) is found by adding a Lagrange 
multiplier to enforce the constraint tr and differ­
entiating with respect to the components of , yielding 

(70) 

producesMultiplying on the right by 

(71) 

where is the Lagrange multiplier constant that must be chosen 
to satisfy the constraint. Note that and com­
mute so that (71) can also be written as . 
Multiplying by a factor of on the left or right as ap­
propriate produces 

and (72) 

Subtracting (71) and (72) shows that 

(73) 

. First, consider the case Now, it can be shown that 
. From (72), it follows that , and thus, 

. In the case be 
an eigenbasis for the Hermitian matrix 

, let 
. Computing the inner 

product of (73) between two arbitrary eigenvectors shows that 

(74) 

where is the eigenvalue corresponding to . Taking the 
conjugate of the above equation and swapping with yields 

(75) 

or , it follows from one of the above two 
equations that 

follows directly since 

If 
,. If  

annihilates 
both eigenvectors. 

The above arguments show that the optimum value for must 
commute with , which means that they can be jointly diago­
nalized. Equation (69) for the capacity can be rewritten as 

(76) 

and are the eigenvalues of and . The optimiza­
tion need only be performed with respect to the scalar values 
where 

, 
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rather than the full matrix . Applying the method of Lagrange 
multipliers as before leads to the diagonalized analog of (72) as 

(77) 

For each , either , or  . Define 
to be the set of for which in the optimal solution. For 

, . Applying the total power constraint 
shows that the Lagrange multiplier must satisfy 

, where is the number of 
elements in the set . 

The only remaining question follows: What elements are in 
? First, suppose and . It immediately follows that 

; otherwise, could be increased by swapping the 
values of and . Assuming that the eigenvalues are ordered 
so that , the set must be given by 

for some integer . The value 
for is determined by maximizing while maintaining the 
positivity condition for . 
Noting that , it suffices to require that 

. 
To see which value of to choose, it is useful to define the 

function : 

(78) 

Note that is similar to the capacity function, but there 
is no positivity constraint. It is clear that 

since any set of values for can be extended 
to by setting and 

. The optimization with respect to is performed 
using the method of Lagrange multipliers, leading to the solu­
tion . Applying the total power con­
straint shows that the Lagrange constant is given by 

. It follows that since 
the values for , where , are the same in both cases. 
Since the are monotonically increasing in , we need to 
pick to be the largest value for which . 

It is also easily shown that for and that 
for . First, note that . Next, 

suppose for some . Plugging in the solution for 
gives the inequality 

(79) 

Adding to both sides and factoring the right side gives 

which shows that as well. Once is 
negative for some 

To connect the results here to the main body of the paper, 
note that the eigenvalues 

., it must remain negative for all larger 

are the same as the entries in the 
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diagonal matrix . Plugging the solutions obtained for into 
(76) leads directly to (17). 
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