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Abstract: Normalized eigenvalue counting measure of the sum of two Hermitian (or 
real symmetric) matrices An and Bn rotated independently with respect to each other 
by the random unitary (or orthogonal) Haar distributed matrix Un (i.e. An + U ∀BnUn)n 
is studied in the limit of large matrix order n. Convergence in probability to a limiting 
nonrandom measure is established. A functional equation for the Stieltjes transform of 
the limiting measure in terms of limiting eigenvalue measures of An and Bn is obtained 
and studied. 

1. Introduction 

The paper deals with the eigenvalue distribution of the sum of two n×n Hermitian or real 
symmetric random matrices as n ∩ ⊂. Namely we express the limiting normalized 
counting measure of eigenvalues of the sum via the same measures of its two terms, 
assuming that the latter exist and that terms are randomly rotated one with respect 
another by an unitary or an orthogonal random matrix uniformly distributed over the 
group U (n) or O(n) respectively. 

One may mention several motivations of the problem. First, it can be regarded in the 
context of the general problem to describe the eigenvalues of the sum of two matrices in 
terms of eigenvalues of two terms of the sum. The latter problem dates back at least to 
the paper of H. Weyl [33], and is related to a number of interesting questions of combina
torics, geometry, algebra, etc. (see e.g. review [8] for recent results and references). The 
problem is also of considerable interest for mathematical physics because of its evident 
links with spectral theory and quantum mechanics (perturbation theory in particular). 

It is clear that one cannot expect in general a simple and closed expression for 
eigenvalues of the sum of two given matrices via eigenvalues of terms. Hence, it is 
natural to look for a “generic” asymptotic answer, studying a randomized version of the 
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problem in which at least one of the two terms is random and both behave rather regularly 
as n ∩ ⊂. Particular results of this type were given in [16, 19] where it was proved 
that under certain conditions the normalized eigenvalue counting measure of the sum 
converges in probability to the nonrandom limit that can be found as a unique solution of a 
certain functional equation, determined by the both term of the sum. Thus, a randomized 
version of the problem admits a rather constructive and explicit solution in ceratin cases. 
These results were developed in several directions (see e.g. [9]–[11] and the recent work 
[21]). Similar problems arose recently in operator algebras studies, known now as the free 
(non-commutative) probability (see [28, 31, 29] for results and references). In particular, 
the notion of the R-transform and the free convolution of measures were introduced by 
Voiculescu and allowed the limiting eigenvalue distributions of the sum to be given in 
a rather general and simple form. From the point of view of the random matrix theory 
the problem that we are going to consider is a version of the problem of the deformation 
(see e.g. [7] for this term) of a given random matrix (that can be a non-random matrix 
in particular) by another random matrix in the case when “randomness” of the latter 
includes as an independent part the random choice of the basis in which this matrix is 
diagonal. We will discuss this topic in more detail in Sect. 2. 

In this paper we present a simple method of deriving functional equations for the 
limiting eigenvalue distribution in a rather general situation. The method is based on 
certain differential identities for expectations of smooth matrix functions with respect 
to the normalized Haar measure of U (n) (or O(n)) and on elementary matrix identities, 
the resolvent identity first of all. The basic idea is the same as in [16, 19]: to study not the 
moments of the counting measure, as it was proposed in the pioneering paper by Wigner 
[34], but rather its Stieltjes (called also the Cauchy or the Borel) transform, playing the 
role of an appropriate generating (or characteristic) function of the moments. However, 
the technical implementation of the idea in this paper is different and simpler than in 
[16, 19] (see Remark 1 after Theorem 2.1). 

The paper is organized as follows. In Sect. 2 we present and discuss our main results 
(Theorem 2.1). In Sect. 3 we prove Theorems 3.1 and 3.2 giving the solution of the 
problem under the conditions of the uniform in n boundedness of the fourth moments 
of the normalized counting measure of the terms. These conditions are more restrictive 
than those for our principal result, given in Theorem 2.1. Their advantage is that they 
allow us to use the main ingredients of our approach in more transparent form, free of 
technicalities. In Sect. 4 we prove Theorem 2.1, whose main condition is the uniform 
boundedness of the first absolute moment of the normalized counting measure of one 
of the two terms of the sum. In Sect. 5 we study certain properties of solutions of the 
functional equation and of the limiting counting measure. In Sect. 6 we discuss topics 
related to our main result and our technique. 

2. Model and Main Result 

We consider the ensemble of n-dimensional Hermitian (or real symmetric) random 
matrices Hn of the form 

Hn = H1,n +H2,n, (2.1) 

where 

H1,n = Vn
∀AnVn, H2,n = Un

∀BnUn. 
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We assume that An and Bn are random Hermitian (or real symmetric) matrices having 
arbitrary distributions, Vn and Un are unitary (or orthogonal) random matrices uniformly 
distributed over the unitary group U (n) (or over the orthogonal group O(n)) with respect 
to the Haar measure, and An, Bn, Vn and Un are mutually independent. For the sake of 
definiteness we will restrict ourselves to the case of Hermitian matrices and the group 
U (n) respectively. The results for symmetric matrices and for the group O(n) have the 
same form, although their proof is more involved technically (see Sect. 6). 

We are interested in the asymptotic behavior as n ∩⊂ of the normalized eigenvalue 
counting measure (NCM) Nn of the ensemble (2.1), defined for any Borel set � √ R 
by the formula 

# ϕi � �
Nn(ϕ) =

{ }
, (2.2) 

n 

where ϕi, i = 1, . . . , n are the eigenvalues of Hn. 
The problem was studied recently in [31, 26, 30] in the context of free (non-commu-

tative) probability. In particular, it follows from results of [26] that if the matrices An 
and Bn are non-random, their norms are uniformly bounded in n, i.e. their NCM N1,n 
and N2,n have uniformly in n compact supports, and if these measures have weak limits 

,as n ∩⊂

N1,n ∩ N1, N2,n ∩ N2, (2.3) 

then the NCM (2.2) of random matrix (2.1) converges weakly with probability 1 to a 
non-random measure N . Besides, if 

� ⊂ N (dϕ)
f (z) = , Imz > 0, (2.4) 

−⊂ ϕ − z 

is the Stieltjes transform of this limiting measure and 
� ⊂ Nr(dϕ)

fr(z) = , r 1, 2, (2.5) =
−⊂ ϕ − z 

are the Stieltjes transforms of Nr, r = 1, 2 of (2.3), then according to [18] f (z) satisfies 
the functional equation 

f (z) = f1(z + R2(f (z))), (2.6) 

where R2(f ) is defined by the relation 

1 

f2(z) 
− R2(f2(z))) (2.7) z = − 

and is known as the R-transform of the measure N2 of (2.3) (see Remark 3 after Theo
rem 2.1 and [31, 29] for the definition and properties of this transform taking into account 
that our definition (2.7) differs from that of [31] by the sign). The proof of this result in 

(n)[26, 18] was based on the asymptotic analysis of the expectations mk of moments of 
measure (2.2). Since, according to the spectral theorem and the definition (2.2), 

(n) = {M(n) 
, M(n) 

m E k } k n−1TrHn
k, (2.8) k =
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(n)one can study the averaged moments mk by computing asymptotically the expectations 
of the divided by n traces of the powers of (2.1), i.e. of corresponding multiple sums. This 
direct method dates back to the classic paper by Wigner [34] and requires a considerable 
amount of combinatorial analysis, existence of all moments measures N(n) 

1,2 and their 
rather regular behavior as n ∩ ⊂ to obtain the convergence of expectations (2.8) for 
all integer k and to guarantee that limiting moments determine uniquely corresponding 
measure. By using this method it was proved in [26, 18] that the expectation of Nn con-

M
(n)verges to the limit, determined by (2.6)–(2.7) and in [26] that the variance Var{

E{(M(n)
)2 − E2{M(n)} admits the bound 

k } = 

k } k 

{M(n) CkVar k } → 
n2 , (2.9) 

where Ck is independent of n. This bound yields evidently the convergence of all mo
ments with probability 1, thereby the weak convergence with probability 1 of random 
measures (2.2) to the non-random limit, determined by (2.6), (2.7). The convergence 
with probability 1 here and below is understood as that in the natural probability space 

� 
� 

�n, (2.10) = 
n 

where �n is the probability space of matrices (2.1), that is the product of respective 
spaces of An and Bn and two copies of the group U (n) for Un and Vn. 

In this paper we obtain the analogous result under weaker assumptions and by using 
a method that does not involve combinatorics. This is because we work with the Stieltjes 
transforms of measures (2.2) and (2.3) and derive directly the functional equations for 
their limits and the bound analogous to (2.9) for the rate of their convergence (rather 
well known in random matrix theory, see e.g. [23, 11]) by using certain simple identities 
for expectations of matrix functions with respect to the Haar measure (Proposition 3.2 
below) and elementary facts on resolvents of Hermitian matrices. 

The Stieltjes transform was first used in studies of the eigenvalue distribution of 
random matrices in paper [16] and proved to be an efficient tool in the field (see e.g. 
[9–14, 19–21, 24, 25]). We list the properties of the Stieltjes transform that we will need 
below (see e.g.[1]). 

Proposition 2.1. Let m be a non-negative and normalized to unity measure and 
� 

m(dϕ) 
s(z) = , Im z 0 (2.11) 

ϕ − z 
∞=

be the Stieltjes transform of m (here and below integrals without limits denote the 
integrals over the whole axis). Then: 

(i) s(z) is analytic in C \ R and 

|s(z)| → |Im z −1 (2.12) | ; 

(ii) 

Im s(z)Im z > 0, Im z 0 (2.13) ∞= ; 
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(iii) 

lim	 y|s(iy) 1 (2.14) 
y∩⊂ 

| = ; 

(iv) for any continuous function � with compact support we have the inversion (Frobe-
nius–Perron) formula 

�	
1 
� 

δ (ϕ)N (dϕ) = lim 
χ∩0 β 

δ(ϕ)Im s(ϕ + iχ); (2.15) 

(v)	 conversely, any function verifying (2.12)–(2.14) is the Stieltjes transform of a non
negative and normalized to unity measure and this one-to-one correspondence be
tween measures and their Stieltjes transforms is continuous if one will use the 
topology of weak convergence for measures and the topology of convergence on 
compact sets of C \ R for their Stieltjes transforms. 

We formulate now our main result. Since eigenvalues of a Hermitian matrix are 
unitary invariant we can replace matrices (2.1) by 

(2.16) Hn = An + Un
∀BnUn, 

where An, Bn and Un are the same as in (2.1). However, it is useful to keep in mind that 
the problem is symmetric in An and Bn. We prove 

Theorem 2.1. Let Hn be the random n × n matrix of the form (2.1). Assume that the 
normalized eigenvalue counting measures Nr,n, r = 1, 2 of matrices An and Bn converge 
weakly in probability as n ∩ ⊂ to the non-random nonnegative and normalized to 1 
measures Nr, r = 1, 2 respectively and that 

sup |ϕ|EN ∀r,n(dϕ) � m1 < ⊂, (2.17) 
n 

where N ∀ is one of the measures N1,n or N2,n. Then the normalized eigenvalue counting r,n 
measure Nnof Hn converges in probability to a non-random nonnegative and normalized 
to 1 measure N whose Stieltjes transform (2.4) is a unique solution of the system 

� 
�2(z) 

� 

f (z) = f1 z − , 
f (z) 

� 
�1(z) 

� 

f (z) = f2 z − ,	 (2.18) 
f (z) 

1 − �1(z) − �2(z) 
f (z) = −z 

in the class of functions f (z) satisfying (2.12)–(2.14) and functions �r(z), r 1, 2= 
analytic for Im z ∞= 0 and satisfying conditions 

�1,2(z) ∩ 0 as Im z ∩ ⊂,	 (2.19) 

where fr(z), r = 1, 2 are Stieltjes transforms (2.5) of the measures Nr, r 1, 2 and = 
E{·} denotes the expectation with respect to the probability measure, generated by An, 
Bn, Un and Vn. 
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The theorem will be proved in Sect. 4. Here we make several remarks related to the 
theorem (see also Sect. 5). 

Remark 1. The historically first example of a random matrix ensemble representable in 
the form (2.16) was proposed in [16] and has the form 

m

Hm,n = H0,n + 
� 

φiPqi , (2.20) 
i 1=

where H0,n is a non-random n × n Hermitian matrix such that its normalized eigenvalue 
counting measure converges weakly to a limiting non-negative and normalized to 1 mea
sure N0, φi , i = 1, . . . , m are i.i.d. random variables and Pqi are orthogonal projections 
on unit vectors qi , i = 1, . . . , m, that are independent of one another and of {φi m 

1, and i} =
uniformly distributed over the unit sphere in Cn 1. It is clear that the matrix 

m� 
φiPqi (2.21) 

i 1=

can be written in the form U ∀BnUn of the second term of (2.1) or (2.16). According n 
to [16] the NCM of the random matrix (2.21) converges in probability as n ∩ ⊂, 
m ∩ ⊂, m/n ∩ c ∗ 0 to a non-random nonnegative and normalized to 1 measure 
whose Stieltjes transform fMP (z) satisfies the equation 

� � 
φ ε (dφ ) 

�−1 

, (2.22) fMP (z) = − z − c 
1 + φfMP (z) 

where ε is the probability law of φi in (2.20). Assume that ε has the finite first moment 

φ ε (dφ ) < ⊂. (2.23) | |

Then taking (2.21) as the second term of (2.1) we get, in view of inequality 

m�� � 
m

E |ϕ|N2,n(dϕ) → n−1 
� 

E{|φi |} = 
n 

E{|φ |} < ⊂, 
i 1=

the condition (2.17) of Theorem 2.1. Applying then Theorem 2.1 in which f2(z) is given 
by (2.22), we obtain from the two last equations of the system (2.18) that 

�1(z) 
� 

φ ε (dφ ) 
c . 

f (z) 
= 

1 + φfMP (z) 

This and the first equation of (2.18) yield the functional equation for the Stieltjes trans
form of the limiting eigenvalue distribution of ensemble (2.20) 

� � 
φ ε (dφ ) 

� 

f (z) = f0 z − c 
1 + φf (z) 

, (2.24) 

1 In fact, in [16] a more general class of independent random vectors was considered, but we restrict 
ourselves here to the unit vectors, in order to have an example of an ensemble of form (2.1). 



255 On the Law of Addition of Random Matrices 

where f0(z) is the Stieltjes transform of the limiting NCM N0 of the non-random matrix 
H0,n. This equation was obtained in [16] by another method, whose main ingredient was 
careful analysis of changes of the resolvent of matrices (2.20) induced by addition of 
the (m + 1)th term, i.e. by a rank-one perturbation. This allowed the authors to prove 
that the sequence gi,n(z) = n−1Tr(Hi,n − z)−1, i = 1, . . . , m converges in probability 
to the non-random limit f (z, t ), z � C\R, t � [0, 1 , as n , m ∩ ⊂, i ∩∩ ⊂

, m/n ∩ c, i/m ∩ t , and that the limiting function 
]
f (z, t ) satisfies the quasilinear ⊂

PDE, 

�f φ (t ) �f 
, f (z, 0) = f0(z), (2.25) 

�t 
+ c 

1 + φ (t )f �z 

where φ (t ) is the inverse of the probability distribution ε (φ ) P{φi φ . It can = → }
be shown that the solution of (2.25) at t = 1 coincides with (2.20) [16]. Equation 
(2.25) with φ (t ) � const is a particular case of the so-called complex Burgers equation 
which appeared in free probability [31], where the random matrices (2.20) provide an 
analytic model for the stationary processes with free increments, like in the conventional 
probability the heat equation and sums of i.i.d. random variables comprise an important 
ingredient of the theory of random processes with independent increments. 

Remark 2. Consider the ensemble known as the deformed Gaussian ensemble [19]: 

Hn = H0,n +Mn, (2.26) 

where H0,n is a non-random matrix such that its normalized eigenvalue counting mea
sure converges weakly to the limit N0 and Mn = {Mj k 

n 
1 is a random Hermitian j,k=}

matrix whose matrix elements Mj k are complex Gaussian random variables satisfying 
conditions: 

Mj k = Mkj , E{Mj k } = 0, E{Mj1k1 Mj2k2 } = 
2w 2 

n 
ζj1j2 ζk1k2 . (2.27) 

In other words, the ensemble is defined by the distribution 

P(dM) = Z−1 
n exp 

�
− 

n 

4w2 TrM2
� 

dM, (2.28) 

n

dM 
� 

dMjj 

� 
dRe Mj k dIm Mj k,= 

1 1→j <k→nj =

where Zn is the normalization constant. The distribution defines the Gaussian Unitary 
Ensemble (GUE) [17]. This is why ensemble (2.26) is called the deformed GUE [7]. It 
is known [17] that Mn can be written in the form 

(2.29) Un
∀σnUn,Mn =

where Un are unitary matrices whose probability law is the Haar measure on U (n) and σn 
is independent of the Un diagonal random matrix whose normalized eigenvalue counting 
measure converges with probability 1 to the semicircle law. The Stieltjes transform fsc(z) 
of the latter satisfies the simple functional equation [19] 

fsc(z) = (z + 2w 2fsc(z)), (2.30) −
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whose solution yields the semicircle law by Wigner 

Nsc(dϕ) = (4β w 2)−1
�

8w2 − ϕ2α (ϕ)dϕ, (2.31) [−2
≡

2w,2
≡

2w]

where α a,b (ϕ) is the indicator of the interval a, b √ R. It is easy to see that [ ] [ ]
2E{n−1TrMn 2w 2 < ⊂.} =

Denoting by Nsc,n the NCM of the random matrices defined by (2.28) we can rewrite 
this inequality in the form 

� ⊂ 

ϕ2E Nsc,n(dϕ)} < ⊂. (2.32) {
−⊂ 

Thus, if we use (2.29) as the second term in (2.16), it will satisfy condition (2.1). Tak
ing fsc(z) as f2(z) in (2.18) we find from the two last equations of the system that 
�2(z)/f (z) = −2w 2f (z) and then the first equation of (2.18) takes the form 

f (z) = f0(z + 2w 2f (z)), (2.33) 

where f0(z) is the Stieltjes transform of the limiting counting measure of matrices H0,n. 
This functional equation determining the limiting eigenvalue distribution of the deformed 
GUE was found by another method in [19] (see also [12]) for random matrices (2.26) 
in which Mn has independent (modulo the Hermitian symmetry conditions) entries, for 
(2.28) in particular. 

Remark 3. Consider now a probability measure m(dϕ) and assume that its second mo
ment m2 is finite. In this case we can write the Stieltjes transform s(z) of m in the 
form 

s(z) = −(z +γ(z))−1 , 

where γ(z) is the Stieltjes transform of a non-negative measure whose total mass is m2 
(to prove this fact one can use, for example, the general integral representation [1] for 
functions satisfying (2.13) ). Since s≥(z) = z−2(1 + o(1)), z ∩⊂, then, according to 
the local inversion theorem, there exists a unique functional inverse z(s) of s(z) defined 
and analytic in a neighborhood of zero and assuming its values in a neighborhood of 
infinity. Denote 

γ(z(s)) = Rm(s) (2.34) 

and following Voiculescu [31] call Rm(s) the R-transform of the probability measure m. 
By using the R-transforms R1,2 of measures N1,2 we can rewrite the first two equations 
of system (2.18) in the form 

�1,2 1 + R2,1(f (z)) = −R(f (z)) + R2,1(f (z)), (2.35) 
f (z) 

= 
f (z) 

+ z 

where R denotes the R-transform of the limiting normalized counting measure N of the 
ensemble (2.1) (the measure whose Stieltjes transform is f ). These relations and the 
third equation of system (2.18) lead to the remarkably simple expression of R via R1 
and R2, 

R(f ) = R1(f ) + R2(f ), (2.36) 
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that “linearizes” the rather complex system (2.18). The relation was obtained by Voicu
lescu in the context of C∀-algebra studies (see [31, 29] for results and references). Thus, 
one can regard the system (2.18) as a version of the binary operation on measures defined 
by (2.36) and known as the non-commutative convolution. A simple precursor of relation 
(2.36) containing the functional inverses of f and f1,2 for real z lying outside of the 
support of N0 in (2.24) was used in [16] (see also [25]) to locate the support of N 
in terms of the support of N0 in the case of ensemble (2.20). The simplest form of the 
relation (2.36) for the case when both measures are semicircle measures (2.31), i.e. when 
R1,2 2w1

2 
,2f , was indicated in [19]. Formal derivation of relation (2.36) for the case = 

when the both matrices H1 and H2 are distributed according to the laws 

P (n) Z
(n) 

1,2 (dH ) = 1,2exp{−nV1,2(H ) , dH, (2.37) }
where V1,2 are polynomials of an even degree was given in [36]. The : R ∩ R+
derivation is based on the perturbation theory with respect to the non-quadratic part 
of V1,2 and the R-transform is related to the sum of irreducible diagrams of the formal 
perturbation series. Existence of the limiting eigenvalue counting measure for the random 
matrix ensemble (2.37) was rigorously proved in [6] for a rather broad class of functions 
V (not necessarily polynomials). It was also proved that the normalized counting measure 
(2.2) converges in probability to the limiting measure. The form (2.29) of matrices of 
ensemble (2.37) can be deduced from known results on the ensemble (2.37) (see e.g.[5]) 
in the same way as for the GUE (2.28), where V (ϕ) = ϕ2/4w 2 (see [17]). Condition 
(2.17) follows from results of [6, 21]. Thus we can apply Theorem 2.1 to obtain rigorously 
relation (2.36) in the case when matrices Hr, r = 1, 2 in (2.1) are distributed according 
to (2.37). 

Remark 4. The problem of addition of random Hermitian (real symmetric) matrices 
has natural multiplicative analogues in the case of positive definite Hermitian (real 
symmetric) or unitary (orthogonal) matrices. Namely, assuming that An and Bn are 
positive definite matrices and Un is the unitary (orthogonal) Haar distributed random 
matrix we can consider the positive definite random matrix 

1/2
Hn = An Un

∀BnUnAn 
1/2 

. (2.38) 

Likewise, if Sn and Tn are unitary (orthogonal) matrices and Un is as above we can 
consider the random unitary matrices 

(2.39) Vn = SnUn
∀TnUn. 

In latter case the normalized eigenvalue counting measure is defined as n−1 times the 
number of eigenvalues belonging to a Borel set of the unit circle. 

In both cases (2.38) and (2.39) one can study the limiting properties of the NCM’s of 
respective random matrices provided that the “input” matrices An, Bn, Sn and Tn have 
limiting eigenvalue distributions. The first examples of ensembles of the above forms 
as multiplicative analogues of the ensemble (2.20) were proposed in [16], where the 
respective functional equations analogous to (2.24) were derived. A general class of 
the random matrix ensembles of these forms was studied in free probability [28, 31, 2], 
where the notions of the S-transform and the free multiplicative convolution of measures 
were proposed and used to give a general form of the limiting eigenvalue distributions of 
products (2.38) and (2.39). It will be shown in the subsequent paper [27] that a version 
of the method of this paper leads to results analogous to those given in Theorem 2.1 
above. 
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3. Convergence with Probability 1 for Non-Random An and Bn 

As the first step of the proof of Theorem 2.1 we prove the following 

Theorem 3.1. Let Hn be the random n × n matrix of the form (2.1) in which An and 
Bn are non-random Hermitian matrices, Un and Vn are random independent unitary 
matrices distributed each according to the normalized to 1 Haar measure on U (n). 
Assume that the normalized counting measures Nr,n, r 1, 2 of matrices An and Bn= 
converge weakly as n ∩ ⊂ to nonnegative and normalized to 1 measures Nr, r = 1, 2 
respectively and that 

sup 
� 

ϕ4Nr,n(dϕ) = m4 < ⊂, r = 1, 2. (3.1) 
n 

Then the normalized eigenvalue counting measure (2.2) of Hn converges with probability 
1 to a non-random and normalized to 1 measure whose Stieltjes transform (2.4) is a 
unique solution of the system (2.18) in the class of functions f (z), �r(z), r 1, 2= 
analytic for Im z ∞= 0 and satisfying conditions (2.12)–(2.14) and (2.19) respectively. 

Remark 1. The theorem generalizes the results of [26] proved under the condition that 
supports of the NCM Nr,n, r = 1, 2 of An and Bn are uniformly bounded in n. 

Remark 2. By mimicking the proof of the Glivenko–Cantelli theorem (see e.g. [15]), one 
can prove that the random distribution functions Nn(ϕ) = Nn(]− ⊂, ϕ ) corresponding [
to measures (2.2) converge uniformly with probability 1 to the distribution function 
N (ϕ) = N ( − ⊂, ϕ ) corresponding to measure N :] [

P lim sup Nn(ϕ) − N (ϕ) 0 1.{
n∩⊂ ϕ�R 

| | = } = 

We present now our technical means. First is a collection of elementary facts of linear 
algebra. 

Proposition 3.1. Let Mn be the algebra of linear transformations of Cn in itself (n × n 
complex matrices) equipped with the norm, induced by the Euclidean norm of Cn . 

We have : 
n(i) if M � Mn and Mj k j,k=1 is the matrix of M in any orthonormalized basis of Cn ,{ }

then 

(3.2) |Mj k | → ||M||; 

n

(ii) if TrM 
� 

Mjj , then = 
1j =

1/2 |TrM1M2 → (TrM1M1
∀)1/2(TrM2M2

∀) , (3.3) | 

where M∀ is the Hermitian conjugate of M , and if P is a positive definite transfor
mation, then 

|TrMP (3.4) | → ||M||TrP ; 
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(iii) for any Hermitian transformation M its resolvent 

G(z) = (M − z)−1 (3.5) 

is defined for all non-real z, Im z 0,∞= 

||G(z) (3.6)|| → |Im z|−1 

nand if Gj k(z)}j,k=1 is the matrix of G(z) in any orthonormalized basis of Cn then{

|Gj k(z)| → |Im z −1 (3.7)| ; 

(iv) if M1 and M2 are two Hermitian transformations and Gr(z), r 1, 2 are their= 
resolvents, then 

G2(z) = G1(z) − G1(z)(M2 − M1)G2(z) (3.8) 

(the resolvent identity); 
(v)	 if G(z) = (M − z)−1 is regarded as a function of M, then the derivative G≥(z) of 

G(z) with respect to M verifies the relation 

G≥(z) · X = −G(z)XG(z) (3.9) 

for any Hermitian X � Mn, and, in particular, 

2≥(z) G(z)|| → |Im z −2 .	 (3.10)||G || → ||	 |

Here is our main technical tool. 

Proposition 3.2. Let τ Mn ∩ C be a continuously differentiable function. Then the:
following relation holds for any M � Mn and any Hermitian element X � Mn: 

τ≥(U ∀MU ) · [X, U ∀MU dU 0,	 (3.11)]	 = 

U (n) 

where 

M1, M2 M1M2 − M1M2	 (3.12)[ ] = 

is the commutator of M1 and M2 and the symbol 

. . . dU (3.13) 

U (n) 

denotes integration over U (n) with respect to the normalized Haar measure dU . 

Proof. To prove (3.11) we use the right shift invariance of the Haar measure: dU = 
d(U U0), ∈U0 � U (n) according to which the integral 

� 
τ 
�
e−iχXU ∀MU eiχX 

⎫ 
dU 

U (n) 

is independent of χ for any Hermitian X � Mn. Thus its derivative with respect to χ at 
χ = 0 is zero. This derivative is the l.h.s. of (3.11). 
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Proposition 3.3. System (2.18) has a unique solution in the class of functions f (z), 
�1,2(z) analytic for Im z ∞= 0 and satisfying conditions (2.12)–(2.14) and (2.19). 

Proof. Assume that there exist two solutions (f 
≥ 
, �1

≥
,2) and (f 

≥≥ 
, �

≥≥
1,2) of the system. 

1,2 − �
≥≥

Denote ζf f 
≥ − f 

≥≥ 
, ζ�1,2 �

≥
1,2. Then, by using (2.18) and the integral= = 

representation (2.5) for f1,2, we obtain the linear system for ζδ = zζf , and for ζ�1,2, 

ζδ (1 − a1(z)) + b1(z)ζ�1 0,= 

ζδ (1 − a2(z)) + b2(z)ζ�2 0, (3.14)= 

ζδ − ζ�1 − ζ�2 0,= 

where 

�
≥≥
1 z 

a1 I2, b1 I2, I2 I2(z − �1
≥
/f 

≥ 
, z − �

≥≥
1/f ≥≥), (3.15)= 

f ≥ f ≥≥ 
= 

f ≥
=


� 
N2(dϕ)


I2(z
≥, z≥≥) = , (3.16)

(ϕ − z≥)(ϕ − z≥≥) 

and a2, b2 can be obtained from a1 and b1 by replacing N2 and �1 by N1 and �2 in the 
above formulas. For any y0 > 0 consider the domain 

E(y0) = z � C : |Im z |Re z (3.17)∗ y0,{ | | → |Im z|}. 

If s(z) is the Stieltjes transform (2.11) of a probability measure m, then we have for 
z � E(y0), 

���� 
� 

ϕm(dϕ) 

ϕ − z 

���� = 

���� 
� 

|ϕ|→M 

+ 
� 

|ϕ|>M 

���� → 
M 

y0 
+ 2 

� 

|ϕ|>M 

m(dϕ), 

i.e. 

zs(z) = −1 + o(1), z ∩ ⊂, z � E(y0). (3.18) 

Analogously, by using this asymptotic relation and condition (2.19) we obtain that for 
z ∩ ⊂, z � E(y0), 

2z I1,2(z) = 1 + o(1), a1,2(z) = o(1), b1,2(z) = −1 + o(1). 

Thus the determinant b1b2 + b1 + b2 − (a2b1 + a1b2) of system (3.14) is equal asymp
totically to −1. We conclude that if y0 in (3.17) is big enough, then system (3.14) has 
only a trivial solution, i.e. system (2.18) is uniquely soluble. 

In what follows we use the notation 

. . . dU . . . . (3.19)= ◦ �
U (n) 

Proof of Theorem 3.1. Because of unitary invariance of eigenvalues of Hermitian matri
ces we can assume without loss of generality that the unitary matrix V in (2.1) is set to 
unity, i.e. we can work with the random matrix (2.16). We will omit below the subindex 
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n in all cases when it will not lead to confusion. Write the resolvent identity (3.8) for 
the pair (H1, H ) of (2.1): 

G(z) = G1(z) −G1(z)H2G(z), (3.20) 

where 

G(z) = (H1 +H2 − z)−1, G1(z) = (H1 − z)−1 . 

Consider the matrix gn(z)G(z) , where ◦ �

1 
� 

Nn(dϕ) 
gn(z) = TrG(z) = 

ϕ − z
, Im z ∞= 0 (3.21) 

n 

is the Stieltjes transform of random measure (2.2). The resolvent identity (3.20) leads to 
the relation 

gn(z)G(z) gn(z) G1(z) −G1(z)◦gn(z)H2G(z) . (3.22) ◦ � = ◦ � �

By using Proposition 3.2 with the matrix element 
�
(H1 +M − z)−1

� 
as τ(M) we 

ac 
have in view of (3.9) and (3.11), (3.12), 

◦(G X, H2 G)ac 0. 

Choosing the Hermitian matrix X with only (a, b)th and (b, a)th non-zero entries, we 
obtain 

Gaa(H2G)bc = ◦(GH2)aaGbc . (3.23) ◦ � �
n

Applying to this relation the operation n−1 � 
and taking into account the definition 

a 1=
(3.21) of gn(z) we rewrite the last relation in the form 

gn(z)H2G(z) ζ2,n(z)G(z) ,◦ � = ◦ �

where 

1 
ζ2,n(z) = TrH2G(z). (3.24) 

n 

Thus we can rewrite (3.22) as 

gn(z)G(z) gn(z) G1(z) −G1(z)◦ζ2,n(z)G(z) . (3.25) ◦ � = ◦ � �

Introduce now the centralized quantities 

gn
≤(z) = gn(z) − fn(z), ζ2

≤
,n(z) = ζ2,n(z) −�2,n(z), (3.26) 

where 

fn(z) = ◦gn(z) , �2,n(z) = ◦ζ2,n(z) . (3.27) 

With these notations (3.25) becomes 

fn(z)◦G(z) fn(z)G1(z) −�2,n(z)G1(z)◦G(z) + R1,n(z), (3.28) 
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where 

n(z)G(z) −G1(z)◦ζ2
≤
,n(z)G(z) . (3.29) R1,n(z) = −◦g≤

Besides, since 

2 2 2 2 n−1TrH n−1Tr(H1 +H2) 2n−1TrH1 + 2n−1TrH2=

= 2 
� 

→

ϕ2N1,n(dϕ) + 2 
� 

ϕ2N2,n(dϕ) → 4m2 → 4m 1/2 
4 , 

(3.30) 

we have 

µ2 � sup 
n 
(n−1TrH 2) = sup 

n 

� 
ϕ2Nn(dϕ) → 4m2 → 4m 1/2 

4 < ⊂. (3.31) 

Thus 

gn(z) = 
� 

Nn(dϕ) 

ϕ − z 
= − 

1 

z 
+⎭gn(z), 

where 

⎭gn(z) = 
� 

ϕNn(dϕ) 

(ϕ − z)z 
. 

In view of (3.31) 

|z⎭gn(z)| → |Im z|−1 
� 
|ϕ|Nn(dϕ) → |Im z|−1 m 1/4 

4 , 

i.e. the asymptotic relation 

g−1 
n (z) = −z 

�
1 +O 

� 
1 

|Im z| 

�� 

, Im z ∩⊂ (3.32) 

holds uniformly in n. We have also the simple bound 

|gn(z)| → |Imz|−1 (3.33) 

following from (3.4) and (3.7) and, in addition, according to Proposition 3.1 and (3.24), 
the bounds 

1/4 |ζ2,n(z)| → m4 |Imz|−1 , (3.34) 

zζ2,n(z) = n−1TrH2zG(z) = n−1TrH2(−1 +H G(z)). (3.35) 

Hence, in view of (3.31), 

2 1/2 1/2 |zζ2,n(z) → (n−1TrH2 ) + (n−1TrH2
2)1/2(n−1TrH 2G(z)G∀(z))

(3.36) 
|

1/4 1/2 → m4 + 2m4 /y0, 

i.e. zζ2,n(z) is uniformly bounded in n. 
As a result of the above bounds we have for |Im z ∗ y0 uniformly in n,|

� 
1 
� 

||�2,n(z)f −1(z)G1(z) O , ,n || =
y0 

y0 ∩⊂
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i.e. the matrix 1 − �2,n(z)f −1(z)G1(z) is invertible uniformly in n and there is y0n 
independent of n and such that for |Im z ∗ y0,| 

+ �2,n(z)f −1(z)G1(z))
−1 2. (3.37) n||(1 || → 

Thus (3.28) is equivalent to 

◦G(z) = (1 + �2,n(z)f −1(z)G1(z))
−1G1(z) n 

(1 + �2,n(z)f −1(z)G1(z))
−1f −1(z)R1,n(z) n n 

or to 

◦G(z)� = G1 

�
z − �2,n(z)f −1(z)

⎫ 
+ (1 + �2,n(z)f −1(z)G1(z))

−1f −1(z)R1,n(z). n n n 

Applying to this relation the operation n−1Tr we obtain 

fn(z) = f1,n(z − �2,n(z)f −1(z)) + r1,n(z), (3.38) n 

where 
� 

N1,n(dϕ)
f1,n(z) = n−1TrG1(z) = (3.39) 

ϕ − z 

is the Stieltjes transform of the normalized counting measure of H1,n in (2.1) and 

r1,n(z) = n−1Tr(1 + �2,n(z)f −1(z)G1(z))
−1f −1(z)R1,n(z), (3.40) n n 

where R1,n(z) is defined in (3.29). We show in the next Theorem 3.2 that there exists a 
sufficiently big y0 > 0 and C(y0) > 0, both independent of n and such that if z � E(y0), 
where E(y0) is defined in (3.17), then the variances 

v1(z) = ◦ gn≤(z) 2 , v2(z) = ◦ ζ2
≤
,n(z)| | � | | 2 � (3.41) 

admit the bounds 

C(y0) C(y0) 
v1(z) → 2 , v2(z) → 2 . (3.42) 

n n

These bounds, Proposition 3.1, (3.37), and the Schwartz inequality for the expectation 
. . . imply that uniformly in n and in z � E(y0),◦ � 

|r1,n(z)| → 
2C1/

n 

2(y0)
(1 + y−1)◦|f −2(z)n−1TrG(z)G∀(z)| 2 � 1/2 .0 n 

In view of (3.27), (3.32) and the identity zG(z) = −1 + H G(z) we have 

f −1(z)G(z) = −z(1 + O(y−1))G(z) = (1 + O(y−1))(1 − H G(z)), n 0 0 

and since, by (3.3), (3.4) and (3.30), 

2 |◦n−1TrH G(z) → y−1 n−1TrH0�| ◦ � 
2m 14 

/4 
y−1 , |◦n−1TrH 2G(z)G∀(z) 4m 14 

/2 
y−2 ,→ 0 0�| → 
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we obtain that for z � E(y0), 

C1(y0) |r1,n(z)| → 
n

, (3.43) 

where C1(y0) is independent of n and is bounded in y0. 
Furthermore, the bounds (3.33) and (3.34) imply that sequences {fn(z) and �2,n(z)} { }

are analytic and uniformly in n bounded for |Im z ∗ y0 > 0. Thus the sequences are|
compact with respect to uniform convergence on compacts of the domain 

D(y0) = z � C : |Im z . (3.44){ | ∗ y0 > 0}

In addition, according to the hypothesis of the theorem, the normalized counting 
measures N1,n of matrices H1,n converge weakly to a limiting probability measure N1. 
Hence, their Stieltjes transforms (3.39) converge uniformly on compacts of (3.44) to the 
Stieltjes transform f1 of N1. Hence, if y0 > 0 is large enough, there exist two analytic 
in (3.44) functions f and �2 verifying the relation 

� 
�2(z) 

� 

f (z) = f1 z − , Im z ∗ y0. 
f (z) 

| | 

This is the first equation of system (2.18). The second equation of the system follows 
from the argument above in which the roles H1 and H2 are interchanged, in particular 
the quantity ◦n−1TrH1G(z) is denoted �1,n(z). As for the third equation, it is just the 
limiting form of the identity 

n−1Tr(H1,n + H2,n − z)G(z) (3.45)◦ � = 1. 

Thus, we have derived system (2.18). Its unique solubility in domain (3.17) where y0 is 
large enough is proved in Proposition 3.3. Besides, all three functions fn, �r,n, r = 1, 2 
defined in (3.27) are a priori analytic for |Im z > 0. Hence, their limits f, �r, r = 1, 2|
are also analytic for non-real z. In view of the weak compactness of probability measures 
and the continuity of the one-to-one correspondence between nonnegative measures and 
their Stieltjes transforms (see Prop. 2.1(v)) there exists a unique nonnegative measure 
N such that f admit the representation (2.4). The measure N is a probability measure 
in view of (3.32) and.(2.14). 

We conclude that the whole sequence {fn} of expectations (3.27) of the Stieltjes 
transforms gn (3.21) of measures (2.2) converges uniformly on compacts of D(y0), 
where D(y0) is defined in (3.44), to the limiting function f verifying (2.18). This result, 
Theorem 3.2 and the Borel–Cantelli lemma imply that the sequence {gn(z) converges}
with probability 1 to f (z) for any fixed z � D(y0). Since the convergence of a sequence 
of analytic functions on any countable set having an accumulation point in their common 
domain of definition implies the uniform convergence of the sequence on any compact 
of the domain, we obtain the convergence gn to f with probability 1 on any compact of 
D(y0). Due to the continuity of the one-to-one correspondence between probability mea
sures and their Stieltjes transforms (see Prop.2.1(v)) the normalized eigenvalue counting 
measure (2.2) of the eigenvalues of random matrix (2.1) converge weakly with prob
ability 1 to the nonrandom measure N whose Stieltjes transform (2.4) satisfies (2.18). 
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Theorem 3.2. Let Hn be the random matrix of the form (2.1) satisfying the condition of 
Theorem 3.1. Denote 

gn(z) = n−1Tr(Hn − z)−1, ζr,n(z) = n−1TrHr,n(Hn − z)−1 , r = 1, 2. (3.46) 

Then there exist y0 and C(y0), both positive and independent of n and such that the 
variances of random variables (3.46) admit the bounds for |Im z| ∗ y0, 

◦|gn(z) − ◦gn(z)�| 2 � → 
C(y0) 

n2 , (3.47) 

◦|ζr,n(z) − ◦ζr,n(z)�| 2 � → 
C(y0) 

n2 , r = 1, 2, (3.48) 

if z � E(y0), where E(y0) is defined in (3.17). 

Proof. Because of the symmetry of the problem with respect to H1 and H2 in (2.1) it 
suffices to prove (3.48) for, say, ζ2,n(z). Besides, we will use below the notations g(z) 
and ζ(z) for gn(z) and ζ2,n(z) and the notations 1 and 2 for two values z1 and z2 of the 
complex spectral parameter z. We assume that |Im z1,2 ∗ y0 > 0. |

We will use the same approach as in the proof of Theorem 3.1, i.e. we will derive and 
study certain relations obtained by using Proposition 3.2 and the resolvent identity. 

Consider the matrix 

V1 = ◦g≤(1)G(2) , (3.49) 

where g≤(1) = g(1) − ◦g(1) . It is clear that n−1TrV1 for z1 z and z2 z is the 
variance (3.47) that we denoted by v1(z) in (3.41): 

◦|g≤(z) 2 n−1TrV1|z1=z,z2=z = v1(z). (3.50) 

In view of the resolvent identity (3.20) for the pair (H1, H ) we have 

V1 = −G1(2)W, (3.51) 

W = ◦g≤(1)H2G(2) . (3.52) 

Applying Proposition 3.2 to the function 

τ(M) = G≤aa(1)(MG(2))cd , 

where G(z) = (H1 +M − z)−1, and 

G≤(z) = G(z) − ◦G(z)

= (H1 +M − z)−1 
� 

(H1 + U ∀BU − z)−1dU, − 
U (n) 

we obtain the relation 

− ◦(G(1) X, H2 G(1))aa(H2G(2))cd aa(1)([X, H2 G(2))cd [ ] � + ◦G≤ ] � 
aa(1)(H2G(2)[X, H2 G(2))cd 0,− ◦G≤ ] � =
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where the operation [. . . , . . . is defined in (3.12). Choosing as X the Hermitian matrix ]
having only the (c, j )th and (j, c)th non-zero entries, we obtain from the above relation 
the following one: 

−◦Gac(1)(H2G(1))j a(H2G(2))cd + ◦(G(1)H2)acGj a(1)(H2G(2))cd 

aa(1)ζcc(H2G(2))j d � − ◦G≤aa(1)(H2)ccGj d(2)+◦G≤ � 
aa(1)(H2G(2)H2)ccGj d(2) 0.−◦G≤aa(1)(H2G(2))cc(H2G(2))j d � + ◦G≤ � =

Applying to this relation the operation n−1 � 
and taking into account that 

ac 

g≤ = n−1 
� 

G≤aa, 
a 

we have 

2(1), H2]H2G(2) + ◦g≤(1)H2G(2)n−2 ◦[G � � 
+ ◦g≤(1)k(2)G(2) − ◦g≤(1)ζ(2)H2G(2)� = 0, (3.53) 

where 

k(z) = n−1TrK(z), K(z) = BGU(z)B − B, GU (z) = U G(z)U ∀. (3.54) 

Introducing the centralized quantity (cf. (3.26)) 

, (3.55) k≤ = k − ◦k�

and using our notations (3.24) and (3.27), we can rewrite (3.53) as 

V1 + R, (3.56) (1 −�(2))W = −◦k(2)

where 

R = ◦g≤(1)ζ≤(2)H2G(2) − ◦g≤(1)k≤(2)G(2) − T1, (3.57) 

and 

2(1), H2]H2G(2) .T1 = n−2 ◦[G �

In view of the uniform in n bound (3.36)), the function 1 − �(z) is uniformly in n 
bounded away from zero. Thus we have from (3.51), (3.52) and (3.56), 

(1 −�(2))−1G1(2)
⎫−1 

(1 −�(2))−1G1(2)R. (3.58) V1 = 
�

1 − ◦k(2)�

According to (3.54), (3.6) and (3.1), we have uniformly in n, 

2 1/2 1/4 |k(z) → y0
−1 n−1 TrB + |n−1TrB| → y−1 m4 +m4 < ⊂. (3.59) 0|

This bound and the universal bound (3.6) imply that the matrix (1 −◦k(z) (1 −�(z))−1 

G1(z)) is uniformly in n invertible if |Im z ∗ y0 and y0 is large enough, and hence the |
matrix 

Q = 
�

1 − ◦k(z)�(1 −�(z))−1G1(z)
⎫−1 

(1 −�(z))−1G1(z) 
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admits the following bound for |Im z ∗ y0 and sufficiently large y0:| 
C 

, (3.60) ||Q|| → 
y0 

where C is an absolute constant. 
Setting now in (3.58) z1 = z, z2 = z and applying to this relation the operation n−1Tr 

we obtain in the l.h.s. the variance v1(z) because of (3.50). As for the r.h.s., its terms can 
be estimated as follows in view of (3.57): 

(i) 

1/2 1/2 |◦g≤(1)ζ≤(2)n−1TrQH2G(2) ω12(y0)v1 v , (3.61) 2�| → 

where v2 is defined in (3.41) and because, according to (3.1), (3.3), (3.6) and (3.60), 

2 1/2 |n−1TrQH2G(2) → (n−1TrQ∀Q)1/2(n−1TrH2 G(2)G∀(2))|
→ Cy−2 m 1/4 

→ 
(3.62) 

0 4 � ω12(y); 

(ii) 

1/2 1/2 |◦g≤(1)k≤(2)n−1TrQG(2) ω13(y0)v1 v , (3.63) 3�| → 

where 

v3 = ◦|k≤(z) 2 , (3.64) 

because 

1/2 |n−1TrQG(2) → (n−1TrQ∀Q)1/2(n−1TrG(2)G∀(2))| 
(3.65) 

→ Cy0
−2 � ω13(y0); 

(iii) 

2|n−3Tr(Q G (1), H2 H2G(2)) Cm 4 0 2 .[ ] | → 1/2 
y−4 n−2 � 

ξ1

n

(y0) 

Thus we obtain the inequality 

1/2 1/2 ξ1(y0) 
v1 → ω12(y0)v1 v2 + ω13(y0)v1

1/2 
v3

1/2 + 
n2 , (3.66) 

where ω12, ω13 and ξ1 are independent on n and vanish as y0 ∩ ⊂. 
Now we are going to derive analogous inequalities for v2 and v3 defined in (3.41) 

and in (3.64) and to obtain the system 

3
1/2 1/2 ξi(y0) 

vi 
� 

ωij vi vj + 
n

, i = 1, 2, 3. (3.67) 2→ 
1,j ij = ∞=

To get the second inequality of the system we consider the matrix (cf. (3.49)) 

V2 ζ≤(1)H2G(2) . (3.68) = ◦ �
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Applying to V2 the operation n−1Tr and setting z1 = z, z2 = z, we obtain the variance 
v2 of (3.42). On the other hand, using Proposition 3.2 for the function 

τ(M) = (MG(1))≤aa(MG(2))cd , 

we obtain, after performing in essence the same procedure as that used in the derivation 
of (3.53), in particular, choosing the Hermitian matrix X with only the (c, j )th and 
(j, c)th non-zero entries, 

2(2) − T2, (3.69) v2 = −◦g(2)ζ≤(1)k(2)� + ◦ζ≤(1)ζ � 

where 

T2 n−3Tr([GU(1), K(1) BG(2)) (3.70) = ◦ ] � 

and K(z), k(z) are defined in (3.54). Using again centralized quantities (3.26) and (3.55), 
we can write 

◦g(2)ζ≤(1)k(2) = ◦g≤(2)ζ≤(1)k(2)� � + ◦g(2)�◦ζ≤(1)k≤(2)� 

and 

ζ≤(1)ζ2(2)� = ◦ζ≤(1)ζ≤(2)ζ(2) .◦ � + ◦ζ≤(1)ζ≤(2)�◦ζ(2)�

Thus, in view of (3.33), (3.34), (3.59), and the Schwarz inequality we have the bounds 

� → 1/2 1/2 1/4
(1 + m4

1/4 
y0
−1) + v2

1/2 1/2 
y−1 ,◦g(2)ζ≤(1)k(2) v1 v v2 m4 3 0 

and 
1/4 

y−1 .◦ζ≤(1)ζ2(2)� → 2v2m4 0 

These bounds and the analogously obtained bound for T2 in (3.70) lead for m 1/4 
y−1 

4 0 →
1/4 to the second inequality (3.67), in which 

1/4 
y−2 .ω21(y0) = 4m 14 

/4 
, ω23(y0) = 2y−1, ξ2 = 8m4 (3.71) 0 0 

To obtain the third inequality of (3.67) we may use the same scheme as above applied 
to the matrix V3 k≤(1)K(2) (cf. (3.49) and (3.68)). However this requires rather = ◦ �
tedious computations and the existence of the uniformly bounded in n sixth moment m6 
of the measure N2,n. For this reason we consider the quantity 

n−1Tr(BGU(1)B)≤GU(2)B�, (3.72) ◦

where GU(z) is defined in (3.54). As before we would like to obtain for this quantity a 
certain relation, based on the invariance of the Haar measure with respect to the group 
shifts. To this end we will introduce the following function of the unitary matrix U : 

(BU G(1)U ∀B)≤aa(U G(2)U ∀B)cd, 

where G(z) = (H1 + U ∀BU − z)−1 and we will use the analogue of (3.11) obtained 
from the left shift invariance of the Haar measure. This leads to the relation (cf. (3.53) 
and (3.69)) 

k≤(1)g(2)K(2) + ◦k≤(1)ζ(2)GU(2)B − T3 0, (3.73) ◦ � � − ◦k≤(1)GU(2)B� = 



� 
� �

�

�

269 On the Law of Addition of Random Matrices 

where 

n−2 GU(1)BK(1)GU(2)B −K(1)BGU(1)GU(2)B .T3 = ◦ �

We multiply (3.73) by B from the left and introduce again the centralized quantities g≤, 
ζ≤ and k≤ defined in (3.26) and (3.55). We obtain 

(1 −�(2) − f (2)B)◦k≤(1)K(2)

= −◦k≤(1)g≤(2)BK(2) + ◦k≤(1)ζ≤(2)BGU(2)B + BT3. 

In view of (3.32) and (3.36) the imaginary part of the function 1 −�(z) is uniformly in 
n bounded away from zero if |Im z is large enough. Since B is a Hermitian matrix, the |
matrix 

S = (1 −�(2) − f (2)B)−1 (3.74) 

admits the bound 

||S|| = |f (2) −1 · ||((1 −�(2))f −1(2) − B)−1 || → |f (2) −1 
��Im 1 −�(2) 

��−1 

.| | � f (2) 
�� 

By using (3.28) and (3.34) we find that for z � E(y0), where E(y0) is defined in 
(3.17) with sufficiently big y0, we have the uniform in n inequality f (2)Im(1 −
�(2))f −1(2)| ∗ 1/2, i.e. 

|

(3.75) ||S|| → 2. 

This leads to the relation 

= −◦k≤(1)g≤(2)SBK(2)V3 � ◦k≤(1)K(2)� � 
(3.76) 

+ ◦k≤(1)ζ≤(2)SBGU(2)B + SBT3. 

We apply to this relation the operation n−1Tr, set z1 = z, z2 = z and estimate the 
contribution of the first two terms of the r.h.s. as (3.76) as above, using in addition 
(3.75). We obtain 

1/2 |n−1TrSBK(2) 4m4 � ω31(y0),| →
(3.77) 

|n−1TrSBGU(2)B 4m4
1/2 

y−1 � ω32(y0).0| →

To estimate the third term of the r.h.s. of (3.76) we use the identity 

SB = −f −1(2) + (1 −�(2))f −1(2)S, 

the asymptotic relations (3.32) and (3.34) and the bound (3.75). This yields the bound 
|| → 4y0. By using this bound and the same reasoning as in obtaining other bounds ||SB

above, we obtain 

|n−1TrSBT3
Cm4 ξ3 

2 ,2| → 
y0 n

2 
� 

n

where C is an absolute constant. 



� 
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Let us introduce new variables 

1/2 1/2 
u1 = y0v1 , u2 = v2 , u3 v 1/2 

. (3.78)= 3 

Then we obtain from (3.67) and (3.62), (3.65), (3.71), and (3.77) the system 

3
2 ρi 

ui → aijuiuj + 2 , (3.79) 
n

1,j ij = ∞=

in which the coefficients aij , i ∞= j } have the form aij = y−1bij , where bij are bounded0{
in y0 and in n as y0 ∩ ⊂ and n ∩ ⊂. By choosing y0 sufficiently big (and then fixing 
it) we can guarantee that 0 → aij → 1/4, i ∞= j . Thus summing the three relations 
(3.79) we can write the result in the form (au, u) → ρ /n 2, where ρ = ρ1 + ρ2 + ρ3 andˆ
(a)ij = ζij + (1 − ζij )/4, i, j = 1, 2, 3. Since the minimum eigenvalue of the matrixˆ
a is 1/2, we obtain from (3.78) bounds (3.47) and (3.48).ˆ ��

4. Convergence in Probability 

In this section we prove Theorem 2.1. Since, according to Theorem 3.2, the randomness 
of Un in (2.1) (or (2.16)) already allows us to prove that the variance of the Stieltjes 
transform of the NCM (2.2) vanishes as n ∩ ⊂, we have only to prove that the additional 
randomness due to the matrices An and Bn in (2.1) does not destroy this property. We 
will prove this fact first for An and Bn whose norms are uniformly bounded in n (see 
Lemma 4.1 below), and then we will treat the general case of Theorem 2.1 by using a 
certain truncating procedure. 

Proposition 4.1. Let {mn be a sequence of random non-negative unit measures on the}
line and sn be the sequence of their Stieltjes transforms (2.11). Then the sequence{ }
{mn} converges weakly in probability to a nonrandom non-negative unit measure m if 
and only if the sequence sn converges in probability for any fixed z belonging to a{ }
compact K √ z � C : Imz > 0} to the Stieltjes transform f of the measure m.{

Proof. Let us prove first the necessity. According to the hypothesis for any continuous 
function �(ϕ) having compact support we obtain 

lim P 
���� 

�(ϕ)m(dϕ) − 
� 

�(ϕ)mn(dϕ)
�� > χ 

� 

0. (4.1)=
n∩⊂ �� � 

Let α (ϕ) be a continuous function that is equal to 1 if |ϕ| < A and is equal to 0 if 
ϕ > A + 1 for some A > 0. Then| | 

�� 
α (ϕ)m(dϕ) 

� 
α (ϕ)mn(dϕ) 

�� 2 
.s(z) − sn(z)| | → ��

�
ϕ − z 

− 
ϕ − z 

�� + 
min dist z, ±A}}{ {

According to (4.1) the first term in the r.h.s. of this inequality converges in probability 
to zero. Since A is arbitrary, we obtain the required assertion. 

To prove sufficiency we assume that for any z � K , 

lim P{|s(z) − sn(z) > χ 0. (4.2) 
n∩⊂ 

| } =



� � 

� 
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This relation and the inequality (cf. (2.12)) 

|sn(z) max Imz −1 � y−1 < ⊂ (4.3) 0| → 
z�K 

| |

imply that 

lim E{|s(z) − sn(z)|}=0, (4.4) 
n∩⊂ 

i.e. the sequence {sn(z) converges to zero in mean. We have also the inequality } 

≥|sn(z) → y−2 < ⊂. (4.5) 0| 

Inequalities (4.3) and (4.5) imply that the sequence {sn ⊂
1 of random analytic functions n} =

is uniformly bounded and equicontinuous. Thus, for any � > 0 we can construct in K a 
p(�) finite �-network, i.e. a set zl l 1 such that for any z � K there exists zl satisfying the { } =

inequality z − zl �. Then we have for δn(z) � sn(z) − s(z), Sl z z − zl � , 
2
| | → = { : | | → }

and � = y0 χ/2, where χ is arbitrary 

p(�)

sup δn(z) max sup δn(z) χ + 
� 

δn(zl) , 
K 
| | = 

l=1...p(�) z�K�Sl 
| | → | |

l 1=

and hence 

p(�)

E sup δn(z) χ{ 
K 
| |} → + 

� 
E{|δn(zl)|}. 

l 1=

This inequality and (4.4) imply that 

lim E sup s(z) − sn(z) 0. (4.6) { 
z�K 

| |} =
n∩⊂ 

Assume now that the statement is false, i.e. the sequence {mn} does not converge 
weakly in probability to m. This means that there exists a continuous function � of a 
compact support, a subsequence {nk and some χ > 0 such that } 

lim P 
�
�
��� 

�(ϕ)m(dϕ) − 
� 

�(ϕ)mnk (dϕ) ��
�
∗ χ ∂ > 0. (4.7) =

nk ∩⊂ � 

On the other hand, we have from (4.6) and the Tchebyshev inequality that for any r there 
exists an integer n(r) such that for n ∗ n(r), 

P 
� 

sup δn(z) r−1 ∗ 1 − ∂ /2. (4.8) | | →
z�K 

Hence, one can select from the sequence nk a subsequence nk≥ } such that inequalities { } {
(4.7) and (4.8) are both satisfied. Denote by A and by B the events whose probabilities 
are written in the l.h.s. of (4.7) and (4.8). Then P A � B B − 1 ∗ ∂ /2. { } ∗ P{A}+ P{ } 



�� 

� 

�� 
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Hence, for any nk≥ there exists a realization η ≥ belonging to both sets A and B, i.e. fornk 
which both inequalities 

�
�(ϕ)m(dϕ) − 

� 
�(ϕ)mnk

(dϕ)�
��
∗ χ, sup |δ ≥ (z)| → r−1 (4.9)n

� ≥ � 
z�K k 

are valid. In view of the compactness of the family of the random analytic functions {sn}
with respect to the uniform in K convergence and the weak compactness of the family 
of random measure {mn there exists a subsequence n

≥≥ 
of n

≥ 
and a subsequence ofk }} { { k }

realizations such that the subsequence mnk
≥≥ } corresponding to these realizations{{ηn≥≥k 

} 
m and we have in view of (4.7),converges weakly to a certain measure ⎬

� �(ϕ)⎬
�

�(ϕ)m(dϕ) − 
� 

m(dϕ)
��
�
∗ χ > 0. (4.10) 

On the other hand, in view of (4.9) and the continuity of the correspondence between 
measures and their Stieltjes transforms (see Proposition 2.1(v)), the subsequence snk

≥≥ }{
converges uniformly on K to s(z), the Stieltjes transform of the measure m. This is 
incompatible with (4.10), because of the one-to-one correspondence between measures 
and their Stieltjes transforms. 

Remark 1. Since the Stieltjes transforms of non-negative and normalized to unity mea
sures are analytic and bounded for non-real z, we can replace the requirement of their 
convergence for any z belonging to a certain compact set of C± by the convergence for 
any z belonging to any interval of the imaginary axis, i.e. for z = iy, y � y1, y2 ,[ ]
y1 > 0. 

Remark 2. The argument used in the proof of the proposition proves also that if {mn}
is a sequence of random non-negative measures converging weakly in probability to 
a nonrandom non-negative measure m, then the Stieltjes transforms sn of mn and the 
Stieltjes transform s of m are related as follows: 

lim E sup sn(z) − s(z) 0 (4.11){
z�K 

| |} = 
n∩⊂ 

for any compact set K of C±. 

Lemma 4.1. Let Hn be the random n×n matrix of the form (2.1) in which An and Bn are 
random Hermitian matrices, Un and Vn are random unitary matrices distributed each 
according to the normalized to unity Haar measure on U(n) and An, Bn, Un and Vn are 
mutually independent. Assume that the normalized counting measures Nr,n, r = 1, 2 of 
matrices An and Bn converge in probability as n ∩ ⊂ to non-random non-negative 
unit measures Nr, r = 1, 2 respectively and that 

sup T < ⊂, sup T < ⊂. (4.12) 
n 
||An|| → 

n 
||Bn|| → 

Then the normalized counting measure of Hn converges in probability to a non-random 
unity measure N whose Stieltjes transform f (z) is a unique solution of system (2.18) 
in the class of functions f (z), �r(z), r = 1, 2 analytic for Im z ∞= 0 and satisfying 
conditions (2.12)–(2.14) and (2.19). 
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Proof. In view of Proposition 4.1 it suffices to show that limn∩⊂ E{|gn(z) − f (z) 0|} = 
for any z belonging to a certain compact set of C±. Moreover, according to Remark 1 
after Proposition 4.1, we can restrict ourselves to a certain interval of the imaginary axis, 
i.e. to 

z = iy, y � y1, y2 , 0 < y1 < y2 < ⊂. (4.13) [ ]

Since condition (4.12) of the lemma implies evidently condition (3.1) of Theorem 3.1 
and Theorem 3.2, all the results obtained in these theorems are valid in our case for any 
fixed realization of random matrices An and Bn. In addition, all n-independent estimating 
quantities entering various bounds in the proofs of these theorems and depending on the 
fourth moment m4 in (3.1) and on y0 will depend now on T and on y1 and y2 in (4.13), 
but not on particular realizations of random matrices An and Bn. We will denote below 
all these quantities simply by the unique symbol C that may have a different value in 
different formulas. 

In particular, denoting as above by ◦. . . the expectation with respect to the Haar 
measure and using (3.42), we can write that 

C 
1 (z) .E{|gn(z) − ◦gn(z)�|} → E{|v 1/2 |} → 

n 

Thus, it suffices to show that 

lim − f (z) 0, z = iy, y � y1, y2 , (4.14) 
n∩⊂ 

E{|◦gn(z)� |} = [ ]

where y1 is big enough. Introduce the quantities 

ρn(y) = iy(◦gn(iy) − f (iy)), ρr,n(y) = ◦ζr,n(iy) − �r(iy), r = 1, 2. (4.15) 

By using the second equation of system (2.18) we can write the identity 

ρn(y) = iy f2(iy − t1,n(y)) − f2(iy − t1(y)) + χ1,n(y), (4.16) [ ] 

where 

χ1,n(y) = iy[◦gn(iy) − f2(iy − t1,n(y)) , (4.17) 

�1(iy) 
t1,n(y) =

◦ζ1,n(iy)� 
, t1(y) = . (4.18) ◦gn(iy) f (iy) 

We have 

E{|χ1,n(y) → y2E{|◦gn(iy) − g2,n(iy − t1,n(y))|}
E{|g2,n(iy − t1,n(y)) − f2(iy − t1,n(y))|}. (4.19) 

The analogues of (3.38), (3.39) in our case are: 

◦gn(z) = g2,n(z − ◦ζ1,n(z)�◦gn(z) −1) + ⎭� r1,n(z), (4.20) 

where 
� 

N2,n(dϕ) 
g2,n(z) = n−1TrG2(z) = , 

ϕ − z 
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is the Stieltjes transform of random NCM N2,n of H2,n, 

r1,n(z) = n(z)n
−1TrP −1 ◦gn(z) −1G(z)⎭ − ◦g≤ � � 

1,n(z)n
−1TrP −1 ◦gn(z) −1G2(z)G(z) ,− ◦ζ≤ � �

the symbol ◦. . . denotes the expectation with respect to the Haar measure on U (n), 
P 1 − G2(z)t

� 
1,n(z), and = 

gn
≤(z) = gn(z) − ◦gn(z) , ζ1

≤
,n(z) = ζ1,n(z) − ◦ζ1,n(z) (4.21) 

are the respective random variables centralized by the partial expectations with respect 
to the Haar measure. In addition, we have the analogue of (3.43), 

C�
r1,n(z)�

�
→ 

n 
.�⎭

This leads to the following bound for the first term in the r.h.s. of (4.19): 

C
E{|◦gn(iy) − g1,n(iy − t2,n(y) r1,n(iy) .� |} → E{|⎭ |} → 

n 

To show that the second term also vanishes as n ∩ ⊂, we use the analogues of (3.32) 
and (3.36), 

�
1 
�� T T�

◦g1,n(iy) � 2 , |ζ2,n(iy) ,� � + 
iy 
� → 

y
| → 

y 

which imply that 

t1,n(y)| → 2T , (4.22) |

if y1 is big enough. Thus 

E{|g2,n(iy − t1,n(y)) − f2(iy − t1,n(y)) → sup E{|g2,n(iy + λ ) − f1(iy + λ )|}.|} 
|λ |→T 

The r.h.s of this inequality tends to zero as n ∩ ⊂ in view of the hypothesis of 
Theorem 2.1 and Remark 2 after Proposition 4.1. Thus, there exist 0 < y1 < y2 < ⊂
such that for all y � y1, y2 , limn∩⊂ E{|χ1,n(y)|} = 0. Analogous arguments show [
that limn∩⊂ E{|χ2,n(y)

]
0, where χ2,n(y) is defined in (4.17) and in (4.18) where |} = 

the indices 1 and 2 are interchanged. Thus we have 

lim E{|χr,n(y) 0, r 1, 2. (4.23) 
n∩⊂ 

|} = = 

Consider now the first term in the l.h.s. of (4.16). In view of (2.5) we can write this term 
in the form 

ζ1,n iy [f2(iy − t1,n(y)) − f2(iy − t1(y))
� 
I2ρn +] = − 

f 

◦
◦gn f

I2ρ1,n = −a1ρn + b1ρ1,n, � 
(4.24) 

where I2, a1 and b1 are defined by formulas (3.15) and (3.16), in which we have to replace 
�1
≥ , �

≥≥ ◦ � �1, f ≥ and f ≥≥ by �1, ζ1,n , f and ◦gn respectively. Denote by τ τij }i,j 
3 
=1= {

the matrix defined by the l.h.s. of system (3.14) and by � = {�i }3 
i 1 the vector with =



= � 

� �

�
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components �1 = ρn, �2 = ρ1,n, �3 = ρ2,n. Then we have from (4.16), (4.23) and 
(4.24), 

E{|(τ�)1 (4.25)|} → E{|χ1,n|}. 

Interchanging in the above argument indices 1 and 2 we obtain also that 

E{|(τ�)2 (4.26)|} → E{|χ2,n|}. 

Besides, applying to the identity G(z)(H1 + H2 − z) 1 the operation ◦n−1T r . . . 
and subtracting from the result the third equation of system (2.18), we obtain one more 
relation, 

E{|(τ�)3 0. (4.27)|} = 

It follows from the proof of Proposition 3.3 that the matrix τ is invertible if y1 is big 
enough. Denote by || . . . ||1 the l1-norm of C3 and by || . . . || the induced matrix norm. 
Then we have 

E1/2 2 E1/2 
1
2 . (4.28)E{||�||1} → E{||τ−1τ�||1} → {||τ−1 || } {||τ�|| }

It follows from our arguments above that all entries of the matrices τ and τ−1 and all 
components of the vector � are bounded uniformly in n and in realizations of random 
matrices An,Bn, Un and Vn in (2.1). Thus we have 

3� 3�
||τ−1 ||
→ (τ−1)ij | → C, ||τ�||1 → C.τij ||�|j →| |

1 1i,j = i,j =

These bounds and (4.25)–(4.28) imply that 

1/2C .E{||�||1} → 3/2(E{|χ2,n|} + E{|χ2,n|})

In view of (4.23) this inequality implies (4.14), i.e. the assertion of the lemma. 

Now we extend the result of Lemma 4.1 for the case of unbounded An and Bn, having 
the limiting NCM’s with the finite first moments. We will apply the truncation technique 
standard in probability, whose random matrix version was used already in [16, 19]. 

Proof of Theorem 2.1. Without loss of generality we can assume that 

sup 
n 

|
ϕ E N1,n(dϕ) m1 < ⊂. (4.29)| { } → 

For any T > 0 introduce the matrices AT and Bn
T replacing eigenvalues An and Bn lyingn 

in T , ⊂[ by T and eigenvalues lying in by −T . Denote by NT 
r,n, r = 1, 2] ] − ⊂, −T ]

the NCM of AT and BT . It is clear that for any T > 0 and r = 1, 2, the sequencen n 

n∗1 converges weakly in probability to the measures NT as n ∩ ⊂, wherer,n r{NT }
Nr

T are analogously defined via Nr and have their supports in [−T , T ], and that for 
each r 1, 2 the sequence NT 

T ∗1 converges weakly to Nr as T ∩ ⊂. Denote byr= 
ATNn

T , r 1, 2 the NCM of H
{
n
T 
}
H1

T
,n + H2

T
,n = Vn

∀
n Vn + Un

∀Bn
T Un. According to= = 

linear algebra, if Mr, r = 1, 2 are two Hermitian n × n matrices, then 

rank(M1 + M2) → rankM1 + rankM2, (4.30) 
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nand if {µr,l } =1, r = 1, 2 are eigenvalues of Mr, r = 1, 2, then for any Borel set � � R,l

# µ1,l � � − # µ2,l � � rank(M1 − M2).| { } { }| → 

By using these facts we find that 

1 1 |Nn(�) − Nn
T (�)| → 

n 
rank(Hn − Hn

T ) → 
n n )rank(An − AT 

1 + 
n 

rank(Bn − Bn
T ) → N1,n(R\] − T , T [) + N2,n(R\] − T , T [), (4.31) 

valid for any Borel set � � R. As a result, the Stieltjes transform gT of NT and the n n 
Stieltjes transform gn of Nn are related as follows: 

βT |gn (z) − gn(z)| → |Imz| 
�
N1,n(R\] − T , T [) + N2,n(R\] − T , T [)

� 
, 

hence 

βT 
n (z) − gn(z)|} → |Imz

�
E N1,n(R\ − T , T ) + E N2,n(R\ − T , T )

� 
,E{|g | { ] [ } { ] [ }

(4.32) 

and 

lim E Nr,n(R\ − T , T ) 1 − Nr( − T , T ) = o(1), ] [ } → ] [ T ∩ ⊂. 
n∩⊂ 

{

Since the norms of matrices H1 
T and HT are bounded, the results of Lemma 4.1 are 2 

Tapplicable to the function gn (z), so that, in particular, for any non-real z it converges in 
probability as n ∩ ⊂ to a function f T (z) satisfying the system 

� 
�T 

2 (z) 
� 

f T (z) = f1 
T z − 

f T (z) 
, 

� 
�T 

1 (z) 
� 

f T (z) = f2 
T z − 

f T (z) 
, 

1 (z) − �T 
2 (z) f T (z) = 

1 − �T 

. −z 

TIn addition, since E gn (z) and E ζ1
T
,n(z)} are bounded uniformly in n and T for z �{ } {

E(y0) : 
1T |E{gn (z) ,}| → 
y0 

1 
� 
|ϕ|E{N1,n(dϕ)

m1 
,|E{ζ1

T
,n(z)}| → 

y

1

0 

� 
|ϕ|E{N1

T
,n(dϕ)} → 

y0 
} → 

y0 

we have 

|f T (z) 1 (z) . (4.33) | → 
y

1

0 
, |�T | → 

m1 

y0 
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Thus, there exists a sequence Tk ∩ ⊂ such that sequences of analytic functions f Tk (z)
Tk 

{ }
and {�1 (z) converge uniformly on any compact set of the E(y0) of (4.32). In addition,}
the measures Nr

Tk , r = 1, 2 converge weakly to the limiting measures Nr, r 1, 2.= 
Hence, there exist three analytic functions f (z), �1(z) and �2(z) = zf (z) + 1 − �1(z) 
verifying (2.18). Besides, because of (4.33) and (3.1) for z � E(y0) we have 

m1 
�1(z) , and �2(z) = o(1) as y0 ∩ ⊂.| | → 

y0 

As a result of the relations above, f (z) and �r(z), r = 1, 2 satisfy the conditions of 
Proposition 3.3, hence they are defined uniquely. 

Furthermore, we have 

E{|gn(z) − f (z) E{|gn(z) − gTk (z) Tk (z) − f Tk (z)|} + |f Tk (z) − f (z) .n n|} → |} + E{|g |

Hence in view of (4.32), of the arguments above on the convergence of f Tk to f , and of 
Lemma 4.1 we conclude that for each z � E(y0), 

lim E{|gn(z) − f (z) 0. 
n∩⊂ 

|} = 

In view of Proposition 4.1 this implies that the NCM (2.2) of random matrices (2.1) 
converges weakly in probability as n ∩ ⊂ to the non-random measure, whose Stieltjes 
transform is a unique solution of system (2.18). 

5. Properties of the Solution 

Here we will consider several simple properties of the limiting eigenvalue counting 
measure described by Theorem 2.1, i.e. the measure whose Stieltjes transform is a 
solution of (2.18) satisfying (2.12)–(2.14). We refer the reader to works [31, 2, 4, 3] and 
references therein for a rather complete collection of results on properties of the measure, 
resulting from the binary operation in the space of the probability measures, defined by 
a version of system (2.18). This binary operation is called free additive convolution. 

(i) Assume that the supports of the limiting eigenvalue measures of the matrices An and 
Bn are bounded, i.e. there exist −⊂ < ar, br < ⊂, r 1, 2, such that= 

supp Nr √ [ar , br , r = 1, 2. (5.1)]

Then 

supp N √ a1 + a2, b1 + b2 . (5.2)[ ]

n nProof. Denote by {ϕl 1 and by {ϕr,l l 1, r = 1, 2 eigenvalues of Hn and Hr,n in (2.1)l} = } =
respectively. Then, according to the linear algebra (cf.(4.31)), 

# ϕl � R\[a1 + a2, b1 + b2 # ϕ1,l � R\[a1, b1 + # ϕ2,l � R\[a2, b2]}.{ ]} → { ]} {

In view of Theorem 2.1 and (5.1) this leads to the relation N (R�ε ) = 0, i.e. to (5.2). 
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(ii) Examples. 1. Consider the case when An=Bn, i.e. N1 = N2. In this case system 
(2.18) will have the form 

� 
z 2 

� 

f (z) = f1 
2 
− 

f (z) 
.	 (5.3) 

Take N1 N = ω ζ0 + (1 − ω) ζa , where 0 ω 1, a > 0 and ζϕ is the unit measure = 
concentrated at ϕ � R. Then	

→ → 

−ω 1 − ω 
f1(z) = 

z	
+ 

a − z 

and (2.18) reduces to the quadratic equation 

z(z − 2a)f 2 + 2a(1 − 2ω)f − 1 0,= 

whose solution satisfying (2.12) - (2.14) is 

−a(1 − 2ω) − 
�
(z − ϕ+)(z − ϕ−)

, ϕ± = a(1 ± 2
�
ω(1 − ω)). f (z) = 

z(z − 2a) 

By using (2.15) we find that the limiting measure in this case has the form 

N	= (2ω − 1)+ζ0 + (1 − 2ω)+ζ2a + N ∀, (5.4) 

where x max(0, x), and + = 

1 
�
(ϕ+ − ϕ)(ϕ − ϕ−)

N ∀(dϕ) = (5.5) 
β ϕ(ϕ − 2a) 

α[0,2a](ϕ)dϕ 

is the absolute continuous measure of the mass 1 − 2ω. Here α�(ϕ) is the indicator of 
the set � √ R. In the cases ω = 0, 1 (5.4) is ζ2a and ζ0 respectively, and in the case 
ω = 1/2 (5.4) has no atoms, but only the square root singularities 

1 
N ∀(dϕ) =	 (5.6) 

β 
≡
ϕ(2a − ϕ)

α[0,2a](ϕ)dϕ. 

Formulas (5.3)–(5.6) show that: 

–	the result (5.2) is optimal with respect to the endpoints of the measures Nr, r = 1, 2 
and N ; 

–	in the case when N1 = N2 have atoms of the mass µ > 1/2 at the same point then 
the measure N has also an atom of the mass (2µ − 1) (for general results of this type 
see [3]). 

However, in general the support of N is strictly included in the sum of supports of 
measures Nr, r = 1, 2, i.e. the inclusion in the r.h.s part of (5.3) is strict. This can be 
illustrated by the following two examples. 

2. Take again N1 N2, where now = 

1 
N1(dϕ) = 

β 
�
a2 − ϕ2)

α[−a,a (ϕ)dϕ]
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is the arcsin law. This measure corresponds to the matrix ensemble (2.37) with 

� 
0, ϕ < 1, 

(5.7)V (ϕ) = ⊂, 
|
ϕ

| 
> 1.| | 

In this case the equation in (5.3) is again quadratic and leads to 

�
3a2 − ϕ2)

N (dϕ) = α (ϕ)dϕ. 
β(4a2 − ϕ2) [−

≡
3a,
≡

3a]

3. In the next example we take 

1 
Nr(dϕ) = 

r 

�
8ar 2 − ϕ2α [−2

≡
2ar ,2,

≡
2ar ](ϕ)dϕ, r = 1, 2,

4β a2 

i.e. both measures are the semicircle laws (2.31). Then it is easy to find that N is also the 
2semicircle measure with the parameter a 2 a1

2 + a2 . This case was indicated in [19]. It= 
can be easily deduced from the law of addition of the R-transforms of Voiculescu [31], 
because in this case Rr(f ) = 2a 2f . For further properties of the measure N in the caser 
when one of Nr, r = 1, 2 is the semicircle law see [14, 4]. 

(iii) Suppose that one of the measures Nr(dϕ), r = 1, 2 is absolutely continuous with 
respect to the Lebesgue measure, i.e., say, N1(dϕ) = π1(ϕ)dϕ, and 

π1= ess sup π1(ϕ) < ⊂.| |
ϕ�R 

Then N is also absolutely continuous with respect to the Lebesgue measure, i.e.N (dϕ) = 
π(ϕ)dϕ, and 

ess sup π1(ϕ) π1 < ⊂. (5.8)| | = 
ϕ�R 

Proof. Indeed, since the function z∀ = z − �2,1/f (z) is analytic for non-real z, the1 
number of its zeros in any compact set of C\R is finite. Thus, for any ϕ � R there exists 
a sequence of non-real numbers such that zn ∩ ϕ as n ∩ ⊂ and Im z∀ 0. n{zn} ∞= 
Hence, we have from the first equation of system (2.18) for z∀ n + iχ∀n n,= ϕ∀

1 1 
� 

χr
∀πr(µ)dµ 1 

� 
χr
∀dµ

Imf (z) =
β β (µ − ϕr

∀)2 + (χr∀)2 → π1 
β (µ − ϕr

∀)2 + (χr∀)2 = π1. 

This relation and the inversion formula (2.15) yield (5.8). For more general results in 
this direction see the recent paper [3]. 
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6. Discussion 

In this section we comment on several topics related to those studied above. 

1. In this paper we deal with Hermitian and unitary matrices, i.e. we assume that the 
matrices An and Bn in (2.1) are Hermitian and Un and Vn are unitary. It is natural also 
to consider the case of real symmetric An and Bn and orthogonal Un and Vn. This case 
can be handled by using the analogue of formula (3.11) of the orthogonal group O(n). 
Indeed, it is easy to see that this analogue has the form 

τ
≥
(OT MO) · [X, OT MO dO 0,] =

O(n) 

where OT is transposed to O and X is a real symmetric matrix. By using this formula 
we obtain instead of (3.23), 

Gaa(H2G)bc + ◦Gab(H2G)ac = ◦(GH2)aaGbc + ◦(GH2)abGbc .◦ � � � �

The second terms in both sides of this formula give two additional terms 

−n−1GT H2G + n−1H2G
T G 

(cf. (3.40)). These terms, however, produce the asymptotically vanishing contribution 
because, in view of (3.3), (3.6) and (3.37), we have 

�
n 

2 1/4
�
n−2 Tr(1 +�2,nf −1G1)

−1G1(−GT H2G +H2G
T G)

��
3 m .4� ◦ �� → 

ny 0 

Similar and also negligible as n ∩ ⊂ terms appear in analogues of formulas (3.53), 
(3.69) and (3.73) of the proof of Theorem 3.2. As the result, we obtain in this case the 
same system (2.18), defining the Stieltjes transform of the limiting eigenvalue counting 
measure of the analogue of (2.1) with the real symmetric An and Bn and orthogonal 
Haar-distributed Un and Vn. 

2. As was mentioned in the Introduction, our main result, Theorem 2.1, can be viewed 
as an extension of the result by Speicher [26], obtained by the moment method and valid 
for uniformly in n bounded matrices An and Bn in (2.1). Both results are analogues 
for randomly rotated matrices of old results of [16, 19] (see (2.24) and (2.33)) on the 
form of the limiting eigenvalue counting measure of the sum of an arbitrary matrix and 
certain random matrices (see (2.20) and (2.26)), in particular, Gaussian random matrices 
(2.28). In this case, however, there exists another model, proposed by Wegner [32] that 
combines properties of random matrices, having all entries roughly of the same order, 
and of random operators, whose entries decay sufficiently fast in the distance from the 
principal diagonal (see e.g. [22]). A simple, but rather non-trivial version of the Wegner 
model corresponds to the selfadjoint operator H acting in l2(Zd) × Cn and defined by 
the matrix 

H (x, j y, k) = v(x − y)ζj k + ζ(x − y)fj k(x), (6.1) ;

where x, y � Zd , j, k = 1, . . . , n, ζ(x) is the d-dimensional Kronecker symbol, 

v(−x) = v(x), 
� 

v(x) < ⊂, (6.2) | |
x�Zd 
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nand f (x) = {fj k(x) j,k=1, x � Zd are independent for different x and identically }
distributed n × n Hermitian matrices, whose distribution for any x is given by (2.28). 
According to [32] (see also [14]) asymptotic for n ∩ ⊂ properties of operator (6.1) 
resemble, in many aspects, asymptotic properties of matrices (2.28). The “ free” analogue 
of the Wegner model was proposed in [18]. In this case i.i.d. matrices f (x) have the 
form 

f (x) = Un
∀(x)BnUn(x), (6.3) 

where Bn is as in (2.1) and Un(x), x � Zd are i.i.d. unitary n × n matrices whose 
distribution is given by the Haar measure on U (n). By using a version of the moment 
method, similar to that of paper [26], or, rather, its formal scheme, the authors derived 
the limiting form of 

E


⎨
⎩ 

⎧

,


n�
n−1 G(x, j y, j ) ;

1j =

where G(x, j y, k) is the matrix (the Green function) of the resolvent (H − z)−1 of ;
(6.1)–(6.3). The authors also found a certain second moment of the Green function. This 
moment is necessary to compute the a.c. conductivity via the Kubo formula. Because of 
the moment method results of [18] are valid for uniformly bounded in n matrices Bn in 
(6.3), similar to results for matrices (2.1) obtained in [26]. By using a natural extension 
of the differentiation formula (3.11) and the technique developed in [14] to analyze the 
Wegner model, the results of paper [18] can be extended to the case of arbitrary matrices 
Bn in (6.3), because in this case the role of condition (2.17) of Theorem 2.1) plays 
condition (6.2). 

3. As was mentioned before asymptotic properties of random matrices are of consid
erable interest in certain branches of operator algebra theory and in the related branch 
of non-commutative probability theory, known as free probability (see [28, 31, 30] and 
references therein). Here large random matrices are an important example of the asymp
totically free non-commutative random variables, providing a sufficiently rich analytic 
model of the abstract notion of freeness of elements of an operator algebra. The most 
widely used examples of asymptotically free families of non-commutative random vari
ables are Gaussian random matrices and unitary Haar-distributed random matrices. The 
proof of asymptotic freeness of unitary matrices given in [28, 31] reduces to that for 
complex Gaussian matrices and is based on the observation that the unitary part of the 
polar decomposition of the complex Gaussian matrix with independent entries is the 
Haar-distributed unitary matrix. This method requires certain technicalities because of 
the singularity of the polar decomposition at zero. On the other hand, the differentiation 
formula (3.11) allows one to prove directly similar statements. Here is an example of 
results of this type (related results are proved in [35]). 

kTheorem 6.1. Let k be a positive integer, Tr,n}r=1 be a set of n × nmatrices, such that {

sup n−1Tr(T ∀r,nTr,n)
l < ⊂, (6.4) 

r→k; k,l,n�N 

and let Un be the unitary and Haar-distributed random matrix. If for any k � N, 

lim n−1TrTr,n 0, r 1, . . . , k, (6.5) = = 
n∩⊂ 



� 

]	 �

]	 � 
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kthen for any set of non-zero integers such that {mr r 1, 
�k 

1 mr 0,r} = = = 

lim n−1TrUm1 T1,n . . . U
mkTk,n� = 0,	 (6.6)n n n∩⊂

◦

where ◦·� denotes the integration with respect to the Haar measure over U(n). 

Remark 1. The theorem is trivially true in the case when 
�k

r 1 mr ∞= 0. =

In the two subsequent lemmas we omit the subindex n. 

kLemma 6.1. Let Ti i 1 be a set of n× n matrices and U is the Haar-distributed unitary{	 } =
kmatrix. Then for any set of non-zero integers {mi i 1, 

�k 
1 mi = 0 the following identityi} = =

holds: 

m1


n−1Tr Um1 T1 . . . U
mkTk� = − 

� 
n−1TrUl1−1 n−1Tr(Um1−l1+1T1 . . . U

mkTk)�
◦	 ◦
2l1=


mr


− 
� � 

◦n−1Tr(Um1 T1 . . . Tr−1U
lr −1)n−1Tr(Umr −lr +1Tr . . . U

mkTk)

r�{2,...,k ,mr >0 1lr =}

−mr


+	
� � 

◦n−1Tr(Um1 T1 . . . Tr−1U
−lr )n−1Tr(Umr +lr Tr . . . U

mkTk)�. 
r�{2,...,k ,mr <0 1lr =}

(6.7) 

Proof. Without loss of generality assume that m1 > 0. Then, using the analogue of 
formula (3.11) for the average ◦[Um1 T1 . . . UmkTk ab , we obtain for any Hermitian X, 

mr� �
◦[Um1 T1 . . . Tr−1U

l1−1XUmr −lr +1Tr . . . U
mkTk ab

r�{1,...,k ,mr >0 1lr =}
−mr� �
◦[Um1 T1 . . . Tr−1U

−lr XUmr +lr Tr . . . U
mkTk]ab� = 0. (6.8) 

r�{2,...,k ,mr <0 1lr =}

Choosing as X the Hermitian matrix having only (c, d)th and (d, c)th non-zero entries, 
setting then a c and b d and applying to the result the operation n−2 �

a,b, we= = 
obtain (6.7). 

Lemma 6.2. Under the conditions (6.4) and (6.5) the variance D = ◦|∂≤|2� of the 
random variable 

∂ n−1TrL, L Um1 T1 . . . U
mkTk	 (6.9)= =

is of the order n−2 as n ∩ ⊂. 
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Proof. Using the same technique as that in Lemma 6.1 for ◦LabLcd we obtain the 
relation 

m1

D = − 
� 
◦∂ 
≤
n−1TrUl1−1 n−1Tr(Um1−l1+1T1 . . . U

mkTk)

l1=
mr

− 
� � 

◦∂ 
≤
n−1Tr(Um1 T1 . . . Tr−1U

lr −1)n−1Tr(Umr −lr +1Tr . . . U
mkTk)

r�{2,...,k ,mr >0 1lr =}

−mr


+	
� � 

◦∂ 
≤
n−1Tr(Um1 T1 . . . Tr−1U −lr )n−1Tr(Umr +lr Tr . . . U

mkTk)�

r�{2,...,k ,mr <0 1
lr =}

+ n−2τ, 
(6.10) 

where 

mr

τ = − 
� � 

n−1Tr◦(Umr −lr +1Tr . . . TkU
m1 T1 . . . Tr−1U

lr −1)∀L
r�{1,...,k ,mr>0 1lr =}


−mr


+	
� � 

n−1Tr◦(Umr +lr Tr . . . TkU
m1 T1 . . . Tr−1U −lr )∀L�. 

r�{2,...,k ,mr <0 1lr =}

We have obviously for k m 1, = = 

n−1Tr(U T )≤n−1Tr(U T )� → 
n

1
2 n
−1Tr(T T ∀).◦

We proceed further by induction. In view of condition (6.4) and Proposition 3.1 we have 
the bound 

|n−1Tr(Um1 Tr1 . . . U
mpTrp ) C2	 (6.11) ,| → 

where C may depend only on p. Now, since n−1Tr Ul 0, l 0, the summands of ◦ � = ∞= 
the first term in r.h.s. of (6.10) can be estimated as follows: 

�
∂ 
≤
n−1Tr(Ul1 )n−1Tr(Um1−l1+1T1 . . . U

mkTk)��
�
� → C

≡
D ◦|n−1Tr(Ul1 )≤ 2 . (6.12) �◦ | �

Likewise, by using the cyclic property of the trace, the identity ◦a≤bc�	= ◦a≤b≤c� +
, Schwarz inequality, and (6.11), we obtain for the second term in the right-◦a≤c≤�◦b�

hand side of (6.10) the following estimates for r ∗ 2: 

�
∂ 
≤
n−1Tr(Um1 T1 . . . Tr−1U

lr −1)n−1Tr(Umr −lr +1Tr . . . U
mkTk)

��
�◦ ��


2C
≡
D 

�� 
◦|n−1Tr(Um1+lr −1T1 . . . Umr−1 Tr−1)≤→	 | � 

. . . UmkTk)≤|2� . (6.13) + ◦|n−1Tr(Umr −lr +1Tr 
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The third term in the right-hand side of (6.10) can be estimated analogously. The fourth 
term is of the order 1/n 2 in view of (6.9). By the induction hypothesis the expectations 
under square roots in the r.h.s. of (6.13) and (6.12) are of the order n−2. This leads to 
the inequality 

C1 ≡
D 

C2 
D 2 ,→ 

n 
+ 

n

where C1 and C2 are independent of n. This implies the bound D = O(n−2). ��
Proof of Theorem 6.1. We use Lemma 6.1 and again the induction. We have first 

mn−1Tr UmT1U − T2 n−1TrT1n
−1TrT2 0.◦ � = =

In the general case we use Lemma 6.2 to factorize asymptotically the moments in the 
r.h.s. of (6.7). In the resulting relation the expressions n−1Tr Umr1 Tr1 . . . U

mrs Trs are 
zero for any collection (Tr1 , . . . , Trs ) and any n, if 

�s 
◦
∞= 0, and tend to zero asi 1 mri=

n ∩⊂ if 
�

i
s 

1 mri = 0 in view of the induction hypothesis and condition (6.5). This =
leads to (6.6). 

Remark 2. A simple version of the above arguments allows us to prove that the normal
ized counting measure of the Haar distributed unitary matrices converges with probability 
one to the uniform distribution on the unit circle. Indeed, consider again the Stieltjes 
transform gn of this measure, supported now on the unit circle. By the spectral theorem 
for unitary matrices we have 

gn(z) = n−1TrG(z), G(z) = (U − z)−1 , |z| ∞= 1. (6.14) 

We can then obtain the following identities: 

◦TrG2(z)U � = 0, ◦gn(z)n−1TrG(u)U � = 0, 

◦gn(z1)n
−1TrG(z1)Ug(z2)� + ◦n−3TrG(z1)G(z2)U G(z2)� =0. 

(6.15) 

(6.16) 

By using the obvious relations 

G≥(z) = G2(z), G(0) = U −1 , G(⊂) = 0, 

we obtain from the first of identities (6.15) 

fn(z) � ◦gn(z)� = 

� 
0, |z| < 1 
−z−1 , |z| > 1. 

This relation shows that the expectation of the normalized counting measure of U is 
the uniform distribution on the unit circle, the fact that follows easily from the shift 
invariance of the Haar measure. Now the second identity (6.15) and (6.16) lead to the 
bound 

2 C(r0) |◦gn(z)�| → 
n2 , z r0,| | →

where C(r0) is independent of n and finite if r0 is small enough. This bound and argu
ments analogous to those used in the proof of Theorem 3.1 imply that the normalized 
eigenvalue counting measure of unitary Haar distributed random matrices converges 
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with probability one to the uniform distribution on the unit circle. This fact as well as 
the analogous fact for the orthogonal group can be deduced from the works by Dyson 
(see e.g. [17]), where the joint probability distribution of all n eigenvalues of the Haar 
distributed unitary or orthogonal matrices was found and studied. This technique is more 
powerful but also more complex than that used above and based on rather elementary 
means. 
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