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Abstract—We derive an upper bound and investigate some ap­
proximations on the symbol error probability (SEP) for coherent 
detection of -ary phase-shift keying, using an array of antennas 
with optimum combining in wireless systems in the presence of 
multiple uncorrelated equal-power cochannel interferers and 
thermal noise in a Rayleigh fading environment. Our results are 
general and valid for an arbitrary number of antenna elements as 
well as an arbitrary number of interferers. In particular, the exact 
SEP is derived for an arbitrary number of antennas and inter­
ferers; the computational complexity of the exact solution depends 
on the minimum number of antennas and interferers. Moreover, 
closed-form approximations are provided for the cases of dual 
optimum combining with an arbitrary number of interferers, and 
of two interferers with an arbitrary number of antenna elements. 
We show that our bounds and approximations are close to Monte 
Carlo simulation results for all cases considered in this paper. 

Index Terms—Adaptive arrays, antenna diversity, cochannel in­
terference, eigenvalue distribution, optimum combining, Wishart 
matrices. 

I. INTRODUCTION 

ADAPTIVE ARRAYS can significantly improve the 
performance of wireless communication systems by 

weighting and combining the received signals to reduce fading 
effects and suppress interference. In particular, with optimum 
combining, the received signals are weighted and combined 
to maximize the output signal-to-interference-plus-noise ratio 
(SINR). In the presence of interference, this technique provides 
substantial improvement in performance over maximal ratio 
combining where the received signals are combined to max-
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imize the desired signal-to-noise ratio (SNR) only. However, 
determining the performance of optimum combining is more 
difficult than with maximal ratio combining. 

In this regard, closed-form expressions for the bit-error prob­
ability (BEP) of binary phase-shift keying (BPSK) have been 
derived for the single-interferer case with Rayleigh fading of the 
desired signal in [1] and [2], and with Rayleigh fading of the 
desired signal and interferer in [3]. An exact BEP expression, 
which requires numerical integration, for BPSK and a single in­
terferer is also given in [4]. 

With multiple interferers of arbitrary power, Monte Carlo 
simulation has been used to determine the BEP in [2]. In [5], 
upper bounds on the BEP of optimum combining were derived 
given the average powers of the interferers. However, these 
bounds are generally not tight. 

To avoid Monte Carlo simulation, the exact BEP expression 
was derived in [6] for the case of equal-power interferers, which 
permits analytical tractability. However, the results are limited 
to the case of BPSK and no thermal noise. Approximations for 
the BEP have been presented in [7] and [8] for binary modula­
tion in the presence of thermal noise. However, the approxima­
tion of [7] still requires Monte Carlo simulation to derive mean 
eigenvalues (a table is provided in [7] for some cases), and the 
approximation of [8] is valid only for the case when the number 
of interferers is less than the number of antenna elements. 

In this paper, starting from the eigenvalues distribution of 
complex Wishart matrices, we first give the exact expression 
of the symbol-error probability (SEP) for coherent detection of 

-ary phase-shift keying (MPSK) using optimum combining in 
the presence of multiple uncorrelated equal-power interferers, 
as well as thermal noise, in a Rayleigh fading environment. 
Evaluation of this expression involves multiple numerical inte­
grals. Then, based on some new results on the eigenvalues distri­
bution of complex Wishart matrices, we derive new closed-form 
upper bounds. We show that these bounds are generally tighter 
than those of [5]. Moreover, we extend the approaches in [7] 
and obtain new closed-form approximations of the SEP that do 
not require Monte Carlo simulation and are close to simulation 
results. 

In Section II, we describe the system model, and in Sec­
tion III, derive the exact SEP of optimum combining with mul­
tiple interferers. Upper bounds are derived in Section IV, and 
approximate formulas are given in Section V. In Section VI, 
we compare our analytical results with simulations, and in Sec­
tion VII, we present a summary and conclusions. 

0090-6778/03$17.00 © 2003 IEEE 
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Fig. 1. Baseband model of optimum combining receiver. 

II. SYSTEM MODEL 

We consider coherent demodulation with optimum com­
bining of multiple received signals in a flat fading environment 
as in Fig. 1. The fading rate is assumed to be much slower 
than the symbol rate. Throughout the paper, denotes the 
transposition operator, and stands for conjugation and 
transposition. The received signal at the -element array 
output consists of the desired signal, interfering signals, 
and thermal noise. After matched filtering and sampling at the 
symbol rate, the array output vector at time can be written as 

(1) 

and are the mean (over fading) ener­
gies of the desired signal and 
where 

th interferer, respectively; 
and 

are the desired and th interference propagation vectors, 
respectively; and (both with unit variance) are 
the desired and interfering data samples, respectively; and 

represents the additive noise. We model and 
as multivariate complex-valued Gaussian vectors having 

and , 
where is the identity matrix. The additive noise is modeled 
as a white Gaussian random vector with independent and 
identically distributed (i.i.d.) elements with and 

, where is the two-sided thermal 
noise power spectral density per antenna element. 

The SINR at the output of the -element array with op­
timum combining can be expressed [1], [2] as 

(2) 

where the short-term covariance matrix 
interference propagation vectors, is 

, conditioned to all 

and denotes expectation with respect to . Therefore 

(4) 

and, consequently, also the 
SINR 
It is important to remark that 

vary at the fading rate.

The matrix
 can be written as where is 

a unitary matrix and is a diagonal matrix whose elements 
on the principal diagonal are the eigenvalues of 
( 

, denoted by 
). The vector has 

the same distribution as , since represents a unitary trans­
formation. The SINR given in (2) can be rewritten as 

(5) 

Since is a random matrix, its eigenvalues are random vari­
ables. 

We now investigate the statistical properties of 
( ). We will show later that this is related to 
problems arising in multivariate statistics, regarding the eigen­
value distribution of complex Wishart matrices. Let 

(6) 

be a ( ) random matrix composed of interference 
propagation vectors as columns. For equal-power interferers, 
i.e., for , (4) can be rewritten as 

(7) 

where is a ( ) random matrix. The eigen­
values of can be written in terms of eigenvalues of , denoted 
by ( ), as 

(8) 

(3)	 where the joint probability density function (pdf) of the 
eigenvalues of are given by the following theorem. 
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Theorem 1: The joint pdf of the first 
ordered eigenvalues of , with 

, is  

(9) 

where and is a normalizing constant 
given by 

(10) 

with 

(11) 

The additional eigenvalues of are identically 
equal to zero. 

Proof: See Appendix B. 
As a consequence of Theorem 1, we have the following corol­

lary. 
Corollary 1 (Reciprocity Principle) : The statistical distribu­

tions of the eigenvalues of , for the case of antennas and 
interferers with , are equal to that of the (nonzero) eigen­
values of for the case of antennas and interferers.1 

Using the distribution theory for transformations of 
random vectors [9] together with (8), the joint pdf of 

with is 

(12) 

where is given by Theorem 1. The additional 
eigenvalues of are identically equal to . 

III. EVALUATION OF THE EXACT SEP 

The SEP for optimum combining in the presence of multiple 
cochannel interferers and thermal noise in a fading environment 
is obtained by averaging the conditional SEP over the (desired 
and interfering signal) channel ensemble. This can be accom­
plished by 

(13) 

where is the SEP conditioned on the random variable 
, and is the pdf of the combiner output SINR. Note that 
depends on the desired and interference propagation vectors. 

Although the evaluation of (13) involves a single integration for 
averaging over the channel ensemble, it requires the knowledge 

1This proves the equality, observed also numerically by Monte Carlo simula­
tion in [7, Table I], of the expectations of the nonzero eigenvalues of �� when 
the number of antennas is exchanged with the number of interferers. 
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of the pdf of , which can be quite difficult to obtain. This is 
alleviated by using the chain rule of conditional expectation as 

(14) 

where we first perform (i.e., average over the channel 
ensemble of the desired signal) to obtain the conditional SEP, 
conditioned on the random vector , denoted by 

to average out the channel ensemble of the in­
. We then 

perform 
terfering signals. 

The th interfering data samples, , can 
be modeled as zero-mean, unitary variance Gaussian random 
variables. Note that the Gaussian assumption gives a good ap­
proximation when the interfering contribution is due to a large 
number of interferers sampled at a random time, and generally 
it represents a worst case [10]; here, it will be used regardless 
of the number of interferers. In the following, we assume that 

is an MPSK data sample. With the previous assumption 
together with the Gaussianity of , for coherent 
detection of MPSK is given by [11], [12] 

and 

(15) 

where . Using 
(15), can be written as 

(16) 

where , condi-is the characteristic function (cf) of 
tioned on , given by 

(17) 

and we have used the fact that is Gaussian with i.i.d. elements.

Therefore, the conditional SEP, conditioned on

case of


, in the general 
antennas and interferers, becomes 

where 

(18) 

(19) 

Using (9), (12), (14), and (18), the unconditional SEP for op­
timum combining becomes 

(20) 

Equation (20) is exact and valid for arbitrary numbers of an­
tennas and interferers; however, it requires the evaluation of 
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nested -fold integrals, which can be cumbersome to eval­
uate for large . To give an idea of the amount of time 
needed for (which allows us to investigate either dual 
combining with an arbitrary number of interferers or an arbi­
trary number of antennas with two interferers), the computation 
of (20) on a 450-MHz PC requires about 100 s. 

Since the computation time for the numerical evaluation of 
(20) increases with the number of antennas and interferers, rig­
orous bounds, as in [5], or approximate expressions, as in [7], 
are useful; unfortunately, the bounds in [5] are generally not 
very tight, and the approximation in [7] requires Monte Carlo 
simulation. This motivates the need to derive simpler and tighter 
bounds or approximate expressions in closed form. 

IV. UPPER BOUNDS ON SEP 

In this section, we derive a new upper bound for the SEP 
based on the knowledge of the pdf of the trace of the covariance 
matrix . 

Theorem 2: The SEP is upper bounded by 

(21) 

is a chi-square distributed 
random variable with 

is defined in (19), and where 
degrees of freedom (DOFs), 

having pdf given by 

if 
(22)

otherwise. 

In (22), is the gamma function [13, eq.(8.310), p. 942], and 

(23) 
For a single-interferer scenario, (21) is an equality, i.e., it gives 
the exact SEP for . 

Proof: By applying the result in Appendix C to (18), we 
have 

(24) 

, therefore where the equality is verified for 

(25) 

Note, from (8), that 

(26) 

where we have used the fact that eigenvalues of 
are identically equal to zero by Theorem 1, and hence 

(27) 

In order to evaluate the expectation in (25), we observe that 

. Hence, the random vari­

able is chi-square distributed with DOFs, 
with pdf given by (22). This completes the proof of the theorem. 

The expectation is evaluated in Appendix D as 
shown in (28) at the bottom of the next page, where is 
the exponential integral defined by (57) in Appendix D. 

The bound (21) allows the evaluation of SEP for coherent 
detection of MPSK modulation with optimum combining; the 
numerical evaluation of it only requires a fraction of a second 
on a PC. Note that the inequality in (24) becomes equality for 
the case of single interferer (as well as for single antenna), and 
our bound gives the exact results. 

V. APPROXIMATIONS ON THE SEP 

In this section, some new results on the SEP approximations 
will be presented. Here, we start from the approximation pro­
posed in [7], and we derive a methodology which allows us 
to eliminate the need for Monte Carlo simulation in the cases 
of dual optimum combining with an arbitrary number of inter­
ferers, and of two interferers with an arbitrary number of an­
tenna elements. We prove that the approximation proposed in 
[8] is an upper bound of [7]; furthermore, we generalize the re­
sult of [8], and the generalized results are now applicable for the 
case in addition to . 

A. Approximation via Expected Eigenvalues 

In [7], it is proposed to approximate the unconditional cf of 
as

By adopting this approximation in (20), the SEP for MPSK

. 

is approximated as follows: 

(29) 

where is given by 

(30) 

and the th element of is 

(31) 
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Discussion 

Since R is semidefinite positive, the eigenvalues 
are real and nonnegative. Therefore, for 

each , it is easy to verify that the function 

(32) 
is -concave in each when the other variables are fixed, but, 
despite this, the function is neither globally convex nor concave. 

Approximation (29) is obtained by replacing the expected 
value of with the function evaluated at the expected values 
of the ’s, i.e., 

(33) 

Now, if the function were concave (convex), applying 
Jensen’s inequality will produce an upper (lower) bound, but, 
since (32) is neither concave nor convex, Jensen’s inequality 
[14] cannot be applied. However, (29) gives good agreement 
with the exact SEP expression (20) for typical parameters of 
interest. This may be due to the fact that, in the region where 
the pdf of the eigenvalues is not negligible, (32) behaves 
essentially as an affine function. 

Integrating both sides of (33) over and scaling by , we  
obtain 

(34) 

Note that, given the expectation of the eigenvalues , 
the last integral can be also derived in closed form by using a 
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canonical decomposition method [15], [16]. In the following, 
(34) will be denoted as approximation A, and we will show in 
Section VI that it is in good agreement with the exact analysis 
of (20) as well as simulation results. In general, approxima­
tion A requires knowledge of . In [7], the expectation 
of the eigenvalues for some specific cases were calculated via 
Monte Carlo simulation. For the case of dual optimum com­
bining ( ) with arbitrary , or the case of two inter­
ferers ( ) with an arbitrary number of antenna elements, 

is obtained easily in a closed form using the reciprocity 
principle given in Corollary 1, together with the results of Ap­
pendix E. 

B. Approximation via Equal Expected Eigenvalues 

The determination of , in general, requires the evalua­
tion of multiple integrals for each of the ( ) eigenvalues. 
This can be alleviated, at the expense of tightness, by the fol­
lowing bound. 

is upper bounded as follows: Theorem 3: 

(35) 

where is given in (30) and the th element of is 

(36) 

Proof: The integrand of (34) can be written as 

(37) 

for . By using (45) of where 
Appendix C, with , we get 

(38) 

(28) 
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Fig. 2. SEP for coherent detection of BPSK, quaternary PSK, and 8-PSK using 
dual optimum combining (� � �) for � � 1, 2, and 4 and ��� � �� dB. 
Excellent agreement between exact analysis and simulation can be observed. 

Using (8) 

(39) 

(40) 

where we have used (66) from Appendix E in deriving (40). 
Therefore 

(41) 
Finally, by using (30), (36), and (41), it is straightforward to 
show that (34) is upper bounded by . 

The above theorem provides a rigorous proof that the ap­
proximate solution for proposed in [8], based on 
heuristic assumptions, represents an upper bound of the solu­
tion proposed in [7]. It also provides the generalization of the 
approximation of [8], which is now valid for arbitrary numbers 
of antennas and interferers. In the following, we will denote (30) 
together with (36) as the approximation B. Note that approxima­
tion B does not require knowledge of . 

VI. NUMERICAL RESULTS 

In this section, we evaluate the exact SEP [given by (20)], the 
upper bound [given by (21) together with (28)], the approxima­
tion A [given by (30) together with (31)] and the approximation 
B [given by (30) together with (36)] derived in previous sec­
tions, and compare them with Monte Carlo simulation results. 
The simulations were performed over 10 000 trials. We investi­
gate the effect of SNR defined as , signal-to-interference 
ratio (SIR) defined as , the number of interferers, 
and the number of antenna branches on the SEP. Unless other­
wise stated, we consider the coherent detection of 8-PSK with 
optimum combining. 

We first consider coherent detection of BPSK, quaternary 
PSK and 8-PSK using dual optimum combining ( ). 

Fig. 3. Comparison between upper bound derived in Section IV with the only 
previously known upper bound given by [5, eq. (13)] for the case of BPSK, 
��� � �� dB, � � �, � � 1, 4, and 8. Note that our upper bound is 4.8 
and 5.3 dB (at BEP of 10 ) tighter and 4.8 and 7.4 dB (at BEP of 10 ) tighter 
than [5, eq. (13)] for � � 4 and 8, respectively. 

Fig. 4. SEP as a function of SNR for coherent detection of 8-PSK using dual 
optimum combining (� � �) for the case of � � 1 and 3 with SIR � 5 and 
10 dB. 

Fig. 2 shows the SEP as a function of SNR, for 1, 2, and 
4, and dB. The results show excellent agreement be­
tween exact analysis and simulation. The curves also exhibit an 
error floor when the number of interferers is greater than the 
array DOFs, i.e., . Next, we compare in Fig. 3 the upper 
bound derived in Section IV with the only previously known 
upper bound given by [5, eq. (13)]. Note that our upper bound 
is 4.8 and 5.3 dB (at BEP of 10 ) tighter and 4.8 and 7.4 dB 
(at BEP of 10 ) tighter than [5, eq (13)] for 4 and 8, 
respectively. 

Fig. 4 shows the SEP with dual optimum combining for the 
case of 1 and 3 with SIR 5 and 10 dB. Note that there 
is the error floor for the case of which decreases as 
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Fig. 5. SEP as a function of SIR for 8-PSK, � � �, � � 1 and 4, 
SNR � 5, 10, and 20 dB. 

Fig. 6. SEP versus the number of interferers � for case of 8-PSK, � � �, 
SNR � ��  dB, SIR � 0, 5, and 10 dB. 

SIR increases. In order to further investigate the dependence of 
SEP on SIR, the SEP is plotted as a function of SIR in Fig. 5 
for the case of 3, with 1 and 4, and SNR 5, 
10, and 20 dB. Note that when the SIR is comparable with the 
SNR, the number of interferers plays a marginal role. Finally, 
the asymptotic SEP is limited by the thermal noise. 

The SEP versus the number of interferers is plotted in Fig. 6 
for , SNR dB, and three different values of SIR (0, 
5, and 10 dB). It can be seen that, when the array is overloaded, 
the performance does not depend significantly on the number 
of interferers; this behavior is accentuated for small values of 
SIR. The SEP versus the number of antenna branches is plotted 
in Fig. 7 for SNR dB, SIR 5 and 10 dB, and 3. 
The figure shows that the system is able to exploit the spatial 
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Fig. 7. SEP versus the number of antenna branches � for 8-PSK, � � �, 
SNR � ��  dB, SIR � 5 and 10 dB. 

Fig. 8. SEP versus SNR for 8-PSK, � � �, � � 1, 3, and 5; and SIR 
� �  dB. 

diversity provided by the increasing number of antennas (the 
SEP in logarithmic scale is a approximately linear in ). Note 
that our upper bound is quite close to the simulation results. 

Fig. 8 shows the SEP as a function of SNR for , 
SIR 1, 3, and 5. As expected, we note dB, and 
the presence of error floor in the overloaded case ( 

). Moreover, when , the remaining DOFs 
(diversity order) is and we expect an asymp­
totic behavior for SEP proportional to . This im­
plies that the curve of the SEP versus SNR approaches, for 
large SNR, a straight line on a semilogarithmic scale with slope 

decade/dB. Indeed, slopes of 3/10 decade/dB 
for , and decade/dB for can be observed 
from Fig. 8. Similar results are shown in Fig. 9 for , 
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Fig. 9. SEP versus SNR for 8-PSK, � � �, � � �, SIR � 0, 10, and 15 
dB. 

, and SIR 0, 10, and 15 dB, and the asymptotic be­
havior of SEP for large SNR can be seen for all values of SIR. 

VII. CONCLUSION 

In this paper, we derived the exact SEP for optimum com­
bining of signals in the presence of multiple equal-power inter­
ferers and thermal noise. Both cases and 
were investigated and, to validate the analysis, results were com­
pared to Monte Carlo simulation results. The exact analytical 
SEP requires the solution of a multiple integral whose com­
plexity depends on the smaller of and . This led us to 
derive upper bounds and approximations for reduced computa­
tional complexity. 

For the case of a single interferer (as well as for a single 
antenna) our bound becomes the exact result, and agrees with 
known results for the single-interferer case given in [3] and [4]. 
Finally, the performance of the upper bound and the approxi­
mate formulas have been assessed by comparison with simula­
tions. 

The results show that, for typical cases considered in this 
paper, our new upper bound is at least 4.8 dB tighter than the 
only other available bound in the literature. The results also 
show that the approximation based on the knowledge of the 
expectation of the eigenvalues is close to Monte Carlo simula­
tion results; to this end, we derived a closed-form expression for 
the expectation of the eigenvalues in the cases of dual optimum 
combining with an arbitrary number of interferers, and of two 
interferers with an arbitrary number of antennas. Finally, the re­
sults show that the upper bound and approximation B provide 
similar accuracy. 

If all the th elements of , , are complex values with 
real and imaginary part each belonging to a normal dis­
tribution , then the ( ) Hermitian matrix 

is called Wishart. Moreover, the joint pdf of the 
ordered eigenvalues of , with 

, can be found in [17] as 

(42) 

with 

(43) 

APPENDIX B 
PROOF OF THEOREM 1 

In this appendix, we will prove Theorem 1 using the results 
of Appendix A, and derive the distribution of the eigenvalues of 
the matrix of (7) for arbitrary and . Let us consider the 
cases and , separately. The proof for the 
former case is straightforward application of Appendix A, but 
to prove the latter case, we need the following theorem. 

Theorem 4: Suppose that and with 
has the same , the ( ) matrix eigenvalues as 

the ( ) matrix , counting multiplicity, together with an 
additional eigenvalues identically equal to zero.


Proof of Theorem 4: See [18, p. 53].

Proof of Theorem 1: [Case I.
 ]: When , 
can be related directly to a Wishart matrix, since the en­

tries of the random matrix are i.i.d. Gaussian random vari­
ables with zero-mean, independent real and imaginary parts, 
each with variance 1/2. So, we can write 

(44) 

where is a (  ) complex Wishart matrix. 
Thus, the joint pdf of the eigenvalues of is given by (42) and 

and .

Proof of Theorem 1: [Case II.


(43) with 
]: When , 

can still be related to the Wishart matrix, by means of The­

orem 4. In fact, by introducing the ( ) matrix 
, then the ( ) ma-

trix 

and the ( ) matrix 

has the same 

) matrix , and the additional 

eigenvalues as the 

( 
eigenvalues are equal to zero. Moreover, since , 

is a ( ) complex Wishart ma-APPENDIX A 
trix, and therefore, has total of eigenvalues, whereDISTRIBUTION OF EIGENVALUES OF THE WISHART MATRIX 
eigenvalues have the joint pdf given by (42) with and 

Let us define , with , where is the , and the additional eigenvalues are identi­
set of the ( ) complex matrices, and . cally equal to zero. 
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APPENDIX C 
AN INEQUALITY 

Here we prove the following inequality: 
Theorem 5: For any , , and , where 

(45) 

Proof: We find the maximum of the function 

(46) 

subject to the constraint 

(47) 

To this aim, by using the Lagrange’s multipliers, we introduce 
a parameter and the function 

(48) 

and set the partial derivatives of to zero. We can 
requires that observe that the condition 

(49) 
This equation is satisfied by choosing , that, for 

, provides a maximum of the function in (46). To see 
that this cannot be a minimum, it is sufficient to let one going 
to zero, keeping finite . In this case (46) goes to zero, whereas 
the right member of (45) remains finite. 

APPENDIX D 
CALCULATION OF 

Let , and

, and then (23) can be written as


(50) 

gives results as 
shown in (51) at the bottom of the page. Note (52) and (53) at 
the bottom of the page. Multiplying (52) and (53) gives (54) at 
the bottom of the page. Substituting (54) into (51), and noting 
that 

Using (22) and letting 

we obtain (55) at the bottom of the page, 

(51) 

(52) 

(53) 

(54) 

(55) 
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where is the complementary incomplete gamma 
function defined by [13 (8.350.2), p. 949] 

(56) 
and 

(57) 

is known as the exponential integral. 

is given by 

The special case of 
Integrating (56) and (57) by parts, the recurrence relations can 

be obtained as 

(58) 

(59) 

By solving the recurrence relations (58) and (59), we get 

(60) 

(61) 

Using (60) and (61) results in (62) as shown at the bottom of the 
page. 

APPENDIX E

SOME RESULTS ON MEAN EIGENVALUES OF


Since (42) is a product of several terms in the form , 
the expected value of the eigenvalues of can be written 
in a closed form for all values of and . 

As an example, we found the following results: 

• , : in this case it is straightforward to verify 

• 
at the bottom of the page. 

It can be shown that 

that ; 
, : after some algebra, we get (63) as shown 

can be further simplified to 

(64) 
To derive , we first observe that 

(65) 

is the trace of the matrix. Then where 

(66) 

(62) 

(63) 
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where is the th element of with , 
and the last equality is due to the following normalization (see 
Appendix A): 

Finally, by using (66), we get 

(67) 

is given by (64). where 
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