Non-Hermitian random matrices

Boris Khoruzhenko
School of Mathematical Sciences Queen Mary, University of London
http://www.maths.qmw.ac.uk/~boris

The Diablerets Winter School
 "Random Matrices"

(18-23 March 2001)

Plan:

- Non-Hermitan random matrices: Circular law
- Weakly non-Hermitian random matrices
- Asymmetric tridiagonal random matrices

Part I. Circular law

Consider random matrices M_{n} of size n.
Eigenvalue counting measure:

$$
N\left(D, M_{n}\right)=\frac{1}{n} \#\left\{\text { eigvs. of } M_{n} \text { in } D\right\}
$$

What is the limit of $N\left(D, M_{n}\right)$ when $n \rightarrow \infty$?
If Hermitian (or real symmetric) matrices, then $d N\left(\lambda ; M_{n}\right)$ is supported on R. These tools work well:
(a) moments

$$
\int \lambda^{m} d N\left(\lambda ; M_{n}\right)=\frac{1}{n} \sum_{l=1}^{n} \lambda_{l}^{m}=\frac{1}{n} \operatorname{tr} M_{n}^{m}
$$

(b) Stieltjes transform

$$
\int \frac{d N\left(\lambda ; M_{n}\right)}{\lambda-z}=\frac{1}{n} \sum_{l=1}^{n} \frac{1}{\lambda-z}=\frac{1}{n} \operatorname{tr}\left(M_{n}-z I\right)^{-1},
$$

defined for all $\operatorname{Im} z \neq 0$
(c) orthogonal polynomials, etc ...

Not so many tools are available for complex eigenvalues!

Complex (or real asymmetric) matrices - availability of tools:
(a) moments fail;
(b) Stieltjes transform is difficult to use because of singularities; best hope - spectral boundary(ies);
(c) orthogonal polynomials (use of this method is essentially limited to Gaussian random matrices)
(d) potentials: if $p(z)=\int_{\mathrm{C}} \ln |z-\zeta| d N(\zeta), z \in \mathbf{C}$, then

$$
\left.\frac{1}{2 \pi} \Delta p=d N \quad \text { (as distributions in } \mathcal{D}^{\prime}\right)
$$

where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ is the two-dimensional Laplacian.

Potentials

$$
\begin{aligned}
p\left(z ; M_{n}\right) & =\frac{1}{n} \sum_{l=1}^{n} \ln \left|z-z_{l}\right| \\
& =\frac{1}{2 n} \ln \operatorname{det}\left(M_{n}-z I_{n}\right)\left(M_{n}-z I_{n}\right)^{*}
\end{aligned}
$$

Two strategies:

- Obtain

$$
\lim _{n \rightarrow \infty} p\left(z ; M_{n}\right)=F(z) \quad\left(\text { in } \mathcal{D}^{\prime}\right) .
$$

Then the limiting eigenvalue distribution is $\frac{1}{2 \pi} \Delta F(z)$.
Works well when have eigenvalue curves

- Regularize potentials

$$
\begin{aligned}
p_{\varepsilon}\left(z ; M_{n}\right) & =\frac{1}{n} \ln \operatorname{det}\left[\left(M_{n}-z I_{n}\right)\left(M_{n}-z I_{n}\right)^{*}+\varepsilon^{2} I_{n}\right] \\
& =\frac{1}{n} \int \ln (\lambda+\varepsilon) d N\left(\lambda ; H_{n, z}\right), \\
\text { where } H_{n, z} & =\left(M_{n}-z I_{n}\right)\left(M_{n}-z I_{n}\right) .
\end{aligned}
$$

Naive approach: let $n \rightarrow \infty$ and after $\varepsilon \rightarrow 0$; difficult to justify for non-normal matrices. The two limits commute for normal matrices and do not commute if M_{n} have orthogonal or almost orthogonal right and left eigenvectors.

Regularization of potentials

$$
\begin{aligned}
& p_{\varepsilon}\left(z ; M_{n}\right)=\frac{1}{2 n} \log \operatorname{det}\left[\left(M_{n}-z\right)\left(M_{n}-z\right)^{*}+\varepsilon^{2} I_{n}\right] \\
& \begin{aligned}
\frac{1}{2 \pi} \Delta p_{\varepsilon}\left(z ; M_{n}\right) & =\rho_{\varepsilon}\left(z ; M_{n}\right) \\
\overrightarrow{\varepsilon \rightarrow 0} & \frac{1}{n} \sum \delta\left(z-z_{j}\right) \quad[n \text { is finite }] \\
\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} p_{\varepsilon}\left(z ; J_{n}\right) & =\lim _{n \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} p_{\varepsilon}\left(z ; J_{n}\right) \quad ? ?
\end{aligned}
\end{aligned}
$$

Yes, for normal matrices. Counterexamples for non-normal matrices

In the vicinity of z_{j} :

$$
\begin{aligned}
\rho_{\varepsilon}\left(z ; M_{n}\right) & \bumpeq \frac{\left(\kappa_{j} \varepsilon\right)^{2}}{\pi} \frac{1}{\left[\left(\kappa_{j} \varepsilon\right)^{2}+\left|z-z_{j}\right|^{2}\right]^{2}} \\
& \overrightarrow{\varepsilon \rightarrow 0} \delta\left(z-z_{j}\right) \quad \text { if } \kappa_{j} \neq 0
\end{aligned}
$$

where $\kappa_{j}=\left|\left(\psi_{j}^{L}, \psi_{j}^{R}\right)^{-1}\right|$ and $\psi_{j}^{L(R)}$ are normalized left (right) eigevectors at z_{j}.

Spectral condition numbers, pseudospectra, etc.

Consider complex matrices $J_{n}=\left\|J_{l m}\right\|_{l \cdot m=1}^{n}$

- $\left\{J_{m l}\right\}_{l, m=1}^{n}$ are indp. standard complex normals (with normalization: $E\left(\left|J_{m l}\right|^{2}\right)=1$).

Theorem (Ginibre) If f is a symmetric functional of the eigenvalues of J_{n} then

$$
E(f)=\int \ldots \int f\left(z_{1}, \ldots z_{n}\right) p_{n}\left(z_{1}, \ldots z_{n}\right) d^{2} z_{1} \cdots d^{2} z_{n}
$$

where

$$
p_{n}\left(z_{1}, \ldots z_{n}\right)=\frac{1}{\pi^{n} \prod_{l=1}^{n} l!} e^{-\sum_{l=1}^{n}\left|z_{i}\right|^{2}} \prod_{1 \leq l<m \leq n}\left|z_{l}-z_{m}\right|^{2}
$$

Notation: $N(D ; J)=\#\{$ eigvs. of J in $D\}$

Corollary

$$
E\left(N\left(D ; J_{n}\right)\right)=\int_{D} E\left(\left|\operatorname{det}\left(J_{n-1}-z I_{n-1}\right)\right|^{2}\right) \frac{e^{-|z|^{2}} d^{2} z}{\pi(n-1)!},
$$

where J_{n-1} is an $(n-1) \times(n-1)$ matrix of independent standard complex normals.

Ginibre's theorem: sketch of Dyson's proof

- p.d.f. of joint distribution of the matrix entries:

$$
\left(\frac{1}{\pi}\right)^{n^{2}} \exp \left(-\sum_{l, m=1}^{n}\left|J_{l m}\right|^{2}\right)=\left(\frac{1}{\pi}\right)^{n^{2}} \exp \left(-\operatorname{tr} J J^{*}\right)
$$

- assign a label to each of the eigenvalues
- Schur decomposition $J_{n}=U(Z+T) U^{*}$, where U is unitary,
T is strictly upper-triangular, complex, $Z=\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right)$
- $J_{n} \rightarrow([U], Z, T)$ is one-to-one,
$[U]=\left\{U V: V=\operatorname{diag}\left(e^{i \phi_{1}}, \ldots, e^{i \phi_{n}}\right)\right\}$
Jacobian $=\prod_{1 \leq l<m \leq n}\left|z_{l}-z_{m}\right|^{2}$

$$
\begin{aligned}
\operatorname{tr} J_{n} J_{n}^{*} & =\operatorname{tr}(Z+T)(Z+T)^{*} \\
& =\operatorname{tr} Z Z^{*}+\operatorname{tr} T T^{*}=\sum_{l=1}^{n}|z|^{2}+\sum_{l<m}\left|T_{l m}\right|^{2}
\end{aligned}
$$

- [U] and T can easily be integrated out
- remove eigenvalues labelling

Proof of Corollary:

Use Ginibre's theorem for $f=\sum_{l=1}^{n} \chi_{D}\left(z_{l}\right)$:

$$
E\left(N\left(D ; J_{n}\right)\right)=n \int_{D}\left\{\int \underset{\mathrm{C}^{n-1}}{ } \ldots \int_{n}\left(z_{1}, \ldots z_{n}\right) d^{2} z_{2} \cdots d^{2} z_{n}\right\} d^{2} z_{1}
$$

Now note that
$p_{n}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\frac{1}{\pi n!} e^{-\left|z_{1}\right|^{2}} \prod_{m=2}^{n}\left|z_{1}-z_{m}\right|^{2} p_{n-1}\left(z_{2}, \ldots, z_{n}\right)$.
To complete the proof, use Ginibre's theorem (backwards) for $f=\prod_{m=2}^{n}\left|z_{1}-z_{m}\right|^{2}=\left|\operatorname{det}\left(J_{n-1}-z I_{n-1}\right)\right|^{2}$.

Another (more direct) proof:

$$
J_{n}=U\left(\begin{array}{cc}
z & \underline{w} \\
0 & J_{n-1}
\end{array}\right) U^{*}
$$

Here $\underline{w} \in \mathbf{C}^{n-1}, z$ is an eigenvalue of J_{n-1}, and U is a unitary matrix that exchanges the corresponding eigenvector (normalized) and ($1,0, \ldots, 0$).
Jacobian is $\left|\operatorname{det}\left(z I_{n-1}-J_{n-1}\right)\right|^{2}$ and

$$
\operatorname{tr} J_{n} J_{n}^{*}=|z|^{2}+\underline{w} w^{*}+\operatorname{tr} J_{n-1} J_{n-1}^{*} .
$$

The entries of \underline{w} and J_{n-1} are independent complex normal variables.
$E\left(\left|\operatorname{det}\left(J_{n}-z I_{n}\right)\right|^{2}\right)$ is easy to compute using the independence of the entries of J_{n}.

Proposition If $A=\left\|A_{l m}\right\|_{l, m=1}^{n}$ and $A_{l m}, l, m=1, \ldots, n$, are independent real or complex random variables such that $E\left(A_{l m}\right)=0$ and $E\left(\left|A_{l m}\right|^{2}\right)=1$ for all pairs (l, m) then

$$
E\left(|\operatorname{det}(A-z I)|^{2}\right)=n!\sum_{l=1}^{n} \frac{|z|^{2 l}}{l!} .
$$

Proof.

$$
\begin{aligned}
\operatorname{det}(z I-A) & =z^{n}-z^{n-1} \sum_{l=1}^{n} A_{l l}+z^{n-2} \sum_{1 \leq l<j \leq n}\left|\begin{array}{ll}
A_{l l} & A_{l j} \\
A_{j l} & A_{j j}
\end{array}\right|-\ldots \\
& =z^{n}-z^{n-1} m_{n-1}(A)+z^{n-2} m_{n-2}(A)-\ldots \pm m_{n}(A),
\end{aligned}
$$

where $m_{k}(A)$ is the sum of all minors of A of order k (have C_{n}^{k} minors of order k). By the independence of the $A_{l j}$'s,

$$
E\left(|\operatorname{det}(z I-A)|^{2}\right)=|z|^{2 n}+|z|^{2(n-1)} E\left(\left|m_{1}(A)\right|^{2}\right)+\ldots
$$

and, for every $k=0,1, \ldots, n$,

$$
\begin{aligned}
E\left(\left|m_{k}(A)\right|^{2}\right) & =C_{n}^{k} E\left(\mid \text { principal minor of order }\left.(k-1)\right|^{2}\right) \\
& =\frac{n!}{k!(n-k)!} \times k!=\frac{n!}{(n-k)!}
\end{aligned}
$$

Therefore

$$
E\left(|\operatorname{det}(z I-A)|^{2}\right)=n!\left(\frac{|z|^{2 n}}{n!}+\frac{|z|^{2(n-1)}}{(n-1)!}+\ldots+1\right) .
$$

By Corollary and Proposition,

$$
E\left(N\left(D ; J_{n}\right)\right)=\int_{D} R_{1}^{(n)}(z) d^{2} z
$$

where

$$
R_{1}^{(n)}(z)=\frac{1}{\pi} e^{-|z|^{2}} \sum_{l=0}^{n-2} \frac{|z|^{2 l}}{l!}
$$

$R_{1}^{(n)}(z)$ is the mean density of eigenvalues of J_{n}
For large n, this density is approximately $\frac{1}{\pi}$ inside the circle $|z|=$ \sqrt{n} and it vanishes outside.

Consider matrices $\frac{J_{n}}{\sqrt{n}}$.

$$
\begin{aligned}
N\left(D ; \frac{J}{\sqrt{n}}\right) & =\#\left\{\text { eigvs. of } \frac{J_{n}}{\sqrt{n}} \text { in } D\right\} \\
& =\#\left\{\text { eigvs. of } J_{n} \text { in } \sqrt{n} D\right\} .
\end{aligned}
$$

Then

$$
E\left(N\left(D ; \frac{J}{\sqrt{n}}\right)\right)=\int_{D} n R_{1}^{(n)}(\sqrt{n} z) d^{2} z,
$$

where

$$
n R_{1}^{(n)}(\sqrt{n} z)=\frac{1}{\pi} e^{-n|z|^{2}} \sum_{l=0}^{n-1} \frac{n^{l}|z|^{2 l}}{l!}
$$

is the mean density of eigenvalues of $\frac{J_{n}}{\sqrt{n}}$.

A fact from analysis:

$$
\frac{1}{\pi} e^{-n|z|^{2}} \sum_{l=0}^{n-1} \frac{n^{l}|z|^{2 l}}{l!} \rightarrow \rho(x, y)=\left\{\begin{array}{cl}
\frac{1}{\pi} & \text { if } x^{2}+y^{2}<1 \\
0 & \text { if } x^{2}+y^{2}>1 .
\end{array}\right.
$$

Circular Law (uniform distr. of eigvs. of $\frac{J}{\sqrt{n}}$ in $|z| \leq 1$):
For any bounded $D \subset \mathbf{C}$,

$$
E\left(N\left(D ; \frac{J}{\sqrt{n}}\right)\right)=n \int_{D} \rho(x, y) d x d y+o(n)
$$

Also, the expected number of eigvs. of $\frac{J}{\sqrt{n}}$ outside $|z| \leq 1$ is

$$
n \int_{|z|>1} R^{(n)}(\sqrt{n} z) d^{2} z \simeq \sqrt{\frac{n}{2 \pi}} .
$$

compare with $n^{1 / 6}$ for GUE.

Consider real matrices $J_{n}=\left\|J_{l m}\right\|_{l . m=1}^{n}$

- $\left\{J_{m l}\right\}_{l, m=1}^{n}$ are independent $N(0,1)$ (real)

More difficult than complex matrices.
Non-real eigenvalues come in pairs z_{j}, \bar{z}_{j}.

Theorem (Edelman) For any $D \subset \mathrm{C}_{+}$,

$$
\begin{gathered}
E\left(N\left(D ; J_{n}\right)\right)=\iint_{D} R_{1}^{(n)}(x, y) d x d y \\
R_{1}^{(n)}(x, y)=\sqrt{\frac{2}{\pi}} y e^{-\left(x^{2}-y^{2}\right)} \operatorname{erfc}(y) \frac{E\left(\left|\operatorname{det}\left(J_{n-2}-z I_{n-2}\right)\right|^{2}\right)}{(n-2)!}
\end{gathered}
$$

where J_{n-2} is a matrix of independent $N(0,1)$ of size $n-2$ and

$$
\operatorname{erfc}(y)=\int_{t}^{+\infty} \frac{e^{-t^{2} / 2} d t}{\sqrt{2 \pi}}
$$

Since $E\left(\left|\operatorname{det}\left(J_{n-2}-z I_{n-2}\right)\right|^{2}\right)=(n-2)!\sum_{l=0}^{n-2} \frac{|z|^{2 l}}{l!}$, we have

$$
R_{1}^{(n)}(x, y)=\sqrt{\frac{2}{\pi}} y e^{2 y^{2}} \operatorname{erfc}(y) e^{-\left(x^{2}+y^{2}\right)} \sum_{l=0}^{n-2} \frac{\left(x^{2}+y^{2}\right)^{l}}{l!}
$$

This is the mean density of eigenvalues of J_{n} in the upper half of the complex plane.

For matrices $\frac{J}{\sqrt{n}}$, the mean density of eigenvalues in C_{+}is $n R_{1}^{(n)}(\sqrt{n} x$,

$$
R_{1}^{(n)}(\sqrt{n} x, \sqrt{n} y)=g(y) e^{-n|z|^{2}} \sum_{l=0}^{n-2} \frac{n^{l}|z|^{2 l}}{l!},
$$

where $g(y)=\sqrt{\frac{2}{\pi}} \sqrt{n} y e^{2 n y^{2}}$.
In the limit $n \rightarrow \infty$,

$$
g(y) \rightarrow \frac{1}{\pi} \quad \text { and } \quad e^{-n|z|^{2}} \sum_{l=0}^{n-2} \frac{n^{l}|z|^{2 l}}{l!} \rightarrow \begin{cases}1 & \text { if }|z|<1 \\ 0 & \text { if }|z|>1\end{cases}
$$

and we have

Circular Law for real matrices

For any bounded $D \subset \mathbf{C}_{+}$,

$$
E\left(N\left(D ; \frac{J}{\sqrt{n}}\right)\right)=n \int_{D} \int_{D} \rho(x, y) d x d y+o(n)
$$

where ρ is the density of the uniform distr. in $|z| \leq 1$.

Edelman proved his theorem using the following matrix decomposition:

If A_{n} is an $n \times n$ matrix with eigenvalue $x+i y, y>0$, then there is an orthogonal O such that

$$
A_{n}=O\left(\begin{array}{ccc}
x & b & \\
-c & x & W \\
0 & & A_{n-2}
\end{array}\right) O^{T}
$$

where A_{n-2} is $(n-2) \times(n-2), W$ is $2 \times(n-2)$, and b and c are such that $b c>0, b \geq c$, and $y=\sqrt{b c}$.

Jacobian is $2(b-c)\left|\operatorname{det}\left(A_{n-2}-z I_{n-2}\right)\right|^{2}$

$$
\operatorname{tr} A_{n} A_{n}^{T}=2 x^{2}+b^{2}+c^{2}+\operatorname{tr} W W^{T}+\operatorname{tr} A_{n-2} A_{n-2}^{T}
$$

if A_{n} is Gaussian then so is A_{n-2}.

Real eigenvalues of real asymmetric matrices

The expected number of real eigenvalues of J_{n} is proportional to \sqrt{n}. The limiting distribution of properly normalized real eigenvalues is Uniform($[-1,1])$.

Theorem (Edelman, Kostlan and Shub) If J_{n} is a matrix of independent standard normals, then, in the limit $n \rightarrow \infty$,
(a) $E\left(N\left(\mathbf{R}, J_{n}\right)\right)=\sqrt{\frac{2 n}{\pi}}+o(\sqrt{n})$,
(b) for any bounded $K \subset \mathbf{R}$,

$$
E\left(N\left(K, \frac{J_{n}}{\sqrt{n}}\right)\right)=\sqrt{\frac{2 n}{\pi}} \int_{K} f(x) d x+o(\sqrt{n}) .
$$

where is the density of Uniform($[-1,1]$).

Two key elements of proof:

$$
E(N(K, J))=C_{n} \int_{K} e^{-\frac{x^{2}}{2}} E\left(\left|\operatorname{det}\left(J_{n-1}-x I_{n-1}\right)\right|\right) d x
$$

where J_{n-1} is a matrix of independent standard normals.
This bit is based on the decomposition

$$
J_{n}=O\left(\begin{array}{cc}
x & \underline{w} \\
o & J_{n-1}
\end{array}\right) O^{T}
$$

where O is orthogonal and J_{n-1} is $(n-1) \times(n-1)$. Jacobian is $\left|\operatorname{det}\left(J_{n-1}-x I_{n-1}\right)\right|$

- Computation of $E\left(\left|\operatorname{det}\left(J_{n-1}-x I_{n-1}\right)\right|\right)$ Difficult bit (because of the absolute value).

References

J. Ginibre, Statistical ensembles of complex, quaternion, and real matrices, J. Math. Phys. 6, 440 - 449 (1965).
A. Edelman, The probability that a random real gaussian matrix has k real eigenvalues, related distributions, and the circular law, Journ. Mult. Analysis. 60, 203 - 232 (1997).
A. Edelman, E. Kostlan, and M. Shub, How many eigenvalues of a random matrix are real?, Journ. Amer. Math. Soc. 7, 247 267 (1994).

Also,
V.L. Girko, Random determinats, Kluver, 1991.
for a proof of the circular law for random matrices with i.i.d. entries.

Part II. Weakly Non-Hermitian Random Matrices

Consider random $n \times n$ matrices $\widetilde{J}=A+i v B$
(i) A and B are independent Hermitian, with i.i.d. entries
(ii) $E(A)=0, E(B)=0$
(iii) $E\left(\operatorname{tr} A^{2}\right)=E\left(\operatorname{tr} B^{2}\right)=\sigma^{2} n^{2}$

Motivation: for any complex J

$$
J=X+i Y \text { where } X=\frac{J+J^{*}}{2} \text { and } Y=\frac{J-J^{*}}{2 i} .
$$

Since A and B are Hermitian, have $\widetilde{J}_{k l}$ and $\widetilde{J}_{l k}$ correlated for all $1 \leq k<l \leq n$:

$$
E\left(\tilde{J}_{k l} \widetilde{J}_{l k}\right)=E\left(\left|A_{k l}\right|^{2}\right)-v^{2} E\left(\left|B_{k l}\right|^{2}\right)=\sigma^{2}\left(1-v^{2}\right) .
$$

All other pairs are independent.
Have central matrix distribution with two parameters:

$$
\sigma^{2}\left(1+v^{2}\right)=E\left(\left|\widetilde{J}_{k l}\right|^{2}\right)
$$

and

$$
\tau=\operatorname{corr}\left(\tilde{J}_{k l} \tilde{J}_{l k}\right)=\frac{E\left(\tilde{J}_{k l} \tilde{J}_{l k}\right)}{\sqrt{E\left(\left|\tilde{J}_{k l}\right|^{2}\right) E\left(\left|\tilde{J}_{l k}\right|^{2}\right)}}=\frac{1-v^{2}}{1+v^{2}}
$$

Without loss of generality, assume $\sigma^{2}=1 /\left(1+v^{2}\right)$, so that

$$
E\left(\left|\widetilde{J}_{k l}\right|^{2}\right)=1 \text { and } E\left(\widetilde{J}_{k l} \widetilde{J}_{l k}\right)=\tau
$$

Typical eigenvalues of \widetilde{J} are of the order of \sqrt{n}, so introduce $J=\widetilde{J} / \sqrt{n}=(A+i v B) / \sqrt{n}$.

Eigenvalue correlation functions $R_{k}^{n}\left(z_{1}, \ldots z_{k}\right)$:
$R_{1}^{n}(z)$ is the probability density of finding an eigenvalue of $J=$ $\frac{\tilde{J}}{\sqrt{n}}$, regardless of label, at z.
E.g., if D_{0} is an infinitesimal circle covering z_{0}, then the probability of finding an eigenvalue of J in D_{0} is approximately $R_{1}^{n}\left(z_{0}\right) \times$ area $\left(D_{0}\right)$.

Similarly, $R_{k}^{n}\left(z_{1}, \ldots z_{k}\right)$ is the probability density of finding an eigenvalue J, regardless of labeling, at each of the points $z_{1}, \ldots z_{k}$.

Have k slots $z_{1}, \ldots z_{k}$ and n eigenvalues of J to fill these slots, hence normalization:
$\int \cdots \int R_{k}^{n}\left(z_{1}, \ldots z_{k}\right) d^{2} z_{1} \cdots d^{2} z_{k}=n(n-1) \cdots(n-k+1)$.
$R_{1}^{(n)}(z)$ gives the mean density of eigenvalues at z, i.e.

$$
R_{1}^{(n)}(z)=E\left(\sum \delta^{(2)}\left(z-\lambda_{j}\right)\right)
$$

where the summation is over all eigenvalues λ_{j} of J and $\delta^{(2)}(x+$ $i y)=\delta(x) \delta(y)$.

If N_{D} is the number of eigenvalues in D, then

$$
E\left(N_{D}\right)=\int_{D} R_{1}^{(n)}(z) d^{2} z=\iint_{D} R_{1}^{(n)}(x, y) d x d y
$$

Convention: $z=x+i y \equiv(x, y)$ and $d^{2} z=d x d y$.

From now on, replace (i)-(iii) by
(iv) Hermitian A and B are drawn independently from the normal matrix distribution with density

$$
\frac{1}{Q} \exp \left(-\frac{1}{2 \sigma^{2}} \operatorname{tr} X^{2}\right)=\frac{1}{Q} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{k, l=1}^{n}\left|X_{k l}\right|^{2}\right)
$$

where $\sigma^{2}\left(1+v^{2}\right)=1$ (with no loss of generality).
Have

$$
\begin{aligned}
& X_{k l} \sim N\left(0, \frac{1}{2} \sigma^{2}\right)+i \times \text { indp. } N\left(0, \frac{1}{2} \sigma^{2}\right), \quad k<l \\
& X_{k k} \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

and the $\left\{X_{k l}\right\}, 1 \leq k \leq l \leq n$ are independent.
The entries of $\tilde{J}=A+i v B$ have multivariate complex normal distribution with density

$$
\exp \left[-\frac{1}{1-\tau^{2}}\left(\operatorname{tr} \tilde{J} \tilde{J}^{*}-\frac{\tau}{2} \operatorname{Re} \operatorname{tr} \tilde{J}^{2}\right)\right], \quad \tau=\frac{1-v^{2}}{1+v^{2}}
$$

Have $E\left(\widetilde{J}_{k l}\right)=0$ and $E\left(\left|\widetilde{J}_{k l}\right|^{2}\right)=1$ for all (k, l) and

$$
\begin{aligned}
E\left(\tilde{J}_{k l} \tilde{J}_{m j}\right) & =\tau \quad \text { when } k=j \text { and } l=m \\
& =0 \quad \text { otherwise. }
\end{aligned}
$$

- If $\tau=0$, then \widetilde{J} has independent entries (Ginibre's ensemble); have maximum asymmetry.
- If $\tau=1$ or $\tau=-1$, then $\widetilde{J}=\widetilde{J}^{*}$ (GUE) or $\tilde{J}=-\widetilde{J}^{*}$, have no asymmetry at all.

Hermite polynomials:

$$
H_{n}(z)=(-1)^{n} \exp \left(\frac{z^{2}}{2}\right) \frac{d^{n}}{d z_{\infty}^{n}} \exp \left(-\frac{z^{2}}{2}\right)
$$

Generating function:

$$
\exp \left(z t-\frac{t^{2}}{2}\right)=\sum_{n=0}^{\infty} H_{n}(z) \frac{t^{n}}{n!}
$$

By making use of generating function,

$$
\begin{equation*}
\int_{-\infty}^{+\infty} H_{n}(x) H_{m}(x) \exp \left(-\frac{x^{2}}{2}\right) d x=\delta_{n, m} n!\sqrt{2 \pi} \tag{1}
\end{equation*}
$$

and, for all $0<\tau<1$,

$$
\begin{align*}
& \frac{\tau^{n}}{\sqrt{1-\tau^{2}}} \int H_{n}\left(\frac{z}{\sqrt{\tau}}\right) H_{n}\left(\frac{\bar{z}}{\sqrt{\tau}}\right) w_{\tau}^{2}(z, \bar{z}) d^{2} z=\delta_{n, m} \pi n! \tag{2}\\
& w_{\tau}^{2}(z, \bar{z})=\exp \left\{-\frac{1}{1-\tau^{2}}\left[|z|^{2}-\frac{\tau}{2}\left(z^{2}+\bar{z}^{2}\right)\right]\right\} \\
& =\exp \left(-\frac{x^{2}}{1+\tau}-\frac{y^{2}}{1-\tau}\right)
\end{align*}
$$

Since

$$
\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{y^{2}}{2 \sigma^{2}}\right) \rightarrow \delta(y), \quad \text { as } \sigma \rightarrow 0
$$

(1) can be obtained from (2) by letting $\tau \rightarrow 1$.

Useful integral representation:

$$
H_{n}(z)=\frac{(\pm i)^{n}}{\sqrt{2 \pi}} \exp \left(\frac{z^{2}}{2}\right) \int_{-\infty}^{+\infty} t^{n} \exp \left(-\frac{t^{2}}{2} \mp i z t\right) d t .
$$

Finite matrices

Theorem* Under assumption (iv), for any finite n and any $0 \leq$ $\tau \leq 1$,

$$
R_{k}^{(n)}\left(z_{1}, \ldots z_{k}\right)=\operatorname{det}\left\|K_{\tau}^{(n)}\left(z_{m}, \bar{z}_{l}\right)\right\|_{m, l=1}^{k},
$$

where

$$
\begin{aligned}
K_{\tau}^{(n)}\left(z_{1}, \bar{z}_{2}\right)= & \frac{n}{\pi \sqrt{1-\tau^{2}}} \sum_{j=0}^{n-1} \frac{\tau^{n}}{j!} H_{j}\left(\sqrt{\frac{n}{\tau}} z_{1}\right) H_{j}\left(\sqrt{\frac{n}{\tau}} \bar{z}_{2}\right) \times \\
& \exp \left[-\frac{n}{2\left(1-\tau^{2}\right)} \sum_{j=1}^{2}\left(\left|z_{j}\right|^{2}-\tau \operatorname{Re} z_{j}^{2}\right)\right]
\end{aligned}
$$

Special cases: $\tau=0$ (Ginibre's ens.) and $\tau=1$ (GUE).
When $\tau=0$ (in the limit $\tau \rightarrow 0$, to be more precise):

$$
K_{0}^{(n)}\left(z_{1}, \bar{z}_{2}\right)=\frac{n}{\pi} \sum_{j=0}^{n-1} \frac{n^{j}}{j!} z_{1}^{j} \bar{z}_{2}^{j} \exp \left[-\frac{n}{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)\right] .
$$

Can be seen from

$$
\sqrt{\tau^{j}} H_{j}\left(\frac{z}{\sqrt{\tau}}\right)=z^{j}+\sqrt{\tau} \times(\ldots)
$$

Sketch of proof: obtain induced density of eigenvalues and use the orthogonal polynomial technique; the required orthogonal polynomials are Hermite polynomials $H_{j}\left(\sqrt{\frac{1}{\tau}} z\right)$, they are orthogonal in C with weight function $w_{\tau}^{2}(z, \bar{z})$

Mean eigenvalue density for finite matrices
By Theorem (${ }^{*}$), $R^{(n)}(z)=K_{\tau}^{(n)}(z, \bar{z})$, and
(a) if $0<\tau<1$ then

$$
R_{1}^{(n)}(z)=\frac{n}{\pi \sqrt{1-\tau^{2}}} e^{-n \frac{|z|^{2}-\tau \operatorname{Re} z_{j}^{2}}{2\left(1-\tau^{2}\right)}} \sum_{j=0}^{n-1} \frac{\tau^{n}}{j!}\left|H_{j}\left(\sqrt{\frac{n}{\tau}} z\right)\right|^{2} .
$$

By letting $\tau \rightarrow 0$ in (a):
(b) If $\tau=0$ (Ginibre's ensemble) then

$$
R_{1}^{(n)}(z)=\frac{n}{\pi} e^{-n|z|^{2}} \sum_{j=0}^{n-1} \frac{n^{j}|z|^{2 j}}{j!}
$$

By letting $\tau \rightarrow 1$ in (a):
(c) if $\tau=1$ (GUE) then

$$
R_{1}^{(n)}(z) \equiv R^{(n)}(x, y)=\delta(y) \sqrt{\frac{n}{2 \pi}} e^{-\frac{n}{2} x^{2}} \sum_{j=0}^{n-1} \frac{1}{j!}\left|H_{j}(\sqrt{n} x)\right|^{2} .
$$

Limit of infinitely large matrices

Consider matrices $\tilde{J}=X+i Y$.
Can have two regimes when $n \rightarrow \infty$:

- strong non-Hermiticity $E\left(\operatorname{tr} Y^{2}\right)=O\left(E\left(\operatorname{tr} X^{2}\right)\right)$,
- weak non-Hermiticity $E\left(\operatorname{tr} Y^{2}\right)=o\left(E\left(\operatorname{tr} X^{2}\right)\right)$.

If $v^{2}>0$ stays constant as $n \rightarrow \infty$, have strongly non-Hermitian $J=\frac{1}{\sqrt{n}}(A+i v B)$.

Recall $\tau=\frac{1-v^{2}}{1+v^{2}}$. The following result is a corollary of Theorem (*):

Theorem (Girko's Elliptic Law) For any $\tau \in(-1,1)$ and any bounded $D \subset \mathbf{C}$

$$
E\left(N_{D}\right)=n \iint_{D} \rho(x, y) d x d y+o(n)
$$

where N_{D} is the number of eigenvalues of J in D and

$$
\rho(x, y)= \begin{cases}\frac{1}{\pi\left(1-\tau^{2}\right)}, & \text { when } \frac{x^{2}}{(1+\tau)^{2}}+\frac{y^{2}}{(1-\tau)^{2}} \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(Girko considered matrices J with symmetric pairs (J_{12}, J_{21}), (J_{13}, J_{31}), ... drawn independently from a bivariate distribution (not necessarily normal))

Local scale: area is measured in units of mean density of eigenvalues, i.e. unit area contains, on average, 1 eigenvalue.

Unit area on the global scale is n times unit area on the local scale.

Limit distribution of eigvs of J : uniform in the ellipse

$$
\mathcal{E}=\left\{z: \frac{x^{2}}{(1+\tau)^{2}}+\frac{y^{2}}{(1-\tau)^{2}} \leq 1\right\}
$$

of area $|\mathcal{E}|=\pi\left(1-\tau^{2}\right)$. That is

$$
E\left(N_{D}\right) \bumpeq \frac{|D \cap \mathcal{E}|}{|\mathcal{E}|} .
$$

E.g. if $z_{0}=x_{0}+i y_{0} \in \mathcal{E}$ and

$$
D=\left\{z:\left|x-x_{0}\right| \leq \frac{\alpha}{2 \sqrt{n|\mathcal{E}|}},\left|y-y_{0}\right| \leq \frac{\beta}{2 \sqrt{n|\mathcal{E}|}}\right\}
$$

then $E\left(N_{D_{0}}\right) \bumpeq \alpha \beta$.
But also

$$
E\left(N_{D}\right)=\iint R_{1}^{(n)}(z) d^{2} z=\iint \frac{1}{n|\mathcal{E}|} R_{1}^{(n)}\left(z_{0}+\frac{w}{\sqrt{n|\mathcal{E}|}}\right) d^{2} w
$$

Rescaled mean density of eigenvalues (around z_{0}):

$$
\frac{1}{n|\mathcal{E}|} R_{1}^{(n)}\left(z_{0}+\frac{w}{\sqrt{n|\mathcal{E}|}}\right)
$$

Similarly, rescaled eigenvalue correlation functions:

$$
\widehat{R}_{k}^{(n)}\left(w_{1}, \ldots, w_{k}\right):=\frac{1}{(n|\mathcal{E}|)^{k}} R_{k}^{(n)}\left(z_{0}+\frac{w_{1}}{\sqrt{n|\mathcal{E}|}}, \ldots, z_{0}+\frac{w_{k}}{\sqrt{n|\mathcal{E}|}}\right)
$$

The following result is a corollary of Theorem (*):

Theorem For any $\tau \in(-1,1)$ and $z_{0} \in \operatorname{int} \mathcal{E}$

$$
\lim _{n \rightarrow \infty} \widehat{R}_{k}^{(n)}\left(w_{1}, \ldots, w_{k}\right)=\operatorname{det}\left\|K\left(w_{m}, \bar{w}_{l}\right)\right\|_{m, l=1}^{k}
$$

where

$$
K\left(w_{1}, \bar{w}_{2}\right)=\exp \left[-\frac{\pi}{2}\left(\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}-2 w_{1} \bar{w}_{2}\right)\right]
$$

E.g., the first two correlation fncs:

$$
\begin{aligned}
\hat{R}_{1}(w) & =K(w, \bar{w})=1 \\
\hat{R}_{2}\left(w, w_{2}\right) & =\hat{R}_{1}\left(w_{1}\right) \hat{R}_{1}\left(w_{2}\right)-\left|K\left(w_{1}, \bar{w}_{2}\right)\right|^{2} \\
& =1-\exp \left(-\pi\left|w_{1}-w_{2}\right|^{2}\right) .
\end{aligned}
$$

No dependence on z_{0}, and, remarkably, no dependence on τ.

$$
\lim _{\tau \rightarrow 1} \lim _{n \rightarrow \infty} \neq \lim _{n \rightarrow \infty} \lim _{\tau \rightarrow 1} .
$$

Regime of weak non-Hermiticity

Now consider matrices $J=\frac{A}{\sqrt{n}}+i v \frac{B}{\sqrt{n}}$ in the limit when

$$
\begin{equation*}
n \rightarrow \infty \quad \text { and } \quad v^{2} n \rightarrow \text { const. } \tag{3}
\end{equation*}
$$

May think of eigenvalues of J as of perturbed eigenvalues of $\frac{A}{\sqrt{n}}$. The eigenvalues of $\frac{A}{\sqrt{n}}$ are all real and are distributed in $[-2,2]$ with density

$$
\nu_{s c}(x)=\frac{1}{2 \pi} \sqrt{4-x^{2}} \quad \text { (Wigner's semicircle law!) }
$$

When perturbed they move off $[-2,2]$ into C on the distance of the order $\frac{1}{n}$ (first order perturbations). Correspondingly, consider

$$
D=\left\{(x, y): x \in I \subset[-2,2], \frac{s}{n} \leq y \leq \frac{t}{n}\right\} .
$$

Then

$$
E\left(N_{D}\right)=\iint_{D} R_{1}^{(n)}(x, y) d x d y=\int_{I} d x \int_{s}^{t} d \widehat{y} \frac{1}{n} R_{1}^{(n)}\left(x, \frac{\widehat{y}}{n}\right)
$$

where

$$
\widehat{y}=n y .
$$

Hence

$$
\widehat{\rho}^{(n)}(x, \widehat{y}):=\frac{1}{n^{2}} R_{1}^{(n)}\left(x, \frac{\hat{y}}{n}\right)
$$

is the mean density of rescaled (distorted) eigenvalues $\hat{z}=x+$ $i \widehat{y}=x+i n y$.

The following result is a corollary of Theorem (*).
Theorem (Fyodorov, Khoruzhenko and Sommers)
Let $\tau=1-\frac{\alpha^{2}}{2 n}$. Then, under assumption (iv),

$$
\lim _{n \rightarrow \infty} \hat{\rho}^{(n)}(x, \widehat{y})=\hat{\rho}(x, \widehat{y}),
$$

where

$$
\hat{\rho}(x, \widehat{y})=\frac{1}{\pi \alpha} \exp \left(-\frac{2 \widehat{y}^{2}}{\alpha^{2}}\right) \int_{-\pi \nu_{s}(x)}^{\pi \nu_{\Delta c}(x)} \exp \left(-\frac{\alpha^{2} u^{2}}{2}-2 u \widehat{y}\right) \frac{d u}{\sqrt{2 \pi}} .
$$

In the limit when $\alpha \rightarrow 0$

$$
\frac{1}{\sqrt{2 \pi} \pi \alpha} \exp \left(-\frac{2 \widehat{y}^{2}}{\alpha^{2}}\right) \rightarrow \frac{1}{2 \pi} \delta(\widehat{y})
$$

and

$$
\hat{\rho}(x, \widehat{y}) \rightarrow \delta(\widehat{y}) \nu_{s c}(x) \quad \text { Wigner's semicircle law }
$$

Introduce curvilinear coordinates in the (x, \widehat{y}) plane:

$$
(x, \tilde{y})=\left(x, \frac{\widehat{y}}{\pi \nu_{s c}(x)}\right) .
$$

If

$$
\tilde{\rho}(x, \tilde{y})=\frac{1}{\pi \nu_{s c}(x)} \hat{\rho}\left(x, \frac{\widehat{y}}{\pi \nu_{s c}(x)}\right)
$$

then

$$
\tilde{\rho}(x, \tilde{y})=\nu_{s c}(x) p_{x}(\tilde{y}),
$$

where

$$
\begin{aligned}
& p_{x}(\tilde{y})=\frac{1}{\sqrt{2 \pi} a} \exp \left(-\frac{a^{2} \tilde{y}^{2}}{2}\right) \int_{-1}^{1} \exp \left(-\frac{a^{2} \tilde{y}^{2}}{2}-2 t \hat{y}\right) \frac{d t}{\sqrt{2 \pi}} \\
& \text { and } a=\pi \nu_{s c}(x) \alpha .
\end{aligned}
$$

- Interpretation of $p_{x}(\tilde{y})$.
- Universality of $p_{x}(\tilde{y})$.

In the limit when $a \rightarrow \infty$ obtain uniform density

$$
\tilde{\rho}(x, \tilde{y}) \bumpeq \begin{cases}\frac{1}{\pi a^{2}}, & \text { when }|\tilde{y}| \leq \frac{a^{2}}{2} \\ 0, & \text { otherwise }\end{cases}
$$

Eigenvalue correlation functions:
have a crossover from Wigner-Dyson to Ginibre

Other types of weakly non-Hermitian matrices:

- Dissipative matrices:
$J=A+i \Gamma, \Gamma \geq 0$ and is of finite rank m
Weakly non-unitary matrices:
- Submatrices of size m of unitary matrices of size n, in the limit $n \rightarrow \infty$ and $m=n-a, a$ is a constant.
- Contractions: random matrices $J=U \sqrt{I-T}$, where $U \in$ $U(n)$ and $0 \leq T \leq I$ in the limit when $n \rightarrow \infty$ and the rank of T remains finite. (Note that $J^{*} J=I-T$)

Weakly asymmetric matrices

- $J=A+v B$, where A and B are real and $A^{T}=A$, $B^{T}=-B$.

References

V. L. Girko, Elliptic law, Theor. Probab. Appl. 30, 677 - 690 (1986).
Y.V. Fyodorov, B.A. Khoruzhenko, and H.-J. Sommers, Universality in the random matrix spectra in the regime of weak nonHermiticity, Ann. Inst. Henri Poincaré: Physique théorique, 68, 449-489 (1998).

Other types of weakly non-Hermitian matrices:
Y.V. Fyodorov and H.-J. Sommers, Statistic of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance, J. Math. Phys. Vol. 38 (1997) p. 1918 - 1981.
Y.V. Fyodorov and B. A. Khoruzhenko, Systematic analytical approach to correlation functions of resonances in quantum chaotic scattering, Phys. Rev. Lett. Vol. 83 (1999) $65-68$.
K. Zyczkowski and H.-J. Sommers, Truncations of random unitary matrices, J. Phys. A: Math. and Gen. Vol. 33 (2000) 2045 2057.
Y.V. Fyodorov and H.-J. Sommers, Spectra of random contractions and scattering theory for discrete-time systems, JETF Letters Vol. 72 (2000) 422 - 426

Part III Asymmetric Tridiagonal Random Matrices

Imposing periodic boundary conditions:

q_{1}	b_{1}		a_{1}		
	a_{2}	q_{2}	b_{2}		
	\ddots	\ddots	\ddots		
	b_{n}		a_{n}		q_{n}

Problem: Fix a rectangle $K \subset \mathrm{C}$ and let $n \rightarrow \infty$. What proportion of eigenvalues of J_{n} are in K ? [Eigenvalue distribution].

Example: $a_{j}=a, b_{j}=b, q_{j}=q$ for all k and $a, b, q \in \mathbf{R}$. The limit eigenvalue distribution is supported by the ellipse

$$
\{(x, y): x=q+(a+b) \cos p, y=(a-b) \sin p, p \in[0,2 \pi]\}
$$

How will this picture change if allow random fluctuations of a_{k}, b_{k} and q_{k} ? Answer depends on the sign of $a_{k} b_{k-1}$.

Consider

$$
J_{n}=\operatorname{tridiag}\left(a_{k}, q_{k}, b_{k}\right)+\text { p.b.c. }
$$

with positive sub- and super-diagonals:

$$
a_{k}=\exp \left(\xi_{k-1}\right), \quad b_{k}=\exp \left(\eta_{k}\right)
$$

Assumptions:

(I) $\left(\xi_{k}, \eta_{k}, q_{k}\right), k=0,1,2, \ldots$, are independent samples from a probability distribution in \mathbf{R}^{3}.
(II) $E(\ln (1+|q|)), E(\xi)$ and $E(\eta)$ are finite.
E.g. $\left(\xi_{k}, \eta_{k}, q_{k}\right), k=0,1,2, \ldots$, are independent samples from a 3D prob. distr. with a compact supp. in R^{3}.

By making use of the similarity transformation $W_{n}=\operatorname{diag}\left(w_{1}, \ldots w_{n}\right)$, $w_{k}=\exp \left[\frac{1}{2} \sum_{j=0}^{k-1}\left(\xi_{j}-\eta_{j}\right)\right]$,

$$
W_{n}^{-1} J_{n} W_{n}=H_{n}+V_{n},
$$

where

$$
\begin{aligned}
& H_{n}=\left(\begin{array}{cccc}
q_{1} & c_{1} & & 0 \\
c_{1} & \ddots & \ddots & \\
& \ddots & \ddots & c_{n-1} \\
0 & & c_{n-1} & q_{n}
\end{array}\right) V_{n}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & u_{n} \\
0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
v_{n} & 0 & \ldots & 0 & 0
\end{array}\right) \\
& c_{k}=\sqrt{a_{k+1} b_{k}}=e^{\frac{1}{2}\left(\xi_{k}+\eta_{k}\right)} \text { and } \\
& u_{n} / v_{n}=e^{n\left[\mathrm{E}\left(\xi_{0}-\eta_{0}\right)+o(1)\right]} \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

rank 2 asymmetric perturb. of symmetric H_{n} !
"Rank 2" \Rightarrow eignv. distbs. of H_{n} and $H_{n}+V_{n}$ are related "Strongly asymmetric" \Rightarrow non-trivial relation.

Facts from theory of Hermitian random operators (e.g. in Pastur and Figotin, Spectra of random and almost periodic operators):

- Empirical distribution fnc. of eigvs. of H_{n}

$$
\begin{aligned}
N\left(I, H_{n}\right) & =\frac{1}{n} \#\left\{\text { eigvs. of } H_{n} \text { in } I \subset \mathbf{R}\right\} \\
& =\int_{I} d N_{n}(\lambda), N_{n}(\lambda)=N\left((-\infty, \lambda], H_{n}\right)
\end{aligned}
$$

$d N_{n}$ assigns mass $\frac{1}{n}$ to each of eigvs. of H_{n}.
Proposition \exists nonrandom $N(\lambda) \forall I \subset \mathbf{R}$:

$$
\lim _{n \rightarrow \infty} N\left(I, H_{n}\right) \stackrel{\text { a.s. }}{=} \int_{I} d N(\lambda)
$$

- Potentials: $p\left(z ; H_{n}\right)=\int \log |z-\lambda| d N_{n}(\lambda)$

$$
\Phi(z)=\int \log |z-\lambda| d N(\lambda)
$$

- Lyapunov exponent $\gamma(z)=\lim _{n \rightarrow \infty} \frac{1}{n} E\left(\operatorname{In}\left\|S_{n}(z)\right\|\right)$

Proposition (Thouless formula)

$$
\begin{gathered}
\lim _{n \rightarrow \infty} p\left(z ; H_{n}\right) \stackrel{\text { a.s. }}{=} \Phi(z) \text { unif. in } z \text { on } K \subset \mathbf{C} \backslash \mathbf{R} \\
=\gamma(z)+\mathbf{E} \log c_{0}
\end{gathered}
$$

Corollaries:

$$
\begin{aligned}
& \Phi(z) \text { continuous in } z ; \\
& \Phi(x+i y)>\mathbf{E} \log c_{0} \quad \forall y \neq 0 ; \quad \text { etc. }
\end{aligned}
$$

Consider

$$
\mathcal{L}=\left\{z \in \mathbf{C}: \quad \Phi(z)=\max \left[E\left(\xi_{0}\right), E\left(\eta_{0}\right)\right]\right\}
$$

This curve is an equipotential line of limiting eigenvalue distribution of H_{n}.

If the probability law of $\left(\xi_{k}, \eta_{k}, q_{k}\right)$ has bounded support then \mathcal{L} is confined to a bounded set in C and is a union of closed contours:

There are $\alpha_{1}<\beta_{1} \leq \alpha_{2}<\beta_{2} \leq \ldots$ such that

$$
\mathcal{L}=\cup \mathcal{L}_{j}, \quad \mathcal{L}_{j}=\left\{x \pm i y_{j}(x): x \in\left[\alpha_{j}, \beta_{j}\right]\right\}
$$

Notation:

$$
N\left(K, J_{n}\right)=\frac{1}{n} \#\left\{\text { eigvs. of } J_{n} \text { in } K\right\}, \quad K \subset \mathbf{C}
$$

(describes distribution of eigenvalues of J_{n})

Theorem (Goldsheid and Khoruzhenko) Assume (I-II). Then, with probability one,
(a) $\forall K \subset \mathbf{C} \backslash \mathbf{R}: \quad N\left(K, J_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} \int_{K \cap \mathcal{L}} \rho(z(s)) d s$
where $\rho(z)=\frac{1}{2 \pi}\left|\int \frac{d N(\lambda)}{z-\lambda}\right|$ and $d s$ is the arc-length measure on \mathcal{L}.
(b) $\forall I \subset \mathbf{R}: \quad N\left(I, J_{n}\right) \xrightarrow[I_{W}]{\longrightarrow \rightarrow} \int_{I_{W}} d N(\lambda)$
where $I_{w}=I \cap\left\{\lambda: \Phi(\lambda+i 0)>\max \left[E\left(\xi_{0}\right), E\left(\eta_{0}\right)\right]\right\}$

Sketch of proof: Let

$$
p\left(z ; J_{n}\right)=\frac{1}{n} \sum_{j=1}^{n} \log \left|z-z_{j}\right|=\frac{1}{n} \log \left|\operatorname{det}\left(J_{n}-z\right)\right|
$$

where z_{1}, \ldots, z_{n} are the eigenvalues of J_{n}.

Claim (convergence of potentials)

With probability one,

$$
p\left(z ; J_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} F(z)=\max \left[\Phi(z), E\left(\xi_{0}\right), E\left(\eta_{0}\right)\right] \quad \forall z \notin \mathbf{R} \cup \mathcal{L}
$$

The convergence is uniform in $z \in K \subset \mathbf{C} \backslash(\mathbf{R} \cup \mathcal{L})$.
Consider measures $d \nu_{J_{n}}$ assigning mass $\frac{1}{n}$ to each of the eigenvalues of J_{n}. Then

$$
\frac{1}{2 \pi} \Delta p\left(z ; J_{n}\right)=d \nu_{J_{n}}
$$

in the sense of distribution theory. By Claim, the potentials $p\left(z ; J_{n}\right)$ converge for almost all $z \in \mathrm{C}$. This implies convergence in the sense of distribution theory. Since the Laplacian is continuous in \mathcal{D}^{\prime},

$$
\frac{1}{2 \pi} \Delta p\left(z ; J_{n}\right) \rightarrow \frac{1}{2 \pi} \Delta F(z)
$$

in \mathcal{D}^{\prime}. But then

$$
d \nu_{J_{n}} \rightarrow d \nu \equiv \frac{1}{2 \pi} \Delta F(z)
$$

in the sense of of weak convergence of measures, hence Theorem.

Proof of Claim

$$
\begin{aligned}
\operatorname{det}\left(J_{n}-z I_{n}\right) & =\operatorname{det}\left(H_{n}+V_{n}-z\right) \\
& =\operatorname{det}\left(H_{n}-z I_{n}\right) \operatorname{det}\left(I_{n}+V_{n}\left(H_{n}-z\right)^{-1}\right)
\end{aligned}
$$

Therefore

$$
p\left(z ; J_{n}\right)=p\left(z ; H_{n}\right)+\frac{1}{n} \log \left|d_{n}(z)\right| .
$$

V_{n} is rank 2. $\quad V_{n}=A^{T} B$, where

$$
\begin{aligned}
& A=\left(\begin{array}{ccccc}
u_{n} & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 1
\end{array}\right) B=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
v_{n} & 0 & \ldots & 0 & 0
\end{array}\right) \\
& \therefore d_{n}(z)=\operatorname{det}\left(I_{n}+A^{T} B\left(H_{n}-z\right)^{-1}\right) \\
& =\operatorname{det}\left(I_{2}+B\left(H_{n}-z\right)^{-1} A^{T}\right) 2 \times 2 \operatorname{det} \\
& =\left(1+u_{n} G_{1 n}\right)\left(1+v_{n} G_{n 1}\right)-u_{n} v_{n} G_{11} G_{n n}
\end{aligned}
$$

where $G_{l k}$ is the (k, l) entry of $\left(H_{n}-z\right)^{-1}$.
Now use

$$
\begin{aligned}
\left|u_{n} G_{1 n}\right| & =e^{n\left[E\left(\xi_{0}\right)-\Phi(z)+o(1)\right]} \\
\left|v_{n} G_{n 1}\right| & =e^{n\left[E\left(\eta_{0}\right)-\Phi(z)+o(1)\right]}
\end{aligned}
$$

and $\left|1-u_{n} v_{n} G_{11} G_{n n}\right| \geq \alpha(z)>0, z \notin \mathbf{R}$ to complete the proof.

Exactly solvable model

Consider $J_{n}=\operatorname{tridiag}\left(e^{g}, \operatorname{Cauchy}(0, b), e^{-g}\right)+$ p.b.c.,

$$
\xi_{k} \equiv g, \quad \eta_{k} \equiv-g \quad P\left(q_{k} \in I\right)=\frac{1}{\pi} \int_{I} d q \frac{b}{q^{2}+b^{2}}
$$

In this case $J_{n}=W_{n}^{-1}\left(H_{n}+V_{n}\right) W_{n}$, where

$$
H_{n}=\operatorname{tridiag}(1, \operatorname{Cauchy}(0, b), 1) \quad \text { Lloyd's model }
$$

For Lloyd's model an explicit expression for $\Phi(z)$ is available:

$$
4 \cosh \Phi(z)=\sqrt{(x+2)^{2}+(b+|y|)^{2}}+\sqrt{(x-2)^{2}+(b+|y|)^{2}}
$$

By making use of it,

- If $K=2 \cosh g \leq K_{c r}=\sqrt{4+b^{2}}$ then \mathcal{L} is empty.
- If $K>K_{c r}$ then \mathcal{L} consists of two symmetric arcs

$$
y(x)= \pm\left[\sqrt{\frac{\left(K^{2}-4\right)\left(K^{2}-x^{2}\right)}{K^{2}}}-b\right]-x_{b} \leq x \leq x_{b}
$$

x_{b} is determined by $y\left(x_{b}\right)=0$.

Corollaries

$$
g=\frac{1}{2} E\left(\xi_{0}-\eta_{0}\right) \text { is a measure of asymmetry of } J_{n} .
$$

(1) Special case: Suppose that $q_{k} \equiv$ Const all k. Then $\gamma(0)=$ 0 and $\gamma(z)>0 \forall z \neq 0$. Since

$$
\Phi(0)=\gamma(0)+\frac{1}{2} E\left(\xi_{0}+\eta_{0}\right)<\max \left[E\left(\xi_{0}\right), E\left(\eta_{0}\right)\right]
$$

the equation for $\mathcal{L}, \Phi(z)=\max \left[E\left(\xi_{0}\right), E\left(\eta_{0}\right)\right]$, has continuum of solutions for any $g \neq 0$.

For any $g \neq 0$ we have a bubble of complex eigv. around $z=0$, i.e. no matter how small the perturb. V_{n} is, it moves a finite proportion of eigvs. of H_{n} off the real axis!
(2) Suppose now that the diagonal entries q_{k} are random. Then $\gamma(x)>0 \forall x \in \mathbf{R}$ (Furstenberg) and

$$
0<\min _{x \in \Sigma} \gamma(x)=g_{\mathrm{Cr}}^{(1)}<g_{\mathrm{Cr}}^{(2)}=\max _{x \in \Sigma} \gamma(x) \leq+\infty
$$

where Σ is the support of $d N(\lambda)$. Therefore
(a) If $|g|<g_{\mathrm{cr}}^{(1)}$, J_{n} has zero proportion of non-real eigenvalues
(b) If $g_{\mathrm{cr}}^{(1)}<|g|<g_{\mathrm{cr}}^{(2)}$, J_{n} has finite proportions of real and non-real eigenvalues.
(c) $|g|>g_{\mathrm{cr}}^{(2)}, J_{n}$ has zero proportion of real eigenvalues.

References

N. Hatano and D. R. Nelson, Vortex pinning and non-Hermitian quantum mechanics, Phys. Rev. Vol. B56 (1997) 8651 - 8673.
I.Ya Goldsheid and B.A. Khoruzhenko, Eigenvalue curves of asymmetric tri-diagonal random matrices, Electronic Journal of Probability, Vol. 5(2000), Paper 16, 28 pages.

