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Plan:
e Non-Hermitan random matrices: Circular law
e Weakly non-Hermitian random matrices

e Asymmetric tridiagonal random matrices



Part I. Circular law

Consider random matrices M,, of size n.

Eigenvalue counting measure:

1
N(D, M,,) = —#{eigvs. of M,, in D}
n
What is the limit of N (D, M,,) when n — 0co?

If Hermitian (or real symmetric) matrices, then dN(X\; M,,) is
supported on R. These tools work well:

(a) moments

1 — 1
/AmdN(A; M) ==Y N'==trM
mn =1 n

(b) Stieltjes transform

n

/dN(A;Mn):}Z L _lvow -t

A— 2z n A— 2z n
=1

defined forallImz %= 0

(c) orthogonal polynomials, etc ...

Not so many tools are available for complex eigenvalues!



Complex (or real asymmetric) matrices — availability of tools:

(a) moments fail;

(b) Stieltjes transform is difficult to use because of singularities;
best hope - spectral boundary(ies);

(c) orthogonal polynomials (use of this method is essentially
limited to Gaussian random matrices)

(d) potentials: if p(z) = [,In|z — ¢{|dN(¢), z € C, then
1
Q—Ap = dN (as distributions in D)
T

where A = 86—;2 + aa_; is the two-dimensional Laplacian.



Potentials
1 n
p(z; My) = =) Injz—z|
n =1

1
n

Two strategies:

e Obtain
lim p(z; M,) = F(z) (inD).

Then the limiting eigenvalue distribution is %AF(z).
Works well when have eigenvalue curves

e Regularize potentials

1
p(z M,) = =Indet [(Mn — 2L (M, — 2I,)* + €21,

n

1
n

Naive approach: let n — oo and after e — 0O; difficult to
justify for non-normal matrices. The two limits commute for
normal matrices and do not commute if M,, have orthogonal
or almost orthogonal right and left eigenvectors.



Regularization of potentials

(2 M) = 2i log det[(M, — 2)(M, — 2)* + 2I,]
mn

1
—Ap(z; M,) = p(z; M)
21
1 e
= ﬁg 0(z — z;) [nisfinite]
Ierg) lim p(z; J,) = lim IImpg(z Jn) 77
E—UN—00 n—oo e—0

Yes, for normal matrices. Counterexamples for non-normal ma-
trices

In the vicinity of z;:
(kje)? 1
7 [(kje)? 4+ |z — 2]?]?
— 0(z—2z5) ifk;#=0

where x; = (], ") | and ij(R) are normalized left (right)
eigevectors at z;.

p=(z; Mp)

Spectral condition numbers, pseudospectra, etc.



Consider complex matrices J, = ||Jim|[],,,—1

 {Jmi}},,—, are indp. standard complex normals

(with normalization: E(|J,|2) = 1).

Theorem (Ginibre) If f is a symmetric functional of the eigen-
values of J,, then

E(f) =/.../f(zl,...zn)pn(zl,...zn)dzzl---dQZn,
Cn

where

1 . " 2
pn(z1,...2n) = —— € POANE H |21 — zm 2

n
7 I 1! 1<i<m<n
I=1

Notation: N(D; J) = #{eigvs. of J in D}

Corollary

—|2” 42

(& A
E(|det(J, 1 — 21, 1)|? :
(|det(Jp—1 — = 1)\)7T(n_1)!

BN 5)) = |

D

where J,_1isan (n — 1) x (n — 1) matrix of independent stan-
dard complex normals.



Ginibre’s theorem: sketch of Dyson’s proof

e p.d.f. of joint distribution of the matrix entries:

() o= 3 1) = (3) " e (~tr0)

;m=1
e assign a label to each of the eigenvalues

e Schur decomposition J, = U(Z + T)U*, where
U is unitary,
T is strictly upper-triangular, complex,
Z = diag(z1,...,2n)

e J,— ([U],Z,T) is one-to-one,
[U] = {UV : V = diag(e?,...,e)}
Jacobian = [T, ;< |2t — 2ml?

tr J,J tr(Z + T)(Z + T)*

n

= trZZ +trTT =) 22+ [Tl

=1 l<m

e [U] and T can easily be integrated out

e remove eigenvalues labelling



Proof of Corollary:

Use Ginibre’s theorem for f =5 "'  xp(z):

E(N(D: J,)) = n/D{/.../pn(zl,...zn)dQZg---dQZn}dzzl
G

Now note that

pn(z1,22,... ,2n) = —I e~ a1 H 121 — zm|*Pn_1(22, . .. , Zn).
n! ot

To complete the proof, use Ginibre’s theorem (backwards) for
=11k _sl21 — zm|? = | det(Jn—1 — 21n—1)|?.

Another (more direct) proof:

Jn —U(O i 1>U

Here w € C" 1, 2z is an eigenvalue of J,,_1, and U is a unitary
matrix that exchanges the corresponding eigenvector (normal-
ized) and (1,0,...,0).
Jacobian is |det(z1,_1 — J,_1)|? and

tr J,JF = |2 + ww* + tr J, 1",

The entries of w and J,,_1 are independent complex normal vari-
ables.



E(|det(J,—zI,)|?) is easy to compute using the independence
of the entries of J,,.

Proposition  If A = [[Ay|[},,=; and Ay, I,m = 1,...,n,
are independent real or complex random variables such that
E(Ap,) = 0and E(|A;,|?) = 1 for all pairs (I, m) then

‘Z|2l

I

E(|det(A — zI)|?) = n! Zn:
=1

Proof.

An Ay
Aji Ay

Zn_zn—l i All+2n_2 Z

=1 1<l<j<n

det(zI — A)

= 2"—2""Im,_1(A)4=2""mu_2(A)—. . £ m,(4),

where m(A) is the sum of all minors of A of order k (have C*
minors of order k). By the independence of the A;;’s,

E(|det(z] — A)[2) = |2[*" + [PV E(m1(A)?) + ...

and, forevery k = 0,1,... ,n,
E(jmp(A)|?) = C*E(|principal minor of order (k — 1)|?)
n! L n!
Hn—k) " (n—k)
Therefore
2n 2(n—1)
E(|det(z] — A)[2) = n! 2™ 12 41,

n! (n—1)!
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By Corollary and Proposition,

E(N(D; J,)) = /DRgn)(z)d?z,

where
n—2 2l
QYRR g o
RV (z) = 7Te g T

R§">(z) is the mean density of eigenvalues of J,

For large n, this density is approximately % inside the circle |z| =
v/n and it vanishes outside.

Consider matrices %
N(D; i) = #{eigvs. of 2= in D}
NG v
= #£{eigvs. of J, in y/nD}.
Then
E (N(D;i)) — / nR{ (vVnz)d?z,
Vn D

where

n—1

1 2
Rr{ = Ze E
nRy" (v/nz) e

[=0

nl|z‘2l

[!

is the mean density of eigenvalues of %



A fact from analysis:

n—1

1 > nt|z|?
e g — p(z,y) =
(z,y)

|
P [!

if 22 4+ 42 < 1

@ERE

Circular Law (uniform distr. of eigvs. of % in|z| <1):

For any bounded D C C,

E(N(D;%)) zn/D/ p(z,y) dedy 4+ o(n).

Also,
the expected number of eigvs. of % outside |z| < 1is
(n) 2 n
n/ R (\/nz)d*z o~ | —.
2> 1 27

compare with n/6 for GUE.

if 22 4+ 2 > 1.
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Consider real matrices J, = ||Jim||],,,—1

 {Jmi}},,—, are independent N (0, 1) (real)
More difficult than complex matrices.

Non-real eigenvalues come in pairs z;,z; .

Theorem (Edelman) Forany D C Cy,

E(N(D; J,)) = / / R{" (z, y)dzdy,
D

2 22 E(ldet(J,—o — zI,_2)|?
ROy = 2y erte (2 9002~ 2 2) )
7r (n —2)!

where J,_» is a matrix of independent N (0, 1) of size n — 2 and

o0 e—t2/2dt
erfc =
(v) / —

|2l

Since E(|det(Jn—2 — zI,2)[2) = (n —2)! 372 'ZZ—, we have

n—2
2 2 2 2 2 2 l
R (z,y) = \ﬁyezy erfc (y)e” Ty (@ +y7)
TT

Py [!

This is the mean density of eigenvalues of J,, in the upper half of
the complex plane.

11



For matrices in the mean density of eigenvalues in C is nR&”) (vV/nx,

n—2

R (Vinw, v/ny) = g(y)e Y

=0

nl‘z‘Ql

I

where g(y) = \/g\/ﬁyeznyz.

In the limit n — oo,

( ) N l and —n\z|2§nl|2|2l . 1 if |Z‘ <1
Iy . © — 0O ifjz|>1

and we have

Circular Law for real matrices

For any bounded D C C4,

E(N(D;%)) Zn/D/ p(x,y) dedy 4+ o(n).

where p is the density of the uniform distr. in |z| < 1.

12



Edelman proved his theorem using the following matrix decom-
position:

If A, is an n x n matrix with eigenvalue x 4 iy, y > 0, then there
Is an orthogonal O such that

x b
A, = 0O | —c =z w oT

0 An—2

where A,,_2is(n—2) x (n—2), Wis2 x (n—2),and b and
c are such that bc > 0, b > ¢, and y = V/bc.

Jacobian is 2(b — ¢)| det(A,_o — zI,_2)|?

tr A, AT =222 + 02 + 2 +trWWT +tr A, 2AT

if A,, Is Gaussian thensois A,,_».

13



Real eigenvalues of real asymmetric matrices

The expected number of real eigenvalues of J,, is proportional to
v/n. The limiting distribution of properly normalized real eigen-
values is Uniform([—1, 1]).

Theorem (Edelman, Kostlan and Shub) If J,, is a matrix of in-
dependent standard normals, then, in the limit n — oo,

(@ B(N(R,Jn)) = /2 + o(v/n),

(b) for any bounded K C R,

E (N(K, %)) — \/QWE/Kf(x)daz 4 o(\/n).

where is the density of Uniform([—1, 1]).

14



Two key elements of proof:

E(N(K,J)) = Cy /K e % B(|det(Jos — olp_1)|)dz

where J,_1 is a matrix of independent standard normals.
This bit is based on the decomposition

_ Z w T
=0t =)o

where O is orthogonaland J,,_1is (n — 1) x (n — 1).
Jacobian is |det(J,—1 — xzlp—1)|

e Computation of E(|det(J,-1 — xl,—1)])
Difficult bit (because of the absolute value).

15
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Part Il. Weakly Non-Hermitian Random Matrices

Consider random n x n matrices J = A + ivB

(i) A and B are independent Hermitian,
with i.i.d. entries

(il EF(A) =0,E(B) =0

(i) E(tr A?) = E(tr B?) = 0°n?

Motivation: for any complex J

J:X—l—iYWhereXz#andY:%.

Since A and B are Hermitian, have J,; and J;. correlated for all
1<k<lI<n:

E(Judi) = E(JAu|?) — v E(|Bul?) = o2(1 — v2).
All other pairs are independent.
Have central matrix distribution with two parameters:
o?(1 4+ v*) = E(|Jul?)
and
E(JuJik) _1—0?
VE(Ju2)E(|Jk|?) 1402

T = corr(JyJ) =

Without loss of generality, assume 02 = 1/(1 + v?), so that
E(ljkl|2) = 1 and E(jkljlk) =T
Typical eigenvalues of J are of the order of /n, so introduce

J=J/vn=(A+iwB)/\/n.

17



Eigenvalue correlation functions R} (z1,...z):

R (z) is the probability density of finding an eigenvalue of J =

~L_ regardless of label, at z.

Jn'

E.g., if Dg is an infinitesimal circle covering zg, then the probabil-
ity of finding an eigenvalue of J in Dg is approximately R} (zg) X
area(Dy).

Similarly, R}(z1,...z;) is the probability density of finding an
eigenvalue J, regardless of labeling, at each of the points z4, . . . z;.

Have k slots z1, ...z, and n eigenvalues of J to fill these slots,
hence normalization:

/.../RZ(zl,...zk)szl---dQZk=n(n—1)---(n—k:—|—1).

R&")(z) gives the mean density of eigenvalues at z, i.e.

R (2) = E( Y 6@ - Aj))

where the summation is over all eigenvalues )\; of J and §(?) (x4
i) = 6(x)d(y).

If Np is the number of eigenvalues in D, then

EWNp) = [ BO@ P = [ [ B (@) dody
D

Convention: z = = + iy = (x,y) and d?z = dxdy.
18



From now on, replace (i)-(iii) by

(iv) Hermitian A and B are drawn independently from the normal
matrix distribution with density

1 1 1 1 «—
—exp|——=trX?)| =Zexp | — Ej Xul® |,
Q p( 252 > Q" 202]”:1‘ g

where 02(1 + v?) = 1 (with no loss of generality).

Have

1 | 1
Xy ~ N(O,502>—|—z'><|ndp.N(O,502), k<l

Xge ~ N(0,0%)
and the { X}, }, 1 < k <1 < n are independent.

The entries of J = A + ivB have multivariate complex normal
distribution with density

. 1 — 02
1402

5 (trjf*—zRe trﬁ)] T
2

exp [—

—T

Have E(Jy) = 0 and E(|Jy|?) = 1 for all (k,1) and

E(Jdm;j) 7 whenk=j and Il =m

0O otherwise.

e If 7 = 0, then J has independent entries (Ginibre’s ensem-
ble); have maximum asymmetry.

19



e fr=10r7 = —1,thenJ = J* (GUE) or J = —J*, have
no asymmetry at all.



Hermite polynomials:

Z2 d"” 22
() = (1o (5 ) e ()

] ] t2 0 n
Generating function: exp (zt — 5) =Y Hu(2)—.

By making use of generating function,

+oo 2

H,(x)H,(x)exp ( — %) de = 6pmn! V21 (1)

— 00

and, forall 0 < 7 < 1,

i)w?(z, 2)d?z = 6pmmn!  (2)

i) (G

_172 2P - 22 + 2]}

22 Y2
exp(— . )
147 1-—71

w?(z,z) = exp{—

Since
1 exp ( v’ ) 5(y), as o)
Y ) o — U,
V2mo2 2072 Y

(1) can be obtained from (2) by letting = — 1.
Useful integral representation:
(:l:i)" 2 o0 +2

s
exp (—) / t" exp < — — izt) dt.
\V 2T 2 o0 2 +

20

H,(z) =



Finite matrices

Theorem * Under assumption (iv), for any finite n and any 0 <
T <1,

R (1, zi) = det ||K (2, 2)||E, 11,
where

KOGuz) = - ﬂzfﬂj([ ),y 222)

J

2
exp [— 20 71 - ;Qzﬂ? T Rezj?)}

Special cases: 7 = 0 (Ginibre’s ens.) and = = 1 (GUE).

When 7 = 0 (in the limit = — O, to be more precise):

K§(a,22) = 230523 exp |- Sl + |2
szoj! 2

Can be seen from

N/ﬁf@(i%)::zj+L¢?><CJ

Sketch of proof: obtain induced density of eigenvalues and use
the orthogonal polynomial technique; the required orthogonal

polynomials are Hermite polynomials Hj(\@z>, they are or-
thogonal in C with weight function w?(z, z)

21



Mean eigenvalue density for finite matrices
By Theorem (*), R (z) = K" (2, z), and

(@) if O < 7 < 1then

2 2
|z|* — T Re z;

—n n

Rgn)(z) — n . 2(1 _7_2) iT_

. w;)

2
™/ 1—7 —0 J-

<

By letting = — 0 in (a):

(b) If = = 0 (Ginibre’s ensemble) then

n—1

2

2
Wy P —nlz]? N2
RV (z) =—e Z —_
s = 7!
By letting 7 — 1 in (a):
(c) if - = 1 (GUE) then
. 21 1 ,
R (2) = R™(z,y) = 6(y)\/5—e 2 > = |H;(v/nz)| .
21 j:O]!

22



Limit of infinitely large matrices

Consider matrices J = X + Y.

Can have two regimes when n — oo:
e strong non-Hermiticity E(tr Y?) = O(E(tr X?)),
e weak non-Hermiticity E(tr Y?) = o(E(tr X?2)).

If v2 > O stays constant as n — oo, have strongly non-Hermitian
J = % (A + ivB).

1—v?
14v2°

Recall - =
(*):

Theorem (Girko’s Elliptic Law) For any 7 € (—1,1) and any
bounded D C C

EWo) =n [ [ pa,5) dedy +o(n)
D

The following result is a corollary of Theorem

where Np is the number of eigenvalues of J in D and

1 x> y?
o(ay) =4 7@ Ve me t oy s 1
0, otherwise

(Girko considered matrices J with symmetric pairs (J1z, Jo1),
(J13, J31), ... drawn independently from a bivariate distribution
(not necessarily normal))

23



Local scale: areais measured in units of mean density of eigen-
values, i.e. unit area contains, on average, 1 eigenvalue.

Unit area on the global scale is n times unit area on the local
scale.

Limit distribution of eigvs of J: uniform in the ellipse

5132 y2
E = ; <1
{z A+n?  a-r2 - }
of area || = 7(1 — 72). That s

DNE|
E(ND>"—“ .
€]
E.Q. ifZ():xo—I-iyoEgaﬂd
o B
D={z:|lx — x| < ———, |y — < —

then E(Np,) = ap.

But also

E(Np) = / / R{™M (2)d?z = / / %R@(m \/%>d2w
D

Rescaled mean density of eigenvalues (around zo):

1 (n) w
TR
nlg] 1t \ T e

24



Similarly, rescaled eigenvalue correlation functions:

S(n 1 n
Ré)(wl,---,wk) = (>< ot—F—=

(n|€))* \/nlé’l

The following result is a corollary of Theorem (*):

Theorem Forany T € (—1,1)and zp € int€
1im Ry (wa, ... ywy) = det || K (wm, @) 15 1=

where

— ™ —
K (w1,@2) = exp | = Z(jun? + [wal? - 2un o)

E.g., the first two correlation fncs:
Ri(w) = K(w,w)=1

Ro(w,wz) = Ri(w1)Ri(wz) — |K (w1, w2)]?

= 1—eXD<—7T‘w1—w2‘2).

zo+

Wk

VlE]

No dependence on zg, and, remarkably, no dependence on .

lim lim #= lim lim.

7—1 n—oo n—oo 7—1

25
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Regime of weak non-Hermiticity

Now consider matrices J = oD + 1w in the limit when

n—oo and v?n — const (3)
May think of eigenvalues of J as of perturbed eigenvalues of %.

The eigenvalues of % are all real and are distributed in [—2, 2]

with density

1 . ..
vee(z) = o 4 — 22  (Wigner’s semicircle law!)

When perturbed they move off [—-2, 2] into C on the distance of
the order % (first order perturbations). Correspondingly, consider

D={(z,y):xelC[-2,2],— <y< }

Then
¢ —~
E(Np) = // Rgn)(a:,y)dxdy = /d.:c/d@ %Rgn)(x, %) :
D I s
where
Yy = ny.
Hence

P (x,§) = 2R<”>< —)
n n
IS the mean density of rescaled (distorted) eigenvalues z = = +
1y = x + 1ny.
26



The following result is a corollary of Theorem (*).

Theorem (Fyodorov, Khoruzhenko and Sommers)

Let T = 1 — 2. Then, under assumption (iv),

lim p™(x,9) = p(z, ),

where
v, ()
52, 7) 1 exp( 2§2> / exp( alu? 5 A) du
T,Y) = — ——F — — 2y | ——.
PREY TQ a2 2 J V21
—nv,.(x)
In the limit when a — 0O
1 277 1
——exp (——) — —0
V2T T o2 21 @)

and

p(x,y) — 6(g)vsc(x) Wigner’s semicircle law

27



Introduce curvilinear coordinates in the (z, ) plane:

—~

(2, 7) = (2, ——).

TVsc(x)

pa.g) = —p(e, L)

—p| z,
Vse(T) TUse(x)
then

5(337 fj) — Vsc(x)px(ﬂ),
where

. 1 a2g?\ [t a2 N\ dt
T = exp (— ) / exp (— — 2t )
P(Y) o 5 ) 5 Y

and a = wrg(x)a.
e Interpretation of p. (7).
e Universality of p,.(77).

In the limit when a — oo obtain uniform density
1

ﬂ%@i{ww

0, otherwise

when |§] < %

Eigenvalue correlation functions:

have a crossover from Wigner-Dyson to Ginibre

28



Other types of weakly non-Hermitian matrices:

e Dissipative matrices:
J= A4, >0 andis of finite rank m

Weakly non-unitary matrices:

e Submatrices of size m of unitary matrices of size n, in the
limit n — oo and m = n — a, a is a constant.

e Contractions: random matrices J = U+/I — T, where U €
U(n)and 0 < T < I inthe limit when n — oo and the rank
of T' remains finite. (Note that J*J =1 — 1)

Weakly asymmetric matrices

J = A+ vB, where A and B are real and AT = A,
BT = —_B.

29
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Part 1ll Asymmetric Tridiagonal Random Matrices

Imposing periodic boundary conditions:

®1 g1 b1 ai
as q2 b2

Problem: Fix a rectangle K C C and let n — oco. What propor-
tion of eigenvalues of J, are in K? [Eigenvalue distribution].

Example: a; = a, b; = b, g = g forall kand a,b,q € R. The
limit eigenvalue distribution is supported by the ellipse

{(z,y) : x=q+ (@ +b) cosp, y=(a—b sinp, p € [0,27]}

How will this picture change if allow random fluctuations of a, by
and ¢;? Answer depends on the sign of a;bi_.

Consider

Jn, = tridiag(ag, qi, b)) + p.b.c.
with positive sub- and super-diagonals:

ar = exp(&x-1), br = exp(n)

31



Assumptions:

D (&k,mk,qr), kK =0,1,2,...,areindependent samples from
a probability distribution in R3.

() E(n(1+ |q|)), E(&) and E(n) are finite.

E.g9. (&, qi), k= 0,1,2,...,areindependent samples from
a 3D prob. distr. with a compact supp. in R3.

By making use of the similarity transformation W,, = diag(w1, ... wn),
wy, = exp %Z;};é(ﬁj — nj)],

W tJ W, = H, + V,,

where

g < 0 0 O 0 wun
m=| D= le 0 oo

0 Cn—1 Qn vn O 0O O
Ck = \/Qp4+1br = e2(&+m) gnd

Un Jvn, = e"EEm)+o(1)] as n — oo

rank 2 asymmetric perturb. of symmetric H,,!
"Rank 2" = eignv. distbs. of H,, and H,+V,, are related

"Strongly asymmetric" = non-trivial relation.
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Facts from theory of Hermitian random operators (e.g. in Pastur
and Figotin, Spectra of random and almost periodic operators):

e Empirical distribution fnc. of eigvs. of H,
1
N(I,H,) = —#{eigvs.of H,in I C R}
n

— /I AN, (X), No@) =N ((—00,\],H)

dN,, assigns mass 1 to each of eigvs. of H,.

n

Proposition 3 nonrandom N(\) V I C R:

lim N(I, Hy,) = /dN(A)
I

n—aoo

e Potentials: p(z; Hp) = [10g |z — A|dN,(\)
d(z) = [log|z — A|[dN(X)

e Lyapunov exponent y(z) = lim, o 2E(IN |[Sn(2)]])
Proposition  (Thouless formula)
lim p(z; Hy) 2 &(2) unif. in z on K € C\R,
= v(z) + Elog co

Corollaries:

& (z) continuous in z;

d(x+iy) > Elogey Vy #=0;  etc.
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Consider

L={2z€C: ®(z) =max[E(&), E(no)]}

This curve is an equipotential line of limiting eigenvalue distribu-
tion of H,,.

If the probability law of (&x, nk, ¢1) has bounded support then L is
confined to a bounded set in C and is a union of closed contours:

There are a1 < B1 < an < B2 < ... such that
L=UL;, Lj={xLiyj(z): x¢€ln;b]}

Notation:
1 . .
N(K, J,) = —#{eigvs. of J,in K}, K CC
n

(describes distribution of eigenvalues of J,)

Theorem (Goldsheid and Khoruzhenko) Assume (I-1l). Then,
with probability one,

(@ VK C C\R: N(K,Jp) — [ p(z(s))ds

n—oo

KNnL

where p(z) = %
L.

| dsz(i)| and ds is the arc-length measure on

(b)VICcR: N(,J,) — [ dN())

=
where Iy = IN{\: ®(\+i0) > max[E(&), E(no)]}
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Sketch of proof: Let

1< 1
p(z; Jn) = —Z log |z — zj| = —log | det(J,, — z)|
n n

where z1, ... , z, are the eigenvalues of J,.

Claim (convergence of potentials)
With probability one,

p(2; Jn) —=F(2) = max(®(z2),E(£o), E(no)] Vz¢RUL
The convergence is uniform in ze KCC\(RUL).

Consider measures dv; assigning mass % to each of the eigen-
values of J,,. Then

1
—Ap(z; Jp) = dvy,
2T

in the sense of distribution theory. By Claim, the potentials p(z; J,,)
converge for almost all z € C. This implies convergence in the
sense of distribution theory. Since the Laplacian is continuous in
D,

1 1
—Ap(z; Jp) — —AF(2)
27 27

in D’. But then

1
dvy — dv=—AF(z)
’ 2T

in the sense of of weak convergence of measures, hence Theo-
rem.
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Proof of Claim

det(J, — z1I,)

det(H, + V,, — 2)
det(H, — zI,) det(I, + V,(H, — 2)™ 1)

Therefore

1
p(z; Jn) = p(z; Hn) + " log |dn(2)].
V., is rank 2. V,, = AT B, where
{(wu, O ... 00\, (0 0O ... 0
A‘(o 0 ... 0 1>B_(vn 0 ... 0

)

o

det(l, + ATB(H, — 2)™ 1)

= det(lL + B(H, — z) " 1AT) 2 x 2det

— (]- +UnG1n) (1 +UnGnl)_unanllGnn
where Gy, is the (k, 1) entry of (H,, — z) L.

Now use
unG1n| = e"FE)=®E)+o(1)]

0, Gr1| = eMP)=®G)Fo(l)]

and |1 — upv,G11Grn| > a(z) > 0, z € R to complete the
proof.
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Exactly solvable model

Consider J,, = tridiag(e?, Cauchy(0,b), e 9) + p.b.c,,

1 b
=g, =—g Plgquel)=—|d
k=9, m=-g Plag€l) 7T/I 15

In this case J,, = W, Y (H,, + V,,) W,,, where
H, = tridiag(1, Cauchy(0,b), 1) Lloyd’s model
For Lloyd’s model an explicit expression for ®(z) is available:

4.cosh b (2)=y/ @+ + 6+ [y)*+/ @~ + b+ [y])?

By making use of it,

o If K =2coshg < K.. = /4 + b° then L is empty.

e If K > K. then L consists of two symmetric arcs
K? —4)(K? — 22
y(x):i[\/( %2 )—b} —xp < x < 1y
xp IS determined by y(xz;,) = O.
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Corollaries

g = 2E(& — no) is a measure of asymmetry of J,,.

(1) Special case: Suppose that g, = Const all k. Then v(0) =
0 and v(z) > 0 Vz # 0. Since

(0) =~(0) + > B(éo + m0) < max[B (&), B(no)]

the equation for £, ®(z) = max[E (&), E(no)], has continuum
of solutions for any g # O.

For any g #= O we have a bubble of complex eigv. around z = 0,
l.e. no matter how small the perturb. V, is, it moves a finite
proportion of eigvs. of H,, off the real axis!

(2) Suppose now that the diagonal entries ¢, are random. Then
~(x) > 0 Vz € R (Furstenberg) and
: — (1) (2) _ <
O<2;'Zn V(@) =ger” < ger TEaZX’Y(x)_‘FOO

where X is the support of dN(\). Therefore
(@) If|g| < gé}), Jn, has zero proportion of non-real eigenvalues

(b) If g((;%) < lg| < gc(;f), Jn has finite proportions of real and
non-real eigenvalues.

) lg| > géf), Jn has zero proportion of real eigenvalues.
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