Non-Hermitian random matrices

Boris Khoruzhenko School of Mathematical Sciences Queen Mary, University of London

http://www.maths.qmw.ac.uk/~boris

The Diablerets Winter School "Random Matrices" (18-23 March 2001)

Plan:

- Non-Hermitan random matrices: Circular law
- Weakly non-Hermitian random matrices
- Asymmetric tridiagonal random matrices

Part I. Circular law

Consider random matrices M_n of size n.

Eigenvalue counting measure:

$$N(D, M_n) = \frac{1}{n} \# \{ \text{eigvs. of } M_n \text{ in } D \}$$

What is the limit of $N(D, M_n)$ when $n \to \infty$?

If Hermitian (or real symmetric) matrices, then $dN(\lambda; M_n)$ is supported on \mathbf{R} . These tools work well:

(a) moments

$$\int \lambda^m dN(\lambda; M_n) = \frac{1}{n} \sum_{l=1}^n \lambda_l^m = \frac{1}{n} \operatorname{tr} M_n^m$$

(b) Stieltjes transform

$$\int \frac{dN(\lambda; M_n)}{\lambda - z} = \frac{1}{n} \sum_{l=1}^n \frac{1}{\lambda - z} = \frac{1}{n} \operatorname{tr}(M_n - zI)^{-1},$$

defined for all Im $z \neq 0$

(c) orthogonal polynomials, etc ...

Not so many tools are available for complex eigenvalues!

Complex (or real asymmetric) matrices – availability of tools:

- (a) moments fail;
- (b) Stieltjes transform is difficult to use because of singularities; best hope spectral boundary(ies);
- (c) orthogonal polynomials (use of this method is essentially limited to Gaussian random matrices)
- (d) potentials: if $p(z)=\int_{\mathbf{C}}\ln|z-\zeta|dN(\zeta)$, $z\in\mathbf{C}$, then $\frac{1}{2\pi}\Delta p=dN \qquad \text{(as distributions in }\mathcal{D}'\text{)}$ where $\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$ is the two-dimensional Laplacian.

Potentials

$$p(z; M_n) = \frac{1}{n} \sum_{l=1}^n \ln|z - z_l|$$

= $\frac{1}{2n} \ln \det(M_n - zI_n) (M_n - zI_n)^*$

Two strategies:

Obtain

$$\lim_{n\to\infty} p(z; M_n) = F(z) \quad (\text{in } \mathcal{D}').$$

Then the limiting eigenvalue distribution is $\frac{1}{2\pi}\Delta F(z)$. Works well when have eigenvalue curves

Regularize potentials

$$p_{\varepsilon}(z; M_n) = \frac{1}{n} \ln \det \left[(M_n - zI_n)(M_n - zI_n)^* + \varepsilon^2 I_n \right]$$

= $\frac{1}{n} \int \ln(\lambda + \varepsilon) dN(\lambda; H_{n,z}),$

where
$$H_{n,z} = (M_n - zI_n)(M_n - zI_n)$$
.

Naive approach: let $n \to \infty$ and after $\varepsilon \to 0$; difficult to justify for non-normal matrices. The two limits commute for normal matrices and do not commute if M_n have orthogonal or almost orthogonal right and left eigenvectors.

Regularization of potentials

$$p_{\varepsilon}(z; M_n) = \frac{1}{2n} \log \det[(M_n - z)(M_n - z)^* + \varepsilon^2 I_n]$$

$$\frac{1}{2\pi} \Delta p_{\varepsilon}(z; M_n) = \rho_{\varepsilon}(z; M_n)$$

$$\Rightarrow \frac{1}{n} \sum \delta(z - z_j) \quad [n \text{ is finite}]$$

$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} p_{\varepsilon}(z; J_n) = \lim_{n \to \infty} \lim_{\varepsilon \to 0} p_{\varepsilon}(z; J_n) \quad ??$$

Yes, for normal matrices. Counterexamples for non-normal matrices

In the vicinity of z_j :

$$\rho_{\varepsilon}(z; M_n) \quad \stackrel{\triangle}{=} \quad \frac{(\kappa_j \varepsilon)^2}{\pi} \frac{1}{[(\kappa_j \varepsilon)^2 + |z - z_j|^2]^2}$$

$$\underset{\varepsilon \to 0}{\longrightarrow} \quad \delta(z - z_j) \quad \text{if } \kappa_j \neq 0$$

where $\kappa_j=|(\psi_j^L,\psi_j^R)^{-1}|$ and $\psi_j^{L(R)}$ are normalized left (right) eigevectors at z_j .

Spectral condition numbers, pseudospectra, etc.

Consider complex matrices $J_n = ||J_{lm}||_{l,m=1}^n$

• $\{J_{ml}\}_{l,m=1}^n$ are indp. standard complex normals

(with normalization: $E(|J_{ml}|^2) = 1$).

Theorem (Ginibre) If f is a symmetric functional of the eigenvalues of J_n then

$$E(f) = \int \dots \int f(z_1, \dots z_n) p_n(z_1, \dots z_n) d^2 z_1 \cdots d^2 z_n,$$

where

$$p_n(z_1, \ldots z_n) = rac{1}{\pi^n \prod\limits_{l=1}^n l!} \ e^{-\sum_{l=1}^n |z_l|^2} \prod_{1 \leq l < m \leq n} |z_l - z_m|^2$$

Notation: $N(D; J) = \#\{\text{eigvs. of } J \text{ in } D\}$

Corollary

$$E(N(D; J_n)) = \int_D E(|\det(J_{n-1} - zI_{n-1})|^2) \frac{e^{-|z|^2} d^2 z}{\pi(n-1)!},$$

where J_{n-1} is an $(n-1) \times (n-1)$ matrix of independent standard complex normals.

Ginibre's theorem: sketch of Dyson's proof

p.d.f. of joint distribution of the matrix entries:

$$\left(\frac{1}{\pi}\right)^{n^2} \exp\left(-\sum_{l,m=1}^n |J_{lm}|^2\right) = \left(\frac{1}{\pi}\right)^{n^2} \exp\left(-\operatorname{tr} JJ^*\right)$$

- assign a label to each of the eigenvalues
- Schur decomposition $J_n = U(Z+T)U^*$, where U is unitary, T is strictly upper-triangular, complex, $Z = \operatorname{diag}(z_1, \ldots, z_n)$
- ullet $J_n o ([U],Z,T)$ is one-to-one, $[U]=\{UV:V= ext{diag}(e^{i\phi_1},\dots,e^{i\phi_n})\}$ Jacobian = $\prod_{1\leq l\leq m\leq n}|z_l-z_m|^2$

•

$$\operatorname{tr} J_n J_n^* = \operatorname{tr} (Z+T)(Z+T)^*$$

= $\operatorname{tr} ZZ^* + \operatorname{tr} TT^* = \sum_{l=1}^n |z|^2 + \sum_{l < m} |T_{lm}|^2$

- [U] and T can easily be integrated out
- remove eigenvalues labelling

Proof of Corollary:

Use Ginibre's theorem for $f = \sum_{l=1}^{n} \chi_D(z_l)$:

$$E(N(D; J_n)) = n \int_D \left\{ \int \dots \int_{C^{n-1}} p_n(z_1, \dots z_n) d^2 z_2 \cdots d^2 z_n \right\} d^2 z_1$$

Now note that

$$p_n(z_1,z_2,\ldots,z_n)=rac{1}{\pi n!} \ e^{-|z_1|^2} \prod_{m=2}^n |z_1-z_m|^2 p_{n-1}(z_2,\ldots,z_n).$$

To complete the proof, use Ginibre's theorem (backwards) for $f = \prod_{m=2}^{n} |z_1 - z_m|^2 = |\det(J_{n-1} - zI_{n-1})|^2$.

Another (more direct) proof:

$$J_n = U \begin{pmatrix} z & \underline{w} \\ 0 & J_{n-1} \end{pmatrix} U^*$$

Here $\underline{w} \in \mathbb{C}^{n-1}$, z is an eigenvalue of J_{n-1} , and U is a unitary matrix that exchanges the corresponding eigenvector (normalized) and $(1, 0, \dots, 0)$.

Jacobian is $|\det(zI_{n-1}-J_{n-1})|^2$ and

$$\operatorname{tr} J_n J_n^* = |z|^2 + \underline{w}\underline{w}^* + \operatorname{tr} J_{n-1} J_{n-1}^*.$$

The entries of \underline{w} and J_{n-1} are independent complex normal variables.

 $E(|\det(J_n-zI_n)|^2)$ is easy to compute using the independence of the entries of J_n .

Proposition If $A = ||A_{lm}||_{l,m=1}^n$ and A_{lm} , l,m = 1,...,n, are independent real or complex random variables such that $E(A_{lm}) = 0$ and $E(|A_{lm}|^2) = 1$ for all pairs (l,m) then

$$E(|\det(A-zI)|^2) = n! \sum_{l=1}^n \frac{|z|^{2l}}{l!}.$$

Proof.

$$\det(zI - A) = z^n - z^{n-1} \sum_{l=1}^n A_{ll} + z^{n-2} \sum_{1 \le l < j \le n} \begin{vmatrix} A_{ll} & A_{lj} \\ A_{jl} & A_{jj} \end{vmatrix} - \dots$$

$$= z^n - z^{n-1} m_{n-1}(A) + z^{n-2} m_{n-2}(A) - \ldots \pm m_n(A),$$

where $m_k(A)$ is the sum of all minors of A of order k (have C_n^k minors of order k). By the independence of the A_{lj} 's,

$$E(|\det(zI-A)|^2) = |z|^{2n} + |z|^{2(n-1)}E(|m_1(A)|^2) + \dots$$

and, for every $k = 0, 1, \dots, n$,

$$E(|m_k(A)|^2) = C_n^k E(|\text{principal minor of order } (k-1)|^2)$$
$$= \frac{n!}{k!(n-k)!} \times k! = \frac{n!}{(n-k)!}$$

Therefore

$$E(|\det(zI-A)|^2) = n! \left(\frac{|z|^{2n}}{n!} + \frac{|z|^{2(n-1)}}{(n-1)!} + \ldots + 1 \right).$$

By Corollary and Proposition,

$$E(N(D; J_n)) = \int_D R_1^{(n)}(z)d^2z,$$

where

$$R_1^{(n)}(z) = \frac{1}{\pi} e^{-|z|^2} \sum_{l=0}^{n-2} \frac{|z|^{2l}}{l!}$$

 $R_1^{(n)}(z)$ is the mean density of eigenvalues of J_n

For large n, this density is approximately $\frac{1}{\pi}$ inside the circle $|z|=\sqrt{n}$ and it vanishes outside.

Consider matrices $\frac{J_n}{\sqrt{n}}$.

$$N\left(D; \frac{J}{\sqrt{n}}\right) = \#\{\text{eigvs. of } \frac{J_n}{\sqrt{n}} \text{ in } D\}$$

= $\#\{\text{eigvs. of } J_n \text{ in } \sqrt{n}D\}.$

Then

$$E\left(N\left(D; \frac{J}{\sqrt{n}}\right)\right) = \int_D nR_1^{(n)}(\sqrt{n}z)d^2z,$$

where

$$nR_1^{(n)}(\sqrt{n}z) = \frac{1}{\pi}e^{-n|z|^2} \sum_{l=0}^{n-1} \frac{n^l|z|^{2l}}{l!}$$

is the mean density of eigenvalues of $\frac{J_n}{\sqrt{n}}$.

A fact from analysis:

$$\frac{1}{\pi}e^{-n|z|^2}\sum_{l=0}^{n-1}\frac{n^l|z|^{2l}}{l!}\to\rho(x,y)=\left\{\begin{array}{ll}\frac{1}{\pi} & \text{if } x^2+y^2<1\\ 0 & \text{if } x^2+y^2>1.\end{array}\right.$$

Circular Law (uniform distr. of eigvs. of $\frac{J}{\sqrt{n}}$ in $|z| \leq 1$):

For any bounded $D \subset \mathbf{C}$,

$$E\left(N\left(D;\frac{J}{\sqrt{n}}\right)\right) = n \int_{D} \int \rho(x,y) \, dx dy + o(n).$$

Also,

the expected number of eigvs. of $\frac{J}{\sqrt{n}}$ outside $|z| \leq 1$ is

$$n\int_{|z|>1}R^{(n)}(\sqrt{n}z)d^2z\simeq\sqrt{\frac{n}{2\pi}}.$$

compare with $n^{1/6}$ for GUE.

Consider real matrices $J_n = ||J_{lm}||_{l.m=1}^n$

• $\{J_{ml}\}_{l,m=1}^n$ are independent N(0,1) (real)

More difficult than complex matrices.

Non-real eigenvalues come in pairs z_j, \overline{z}_j .

Theorem (Edelman) For any $D \subset \mathbf{C}_+$,

$$E(N(D; J_n)) = \int_D \int R_1^{(n)}(x, y) dx dy,$$

$$R_1^{(n)}(x,y) = \sqrt{\frac{2}{\pi}} y e^{-(x^2 - y^2)} \operatorname{erfc}(y) \frac{E(|\det(J_{n-2} - zI_{n-2})|^2)}{(n-2)!}$$

where J_{n-2} is a matrix of independent N(0,1) of size n-2 and

erfc
$$(y)=\int_{t}^{+\infty} rac{e^{-t^{2}/2}dt}{\sqrt{2\pi}}$$

Since $E(|\det(J_{n-2}-zI_{n-2})|^2)=(n-2)!\sum_{l=0}^{n-2}\frac{|z|^{2l}}{l!}$, we have

$$R_1^{(n)}(x,y) = \sqrt{\frac{2}{\pi}} y e^{2y^2} \operatorname{erfc}(y) e^{-(x^2+y^2)} \sum_{l=0}^{n-2} \frac{(x^2+y^2)^l}{l!}$$

This is the mean density of eigenvalues of J_n in the upper half of the complex plane.

For matrices $\frac{J}{\sqrt{n}}$, the mean density of eigenvalues in C_+ is $nR_1^{(n)}(\sqrt{n}x,\sqrt{n}x)$

$$R_1^{(n)}(\sqrt{n}x, \sqrt{n}y) = g(y)e^{-n|z|^2} \sum_{l=0}^{n-2} \frac{n^l|z|^{2l}}{l!},$$

where $g(y) = \sqrt{\frac{2}{\pi}} \sqrt{n} y e^{2ny^2}$.

In the limit $n \to \infty$,

$$g(y) o rac{1}{\pi} \quad ext{and} \quad e^{-n|z|^2} \sum_{l=0}^{n-2} rac{n^l |z|^{2l}}{l!} o \left\{ egin{array}{l} 1 & ext{if } |z| < 1 \ 0 & ext{if } |z| > 1 \end{array}
ight.$$

and we have

Circular Law for real matrices

For any bounded $D \subset \mathbf{C}_+$,

$$E\left(N\left(D;\frac{J}{\sqrt{n}}\right)\right) = n \int_{D} \int \rho(x,y) \, dx dy + o(n).$$

where ρ is the density of the uniform distr. in $|z| \leq 1$.

Edelman proved his theorem using the following matrix decomposition:

If A_n is an $n \times n$ matrix with eigenvalue x + iy, y > 0, then there is an orthogonal O such that

$$A_n = O \begin{pmatrix} x & b & W \\ -c & x & W \\ 0 & A_{n-2} \end{pmatrix} O^T$$

where A_{n-2} is $(n-2) \times (n-2)$, W is $2 \times (n-2)$, and b and c are such that bc > 0, $b \ge c$, and $y = \sqrt{bc}$.

Jacobian is $2(b-c)|\det(A_{n-2}-zI_{n-2})|^2$

$$\operatorname{tr} A_n A_n^T = 2x^2 + b^2 + c^2 + \operatorname{tr} W W^T + \operatorname{tr} A_{n-2} A_{n-2}^T,$$

if A_n is Gaussian then so is A_{n-2} .

Real eigenvalues of real asymmetric matrices

The expected number of real eigenvalues of J_n is proportional to \sqrt{n} . The limiting distribution of properly normalized real eigenvalues is Uniform([-1, 1]).

Theorem (Edelman, Kostlan and Shub) If J_n is a matrix of independent standard normals, then, in the limit $n \to \infty$,

(a)
$$E(N(\mathbf{R}, J_n)) = \sqrt{\frac{2n}{\pi}} + o(\sqrt{n}),$$

(b) for any bounded $K \subset \mathbf{R}$,

$$E\left(N\left(K, \frac{J_n}{\sqrt{n}}\right)\right) = \sqrt{\frac{2n}{\pi}} \int_K f(x) dx + o(\sqrt{n}).$$

where is the density of Uniform([-1, 1]).

Two key elements of proof:

•

$$E(N(K,J)) = C_n \int_K e^{-\frac{x^2}{2}} E(|\det(J_{n-1} - xI_{n-1})|) dx$$

where J_{n-1} is a matrix of independent standard normals. This bit is based on the decomposition

$$J_n = O \begin{pmatrix} x & \underline{w} \\ o & J_{n-1} \end{pmatrix} O^T$$

where O is orthogonal and J_{n-1} is $(n-1) \times (n-1)$. Jacobian is $|\det(J_{n-1} - xI_{n-1})|$

• Computation of $E(|\det(J_{n-1} - xI_{n-1})|)$ Difficult bit (because of the absolute value).

References

J. Ginibre, Statistical ensembles of complex, quaternion, and real matrices, *J. Math. Phys.* **6**, 440 – 449 (1965).

A. Edelman, The probability that a random real gaussian matrix has k real eigenvalues, related distributions, and the circular law, *Journ. Mult. Analysis.* **60**, 203 – 232 (1997).

A. Edelman, E. Kostlan, and M. Shub, How many eigenvalues of a random matrix are real?, *Journ. Amer. Math. Soc.* **7**, 247 – 267 (1994).

Also,

V.L. Girko, Random determinats, Kluver, 1991.

for a proof of the circular law for random matrices with i.i.d. entries.

Part II. Weakly Non-Hermitian Random Matrices

Consider random $n \times n$ matrices $\tilde{J} = A + ivB$

(i) A and B are independent *Hermitian*, with i.i.d. entries

(ii)
$$E(A) = 0$$
, $E(B) = 0$

(iii)
$$E(\text{tr } A^2) = E(\text{tr } B^2) = \sigma^2 n^2$$

Motivation: for any complex J

$$J = X + iY$$
 where $X = \frac{J+J^*}{2}$ and $Y = \frac{J-J^*}{2i}$.

Since A and B are Hermitian, have \tilde{J}_{kl} and \tilde{J}_{lk} correlated for all 1 < k < l < n:

$$E(\tilde{J}_{kl}\tilde{J}_{lk}) = E(|A_{kl}|^2) - v^2 E(|B_{kl}|^2) = \sigma^2 (1 - v^2).$$

All other pairs are independent.

Have central matrix distribution with two parameters:

$$\sigma^2(1+v^2) = E(|\tilde{J}_{kl}|^2)$$

and

$$\tau = \operatorname{corr}(\tilde{J}_{kl}\tilde{J}_{lk}) = \frac{E(\tilde{J}_{kl}\tilde{J}_{lk})}{\sqrt{E(|\tilde{J}_{kl}|^2)E(|\tilde{J}_{lk}|^2)}} = \frac{1 - v^2}{1 + v^2}.$$

Without loss of generality, assume $\sigma^2 = 1/(1+v^2)$, so that

$$E(|\tilde{J}_{kl}|^2) = 1$$
 and $E(\tilde{J}_{kl}\tilde{J}_{lk}) = \tau$

Typical eigenvalues of \tilde{J} are of the order of \sqrt{n} , so introduce $J = \tilde{J}/\sqrt{n} = (A+ivB)/\sqrt{n}$.

Eigenvalue correlation functions $R_k^n(z_1, \dots z_k)$:

 $R_1^n(z)$ is the probability *density* of finding an eigenvalue of $J=\frac{\tilde{J}}{\sqrt{n}}$, regardless of label, at z.

E.g., if D_0 is an infinitesimal circle covering z_0 , then the probability of finding an eigenvalue of J in D_0 is approximately $R_1^n(z_0) \times area(D_0)$.

Similarly, $R_k^n(z_1, \ldots z_k)$ is the *probability density* of finding an eigenvalue J, regardless of labeling, at each of the points $z_1, \ldots z_k$.

Have k slots $z_1, \ldots z_k$ and n eigenvalues of J to fill these slots, hence normalization:

$$\int \dots \int R_k^n(z_1, \dots z_k) d^2 z_1 \cdots d^2 z_k = n(n-1) \cdots (n-k+1).$$

 $R_1^{(n)}(z)$ gives the mean density of eigenvalues at z, i.e.

$$R_1^{(n)}(z) = E\left(\sum \delta^{(2)}(z - \lambda_j)\right)$$

where the summation is over all eigenvalues λ_j of J and $\delta^{(2)}(x+iy) = \delta(x)\delta(y)$.

If N_D is the number of eigenvalues in D, then

$$E(N_D) = \int_D R_1^{(n)}(z) d^2z = \int_D \int R_1^{(n)}(x, y) dxdy$$

Convention: $z = x + iy \equiv (x, y)$ and $d^2z = dxdy$.

From now on, replace (i)-(iii) by

(iv) Hermitian A and B are drawn independently from the normal matrix distribution with density

$$\frac{1}{Q}\exp\left(-\frac{1}{2\sigma^2}\operatorname{tr} X^2\right) = \frac{1}{Q}\exp\left(-\frac{1}{2\sigma^2}\sum_{k,l=1}^n|X_{kl}|^2\right),\,$$

where $\sigma^2(1+v^2)=1$ (with no loss of generality).

Have

$$X_{kl} \sim N\left(0, \frac{1}{2}\sigma^2\right) + i \times \text{indp.} N\left(0, \frac{1}{2}\sigma^2\right), \quad k < l$$

 $X_{kk} \sim N(0, \sigma^2)$

and the $\{X_{kl}\}$, $1 \le k \le l \le n$ are independent.

The entries of $\tilde{J}=A+ivB$ have multivariate complex normal distribution with density

$$\exp\left[-\frac{1}{1-\tau^2}\left(\operatorname{tr}\tilde{J}\tilde{J}^*-\frac{\tau}{2}\operatorname{Re}\operatorname{tr}\tilde{J}^2\right)\right],\quad \tau=\frac{1-v^2}{1+v^2}.$$

Have
$$E(\tilde{J}_{kl})=0$$
 and $E(|\tilde{J}_{kl}|^2)=1$ for all (k,l) and $E(\tilde{J}_{kl}\tilde{J}_{mj})=\tau$ when $k=j$ and $l=m=0$ otherwise.

• If $\tau = 0$, then \tilde{J} has independent entries (Ginibre's ensemble); have maximum asymmetry.

• If $\tau=1$ or $\tau=-1$, then $\tilde{J}=\tilde{J}^*$ (GUE) or $\tilde{J}=-\tilde{J}^*$, have no asymmetry at all.

Hermite polynomials:

$$H_n(z) = (-1)^n \exp\left(\frac{z^2}{2}\right) \frac{d^n}{dz^n} \exp\left(-\frac{z^2}{2}\right)$$
Generating function:
$$\exp\left(zt - \frac{t^2}{2}\right) = \sum_{n=0}^{\infty} H_n(z) \frac{t^n}{n!}.$$

By making use of generating function,

$$\int_{-\infty}^{+\infty} H_n(x) H_m(x) \exp\left(-\frac{x^2}{2}\right) dx = \delta_{n,m} n! \sqrt{2\pi} \qquad (1)$$

and, for all $0 < \tau < 1$,

$$\frac{\tau^n}{\sqrt{1-\tau^2}} \int H_n\left(\frac{z}{\sqrt{\tau}}\right) H_n\left(\frac{\bar{z}}{\sqrt{\tau}}\right) w_\tau^2(z,\bar{z}) d^2z = \delta_{n,m} \pi n!$$
 (2)

$$w_{\tau}^{2}(z,\bar{z}) = \exp\left\{-\frac{1}{1-\tau^{2}}\left[|z|^{2} - \frac{\tau}{2}(z^{2} + \bar{z}^{2})\right]\right\}$$
$$= \exp\left(-\frac{x^{2}}{1+\tau} - \frac{y^{2}}{1-\tau}\right)$$

Since

$$rac{1}{\sqrt{2\pi\sigma^2}}\,\exp\Big(-rac{y^2}{2\sigma^2}\Big) o\delta(y),\quad ext{as } \sigma o 0,$$

(1) can be obtained from (2) by letting au o 1.

Useful integral representation:

$$H_n(z) = \frac{(\pm i)^n}{\sqrt{2\pi}} \exp\left(\frac{z^2}{2}\right) \int_{-\infty}^{+\infty} t^n \exp\left(-\frac{t^2}{2} \mp izt\right) dt.$$

Finite matrices

Theorem* Under assumption (iv), for any finite n and any $0 \le \tau \le 1$,

$$R_k^{(n)}(z_1, \dots z_k) = \det ||K_{\tau}^{(n)}(z_m, \bar{z}_l)||_{m,l=1}^k,$$

where

$$K_{\tau}^{(n)}(z_{1}, \bar{z}_{2}) = \frac{n}{\pi \sqrt{1 - \tau^{2}}} \sum_{j=0}^{n-1} \frac{\tau^{n}}{j!} H_{j} \left(\sqrt{\frac{n}{\tau}} z_{1} \right) H_{j} \left(\sqrt{\frac{n}{\tau}} \bar{z}_{2} \right) \times \exp \left[-\frac{n}{2(1 - \tau^{2})} \sum_{j=1}^{2} (|z_{j}|^{2} - \tau \operatorname{Re} z_{j}^{2}) \right]$$

Special cases: $\tau = 0$ (Ginibre's ens.) and $\tau = 1$ (GUE).

When $\tau = 0$ (in the limit $\tau \to 0$, to be more precise):

$$K_0^{(n)}(z_1, \bar{z}_2) = \frac{n}{\pi} \sum_{j=0}^{n-1} \frac{n^j}{j!} z_1^j \bar{z}_2^j \exp\left[-\frac{n}{2}(|z_1|^2 + |z_2|^2)\right].$$

Can be seen from

$$\sqrt{\tau^j}H_j\left(\frac{z}{\sqrt{\tau}}\right) = z^j + \sqrt{\tau} \times (...)$$

Sketch of proof: obtain induced density of eigenvalues and use the orthogonal polynomial technique; the required orthogonal polynomials are Hermite polynomials $H_j\left(\sqrt{\frac{1}{\tau}}z\right)$, they are orthogonal in C with weight function $w_{\tau}^2(z,\bar{z})$

Mean eigenvalue density for finite matrices

By Theorem (*), $R^{(n)}(z) = K_{\tau}^{(n)}(z, \bar{z})$, and

(a) if $0 < \tau < 1$ then

$$R_1^{(n)}(z) = \frac{n}{\pi \sqrt{1 - \tau^2}} e^{-n \frac{|z|^2 - \tau \operatorname{Re} z_j^2}{2(1 - \tau^2)}} \sum_{j=0}^{n-1} \frac{\tau^n}{j!} \left| H_j\left(\sqrt{\frac{n}{\tau}}z\right) \right|^2.$$

By letting $\tau \to 0$ in (a):

(b) If $\tau=0$ (Ginibre's ensemble) then

$$R_1^{(n)}(z) = \frac{n}{\pi} e^{-n|z|^2} \sum_{j=0}^{n-1} \frac{n^j |z|^{2j}}{j!}.$$

By letting $\tau \to 1$ in (a):

(c) if $\tau = 1$ (GUE) then

$$R_1^{(n)}(z) \equiv R^{(n)}(x,y) = \delta(y) \sqrt{\frac{n}{2\pi}} e^{-\frac{n}{2}x^2} \sum_{j=0}^{n-1} \frac{1}{j!} |H_j(\sqrt{n}x)|^2.$$

Limit of infinitely large matrices

Consider matrices $\tilde{J} = X + iY$.

Can have two regimes when $n \to \infty$:

- strong non-Hermiticity $E(\operatorname{tr} Y^2) = O(E(\operatorname{tr} X^2)),$
- weak non-Hermiticity $E(\operatorname{tr} Y^2) = o(E(\operatorname{tr} X^2))$.

If $v^2 > 0$ stays constant as $n \to \infty$, have strongly non-Hermitian $J = \frac{1}{\sqrt{n}} (A + ivB)$.

Recall $\tau = \frac{1-v^2}{1+v^2}$. The following result is a corollary of Theorem (*):

Theorem (Girko's Elliptic Law) For any $\tau \in (-1,1)$ and any bounded $D \subset \mathbf{C}$

$$E(N_D) = n \int_D \int \rho(x, y) dxdy + o(n)$$

where N_D is the number of eigenvalues of J in D and

$$\rho(x,y) = \begin{cases} \frac{1}{\pi(1-\tau^2)}, & \text{when } \frac{x^2}{(1+\tau)^2} + \frac{y^2}{(1-\tau)^2} \le 1\\ 0, & \text{otherwise} \end{cases}$$

(Girko considered matrices J with symmetric pairs (J_{12}, J_{21}) , (J_{13}, J_{31}) , ... drawn independently from a bivariate distribution (not necessarily normal))

Local scale: area is measured in units of mean density of eigenvalues, i.e. unit area contains, on average, 1 eigenvalue.

Unit area on the global scale is n times unit area on the local scale.

Limit distribution of eigvs of *J*: uniform in the ellipse

$$\mathcal{E} = \left\{ z : \frac{x^2}{(1+\tau)^2} + \frac{y^2}{(1-\tau)^2} \le 1 \right\}$$

of area $|\mathcal{E}|=\pi(1-\tau^2)$. That is

$$E(N_D) \simeq \frac{|D \cap \mathcal{E}|}{|\mathcal{E}|}.$$

E.g. if $z_0 = x_0 + iy_0 \in \mathcal{E}$ and

$$D = \{z : |x - x_0| \le \frac{\alpha}{2\sqrt{n|\mathcal{E}|}}, |y - y_0| \le \frac{\beta}{2\sqrt{n|\mathcal{E}|}}\}$$

then $E(N_{D_0}) \simeq \alpha \beta$.

But also

$$E(N_D) = \int_D \int R_1^{(n)}(z) d^2z = \int \int \frac{1}{n|\mathcal{E}|} R_1^{(n)} \left(z_0 + \frac{w}{\sqrt{n|\mathcal{E}|}} \right) d^2w$$

Rescaled mean density of eigenvalues (around z_0):

$$\frac{1}{n|\mathcal{E}|} R_1^{(n)} \left(z_0 + \frac{w}{\sqrt{n|\mathcal{E}|}} \right)$$

Similarly, rescaled eigenvalue correlation functions:

$$\widehat{R}_{k}^{(n)}(w_{1},\ldots,w_{k}) := \frac{1}{(n|\mathcal{E}|)^{k}} R_{k}^{(n)} \left(z_{0} + \frac{w_{1}}{\sqrt{n|\mathcal{E}|}}, \ldots, z_{0} + \frac{w_{k}}{\sqrt{n|\mathcal{E}|}} \right)$$

The following result is a corollary of Theorem (*):

Theorem For any $au \in (-1,1)$ and $z_0 \in \operatorname{int} \mathcal{E}$

$$\lim_{n \to \infty} \widehat{R}_k^{(n)}(w_1, \dots, w_k) = \det ||K(w_m, \bar{w}_l)||_{m,l=1}^k,$$

where

$$K(w_1, \bar{w}_2) = \exp\left[-\frac{\pi}{2}(|w_1|^2 + |w_2|^2 - 2w_1\bar{w}_2)\right]$$

E.g., the first two correlation fncs:

$$\hat{R}_1(w) = K(w, \bar{w}) = 1$$

$$\hat{R}_2(w, w_2) = \hat{R}_1(w_1)\hat{R}_1(w_2) - |K(w_1, \bar{w}_2)|^2$$

$$= 1 - \exp\left(-\pi|w_1 - w_2|^2\right).$$

No dependence on z_0 , and, remarkably, no dependence on τ .

$$\lim_{\tau \to 1} \lim_{n \to \infty} \neq \lim_{n \to \infty} \lim_{\tau \to 1}.$$

Regime of weak non-Hermiticity

Now consider matrices $J = \frac{A}{\sqrt{n}} + iv \frac{B}{\sqrt{n}}$ in the limit when

$$n \to \infty$$
 and $v^2 n \to \text{const.}$ (3)

May think of eigenvalues of J as of perturbed eigenvalues of $\frac{A}{\sqrt{n}}$. The eigenvalues of $\frac{A}{\sqrt{n}}$ are all real and are distributed in [-2,2] with density

$$\nu_{sc}(x) = \frac{1}{2\pi} \sqrt{4 - x^2}$$
 (Wigner's semicircle law!)

When perturbed they move off [-2,2] into ${\bf C}$ on the distance of the order $\frac{1}{n}$ (first order perturbations). Correspondingly, consider

$$D = \{(x,y) : x \in I \subset [-2,2], \frac{s}{n} \le y \le \frac{t}{n}\}.$$

Then

$$E(N_D) = \int_D \int_{R_1^{(n)}} (x, y) dx dy = \int_I \int_{s}^{t} d\hat{y} \frac{1}{n} R_1^{(n)} \left(x, \frac{\hat{y}}{n} \right),$$

where

$$\hat{y} = ny$$
.

Hence

$$\hat{\rho}^{(n)}(x,\hat{y}) := \frac{1}{n^2} R_1^{(n)} \left(x, \frac{\hat{y}}{n} \right)$$

is the mean density of rescaled (distorted) eigenvalues $\hat{z} = x + i\hat{y} = x + iny$.

The following result is a corollary of Theorem (*).

Theorem (Fyodorov, Khoruzhenko and Sommers)

Let $au=1-rac{lpha^2}{2n}$. Then, under assumption (iv),

$$\lim_{n\to\infty}\widehat{\rho}^{(n)}(x,\widehat{y})=\widehat{\rho}(x,\widehat{y}),$$

where

$$\widehat{\rho}(x,\widehat{y}) = \frac{1}{\pi\alpha} \exp\left(-\frac{2\widehat{y}^2}{\alpha^2}\right) \int_{-\pi\nu_{sc}(x)}^{\pi\nu_{sc}(x)} \exp\left(-\frac{\alpha^2 u^2}{2} - 2u\widehat{y}\right) \frac{du}{\sqrt{2\pi}}.$$

In the limit when $\alpha \rightarrow 0$

$$\frac{1}{\sqrt{2\pi}\pi\alpha}\exp\left(-\frac{2\hat{y}^2}{\alpha^2}\right) o \frac{1}{2\pi}\delta(\hat{y})$$

and

$$\widehat{
ho}(x,\widehat{y}) o \delta(\widehat{y})
u_{sc}(x)$$
 Wigner's semicircle law

Introduce curvilinear coordinates in the (x, \hat{y}) plane:

$$(x, \tilde{y}) = \left(x, \frac{\hat{y}}{\pi \nu_{sc}(x)}\right).$$

lf

$$\tilde{\rho}(x, \tilde{y}) = \frac{1}{\pi \nu_{sc}(x)} \hat{\rho}\left(x, \frac{\hat{y}}{\pi \nu_{sc}(x)}\right)$$

then

$$\tilde{\rho}(x,\tilde{y}) = \nu_{sc}(x)p_x(\tilde{y}),$$

where

$$p_x(\tilde{y}) = \frac{1}{\sqrt{2\pi}a} \exp\left(-\frac{a^2 \tilde{y}^2}{2}\right) \int_{-1}^1 \exp\left(-\frac{a^2 \tilde{y}^2}{2} - 2t\hat{y}\right) \frac{dt}{\sqrt{2\pi}}$$
 and $a = \pi \nu_{sc}(x)\alpha$.

- Interpretation of $p_x(\tilde{y})$.
- Universality of $p_x(\tilde{y})$.

In the limit when $a \to \infty$ obtain uniform density

$$ilde{
ho}(x, ilde{y}) riangleq \left\{ egin{array}{l} rac{1}{\pi a^2}, & ext{when } | ilde{y}| \leq rac{a^2}{2} \ 0, & ext{otherwise} \end{array}
ight.$$

Eigenvalue correlation functions:

have a crossover from Wigner-Dyson to Ginibre

Other types of weakly non-Hermitian matrices:

• Dissipative matrices: $J = A + i\Gamma$, $\Gamma \ge 0$ and is of finite rank m

Weakly non-unitary matrices:

- Submatrices of size m of unitary matrices of size n, in the limit $n \to \infty$ and m = n a, a is a constant.
- Contractions: random matrices $J=U\sqrt{I-T}$, where $U\in U(n)$ and $0\leq T\leq I$ in the limit when $n\to\infty$ and the rank of T remains finite. (Note that $J^*J=I-T$)

Weakly asymmetric matrices

• J = A + vB, where A and B are real and $A^T = A$, $B^T = -B$.

References

- V. L. Girko, Elliptic law, *Theor. Probab. Appl.* **30**, 677 690 (1986).
- Y.V. Fyodorov, B.A. Khoruzhenko, and H.-J. Sommers, Universality in the random matrix spectra in the regime of weak non-Hermiticity, *Ann. Inst. Henri Poincaré: Physique théorique*, **68**, 449 489 (1998).

Other types of weakly non-Hermitian matrices:

- Y.V. Fyodorov and H.-J. Sommers, Statistic of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance, *J. Math. Phys.* Vol. 38 (1997) p. 1918 1981.
- Y.V. Fyodorov and B. A. Khoruzhenko, Systematic analytical approach to correlation functions of resonances in quantum chaotic scattering, *Phys. Rev. Lett.* Vol. 83 (1999) 65 68.
- K. Zyczkowski and H.-J. Sommers, Truncations of random unitary matrices, *J. Phys. A: Math. and Gen.* Vol. 33 (2000) 2045 2057.
- Y.V. Fyodorov and H.-J. Sommers, Spectra of random contractions and scattering theory for discrete-time systems, *JETF Letters* Vol. 72 (2000) 422 426

Part III Asymmetric Tridiagonal Random Matrices

Imposing periodic boundary conditions:

Problem: Fix a rectangle $K \subset \mathbf{C}$ and let $n \to \infty$. What proportion of eigenvalues of J_n are in K? [Eigenvalue distribution].

Example: $a_j = a$, $b_j = b$, $q_j = q$ for all k and $a, b, q \in \mathbf{R}$. The limit eigenvalue distribution is supported by the ellipse

$$\{(x,y): x=q+(a+b)\cos p, y=(a-b)\sin p, p \in [0,2\pi]\}$$

How will this picture change if allow random fluctuations of a_k , b_k and q_k ? Answer depends on the sign of $a_k b_{k-1}$.

Consider

$$J_n = \text{tridiag}(a_k, q_k, b_k) + \text{p.b.c.}$$

with positive sub- and super-diagonals:

$$a_k = \exp(\xi_{k-1}), b_k = \exp(\eta_k)$$

Assumptions:

- (I) (ξ_k, η_k, q_k) , $k = 0, 1, 2, \dots$, are independent samples from a probability distribution in \mathbb{R}^3 .
- (II) $E(\ln(1+|q|))$, $E(\xi)$ and $E(\eta)$ are finite.

E.g. (ξ_k, η_k, q_k) , $k = 0, 1, 2, \dots$, are independent samples from a 3D prob. distr. with a compact supp. in \mathbb{R}^3 .

By making use of the similarity transformation $W_n = \text{diag}(w_1, \dots w_n)$, $w_k = \exp\left[\frac{1}{2}\sum_{j=0}^{k-1}(\xi_j - \eta_j)\right]$,

$$W_n^{-1}J_nW_n = H_n + V_n,$$

where

$$H_n = \begin{pmatrix} q_1 & c_1 & & 0 \\ c_1 & \ddots & \ddots & \\ & \ddots & \ddots & c_{n-1} \\ 0 & & c_{n-1} & q_n \end{pmatrix} V_n = \begin{pmatrix} 0 & 0 & \dots & 0 & u_n \\ 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ v_n & 0 & \dots & 0 & 0 \end{pmatrix}$$

$$c_k = \sqrt{a_{k+1}b_k} = e^{rac{1}{2}(\xi_k+\eta_k)}$$
 and

$$u_n/v_n=e^{n[\mathrm{E}(\xi_0-\eta_0)+o(1)]}$$
 as $n\to\infty$

rank 2 asymmetric perturb. of symmetric $H_n!$

"Rank 2" \Rightarrow eignv. distbs. of H_n and H_n+V_n are related

"Strongly asymmetric" \Rightarrow non-trivial relation.

Facts from theory of Hermitian random operators (e.g. in Pastur and Figotin, Spectra of random and almost periodic operators):

ullet Empirical distribution fnc. of eigvs. of H_n

$$N(I, H_n) = \frac{1}{n} \# \{ \text{eigvs. of } H_n \text{ in } I \subset \mathbf{R} \}$$

= $\int_I dN_n(\lambda), N_n(\lambda) = N((-\infty, \lambda], H_n)$

 dN_n assigns mass $\frac{1}{n}$ to each of eigvs. of H_n .

Proposition \exists *nonrandom* $N(\lambda) \forall I \subset \mathbf{R}$:

$$\lim_{n o \infty} N(I, H_n) \stackrel{ extit{a.s.}}{=} \int_I dN(\lambda)$$

• Potentials:
$$p(z; H_n) = \int \log |z - \lambda| dN_n(\lambda)$$

$$\Phi(z) = \int \log |z - \lambda| dN(\lambda)$$

• Lyapunov exponent $\gamma(z) = \lim_{n \to \infty} \frac{1}{n} E(\ln ||S_n(z)||)$

Proposition (Thouless formula)

$$\lim_{n \to \infty} p(z; H_n) \stackrel{\text{a.s.}}{=} \Phi(z) \text{ unif. in } z \text{ on } K \subset \mathbf{C} \setminus \mathbf{R}$$

$$= \gamma(z) + \mathbf{E} \log c_0$$

Corollaries:

 $\Phi(z)$ continuous in z;

$$\Phi(x+iy) > \mathbf{E} \log c_0 \quad \forall y \neq 0;$$
 etc.

Consider

$$\mathcal{L} = \{ z \in \mathbf{C} : \Phi(z) = \max[E(\xi_0), E(\eta_0)] \}$$

This curve is an equipotential line of limiting eigenvalue distribution of H_n .

If the probability law of (ξ_k, η_k, q_k) has bounded support then \mathcal{L} is confined to a bounded set in \mathbf{C} and is a union of closed contours:

There are $\alpha_1 < \beta_1 \le \alpha_2 < \beta_2 \le \dots$ such that

$$\mathcal{L} = \cup \mathcal{L}_j, \quad \mathcal{L}_j = \{x \pm iy_j(x) : x \in [\alpha_j, \beta_j]\}$$

Notation:

$$N(K, J_n) = \frac{1}{n} \# \{ \text{eigvs. of } J_n \text{ in } K \}, \quad K \subset \mathbf{C}$$

(describes distribution of eigenvalues of J_n)

Theorem (Goldsheid and Khoruzhenko) Assume (I-II). Then, with probability one,

(a)
$$orall K \subset \mathbf{C} ackslash \mathbf{R}$$
: $N(K,J_n) \xrightarrow[n \to \infty]{} \int\limits_{K \cap \mathcal{L}}
ho(z(s)) ds$

where $\rho(z) = \frac{1}{2\pi} \left| \int \frac{dN(\lambda)}{z-\lambda} \right|$ and ds is the arc-length measure on \mathcal{L} .

(b)
$$\forall I \subset \mathbf{R}$$
: $N(I,J_n) \xrightarrow[n \to \infty]{} \int\limits_{I_{W}} dN(\lambda)$

where
$$I_W = I \cap \{\lambda : \Phi(\lambda + i0) > \max[E(\xi_0), E(\eta_0)]\}$$

Sketch of proof: Let

$$p(z; J_n) = \frac{1}{n} \sum_{j=1}^{n} \log|z - z_j| = \frac{1}{n} \log|\det(J_n - z)|$$

where z_1, \ldots, z_n are the eigenvalues of J_n .

Claim (convergence of potentials)

With probability one,

$$p(z; J_n) \xrightarrow[n \to \infty]{} F(z) = \max[\Phi(z), E(\xi_0), E(\eta_0)] \quad \forall z \notin \mathbf{R} \cup \mathcal{L}$$

The convergence is uniform in $z \in K \subset \mathbf{C} \setminus (\mathbf{R} \cup \mathcal{L})$.

Consider measures $d\nu_{J_n}$ assigning mass $\frac{1}{n}$ to each of the eigenvalues of J_n . Then

$$\frac{1}{2\pi}\Delta p(z;J_n) = d\nu_{J_n}$$

in the sense of distribution theory. By Claim, the potentials $p(z; J_n)$ converge for almost all $z \in \mathbb{C}$. This implies convergence in the sense of distribution theory. Since the Laplacian is continuous in \mathcal{D}' ,

$$rac{1}{2\pi}\Delta p(z;J_n)
ightarrowrac{1}{2\pi}\Delta F(z)$$

in \mathcal{D}' . But then

$$d
u_{J_n}
ightarrow d
u \equiv rac{1}{2\pi}\Delta F(z)$$

in the sense of of weak convergence of measures, hence Theorem.

Proof of Claim

$$\det(J_n - zI_n) = \det(H_n + V_n - z)$$

= \det(H_n - zI_n)\det(I_n + V_n(H_n - z)^{-1})

Therefore

$$p(z; J_n) = p(z; H_n) + \frac{1}{n} \log |d_n(z)|.$$

 V_n is rank 2. $V_n = A^T B$, where

$$A = \begin{pmatrix} u_n & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} B = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ v_n & 0 & \dots & 0 & 0 \end{pmatrix}$$

$$\therefore d_n(z) = \det(I_n + A^T B(H_n - z)^{-1})$$

$$= \det(I_2 + B(H_n - z)^{-1} A^T) \ 2 \times 2 \det$$

$$= (1 + u_n G_{1n}) (1 + v_n G_{n1}) - u_n v_n G_{11} G_{nn}$$

where G_{lk} is the (k, l) entry of $(H_n - z)^{-1}$.

Now use

$$|u_n G_{1n}| = e^{n[E(\xi_0) - \Phi(z) + o(1)]}$$

 $|v_n G_{n1}| = e^{n[E(\eta_0) - \Phi(z) + o(1)]}$

and $|1 - u_n v_n G_{11} G_{nn}| \ge \alpha(z) > 0$, $z \not\in \mathbf{R}$ to complete the proof.

Exactly solvable model

Consider $J_n = \text{tridiag}(e^g, \text{Cauchy}(0, b), e^{-g}) + \text{p.b.c.},$

$$\xi_k \equiv g, \quad \eta_k \equiv -g \quad P(q_k \in I) = \frac{1}{\pi} \int_I dq \frac{b}{q^2 + b^2}$$

In this case $J_n = W_n^{-1}(H_n + V_n)W_n$, where

 $H_n = \text{tridiag}(1, \text{Cauchy}(0, b), 1)$ Lloyd's model For Lloyd's model an explicit expression for $\Phi(z)$ is available:

4 cosh
$$\Phi(z) = \sqrt{(x+2)^2 + (b+|y|)^2} + \sqrt{(x-2)^2 + (b+|y|)^2}$$

By making use of it,

- If $K = 2 \cosh g \le K_{cr} = \sqrt{4 + b^2}$ then \mathcal{L} is empty.
- If $K > K_{cr}$ then \mathcal{L} consists of two symmetric arcs

$$y(x) = \pm \left[\sqrt{\frac{(K^2 - 4)(K^2 - x^2)}{K^2}} - b \right] - x_b \le x \le x_b$$

 x_b is determined by $y(x_b) = 0$.

Corollaries

 $g = \frac{1}{2}E(\xi_0 - \eta_0)$ is a measure of asymmetry of J_n .

(1) Special case: Suppose that $q_k \equiv Const$ all k. Then $\gamma(0) = 0$ and $\gamma(z) > 0 \ \forall z \neq 0$. Since

$$\Phi(0) = \gamma(0) + \frac{1}{2}E(\xi_0 + \eta_0) < \max[E(\xi_0), E(\eta_0)]$$

the equation for \mathcal{L} , $\Phi(z) = \max[E(\xi_0), E(\eta_0)]$, has continuum of solutions for any $g \neq 0$.

For any $g \neq 0$ we have a bubble of complex eigv. around z = 0, i.e. no matter how small the perturb. V_n is, it moves a finite proportion of eigvs. of H_n off the real axis!

(2) Suppose now that the diagonal entries q_k are random. Then $\gamma(x) > 0 \ \forall x \in \mathbf{R}$ (Furstenberg) and

$$0 < \min_{x \in \Sigma} \gamma(x) = g_{\text{cr}}^{(1)} < g_{\text{cr}}^{(2)} = \max_{x \in \Sigma} \gamma(x) \le +\infty$$

where Σ is the support of $dN(\lambda)$. Therefore

- (a) If $|g| < g_{\rm Cr}^{(1)}$, J_n has zero proportion of non-real eigenvalues
- (b) If $g_{\rm Cr}^{(1)} < |g| < g_{\rm Cr}^{(2)}$, J_n has finite proportions of real and non-real eigenvalues.
- (c) $|g| > g_{cr}^{(2)}$, J_n has zero proportion of real eigenvalues.

References

N. Hatano and D. R. Nelson, Vortex pinning and non-Hermitian quantum mechanics, *Phys. Rev.* Vol. B56 (1997) 8651 – 8673.

I.Ya Goldsheid and B.A. Khoruzhenko, Eigenvalue curves of asymmetric tri-diagonal random matrices, *Electronic Journal of Probability*, Vol. 5(2000), Paper 16, 28 pages.