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Abstract 

Using the theory of lattices of non-crossing partitions, an explicit expression for 
the moments and free cumulants of the asymptotic distribution of certain infinite ran
dom matrices is obtained and extended to several cases. From the explicit expres
sion, we give a self-contained proof of the Tse-Hanly formula for the output signal-to-
interference-plus-noise ratio of MMSE multiuser detector. We use the moment results 
to design an asymptotic reduced-rank linear multiuser detector. Also we apply these 
results to analyze linear-conjugate MMSE receivers and multiple antenna receivers. 

1 Introduction 

In order to gain insight into the performance of receivers in a DS-CDMA system with 
large processing gain and many users, much work has been devoted to the asymptotic 
analysis for synchronous DS-CDMA with random spreading [17, 7, 15]. In [15], the 
asymptotic output signal-to-interference-plus-noise ratio (SINR) of the MMSE receiver 
is shown to satisfy a fixed point equation by using recent results on the asymptotic eigen
value distribution of certain infinite random matrices. The reduced-rank MMSE receiver 
is proposed and analyzed in [10]. As discussed in [10] the moments of the asymptotic 
eigenvalue distribution of some infinite random matrix are relevant to find the large sys
tem limit of the output SINR and the optimal weights of the reduced-rank receiver. Sev
eral recursive procedures to obtain the asymptotic eigenvalue moments are proposed in 
[20, 10]. A certain combinatorial problem is shown in [20] to be equivalent to the problem 
of computing the moments explicitly. 

In Section 2, using the theory of lattices of non-crossing partitions, explicit expres
sions for the asymptotic eigenvalue moments of the correlation matrix of the CDMA sig
nal SDSH (S is a matrix whose columns are the normalized spreading sequences of the 
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users, and D is a diagonal matrix with diagonal elements the received powers of the 
users), with (�)H denoting the conjugate transpose, are obtained for several classes of in
finite random matrices. In case (i) S consists of i.i.d. random variables, and the explicit 
expression for the moments is obtained by solving the combinatorial problem formulated 
in [20]. This kind of S (i.i.d. entries) arises when we consider a single receive antenna DS
CDMA system with random spreading. In case (ii) each column of S consists of repeated 
i.i.d. sequences with block i.i.d. phases; this kind of S arises when we consider multiple 
receive antenna randomly-spread DS-CDMA where the phases of the fading coefficients 
at different antenna elements are independent. In case (iii) each column of S consists of 
repeated i.i.d. sequences with linearly increasing phases; this kind of S arises when we 
consider multiantenna receiver for DS-CDMA in line-of-sight transmission. In cases (iv), 
(v) and (vi), each column of S is formed by stacking the matrices in (i), (ii) and (iii) with 
their conjugate. These kinds of S arise when we consider the newly proposed linear-
conjugate MMSE (LCM) receiver [16] for single antenna and multiple antenna systems. 

There are several motivations and applications for the results in Section 2, which 
are discussed in detail in Section 3. In Section 3.1, the large-system limit of the opti
mal weights for the reduced-rank MMSE/LCM receivers is obtained from the explicit 
expression of the moments. Six environments are considered, corresponding to the direct 
applications of the results of the six classes of matrices obtained in Section 2. Receivers 
that employ the asymptotic limit of the optimal weights instead of the optimal weights 
themselves are called asymptotic reduced-rank receivers. The desirable feature of these 
receivers is that the asymptotic limit of the optimal weights does not depend on the re
alizations of the spreading sequences, which is particularly useful when the CDMA sys
tem uses long sequences. With the pre-calculated asymptotic weights, the reduced-rank 
MMSE/LCM receivers can be implemented in an efficient way as discussed in [12]. In 
Section 3.2 the asymptotic performance of the receivers considered in 3.1 is given and 
the asymptotic equivalence of them is established. In Section 4, based on the result on 
the moments we give a self-contained proof of the fixed point equation satisfied by the 
asymptotic output SINR of the MMSE receiver, which is originally derived in [15] by 
means of the Silverstein and Bai theorem [13]. Section 5 contains our numerical results, 
which show that for reasonably large processing gain (N = 32), the output SINR of the 
asymptotic reduced-rank receiver lies within 1 dB from that of the reduced-rank receiver 
using spreading-sequence-dependent optimal weights. For larger processing gain, say 80 

or larger, the performance gap between the two receivers is less than 0:5 dB. 

2 Asymptotic Eigenvalue Moments 

In this section we state our results on the asymptotic eigenvalue moments. Correspond
ing situations in which these results can be applied are discussed in Section 3. 

Definition: Let us consider the vector space of the n � n matrices Mn(C) whose elements 
are complex random variables. Mn(C) with the ordinary sum, and product, and adjunc
tion (Hermitian transpose) is a ��algebra. It said that the random matrix Vn 

Mn(C)2 
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has the m-th limit moment �m 

if exists finite the following limit 

1 

�m 

, lim E[TracefVm 

n 

g]: 

n!1 n 

The set of all limit moments of the matrix Vn 

defines the the limit distribution of Vn. 
If Vn 

is a self-adjoint matrix, the limit distribution of Vn 

is the function, F (�), de
scribed by the collection of its moments [18, 9] as follow: Z 

1 

dF (�) , lim E[TracefVm�m n 

g] 

n!1 n 

F (�) is also called the limit eigenvalue distribution of Vn 

and it is easy to see [18, 9] that: 

F (�) = lim E[Fn(�)] 

n!1 

where Fn(�) is the empirical distribution of the eigenvalues of Vn 

[18]. 

f

Let us introduce here the necessary notation used in the following results: sup
pose a vector of k integers m1 

; : : : ; m k 

is partitioned into n equivalence classes under the 
equivalence relation a = b, and the cardinalities of the equivalence classes are given by 
1 

; : : : ; f n, then we define the following function: 

f (m1 

; : : : ; m k 

) , f1 

! fn!:� � � 

For example, f (1; 1; 4; 2; 1; 2) = 3! � 2! � 1!. 
The proofs of Propositions 1 and 4 are given in Appendices A and B respectively. 

Propositions 2, 3, 5, 6 can be shown following similar methods used in the proof of Propo
sition 4 and a brief explanation of the proofs is given at the end of Appendix B. 

2.1 I.I.D. Sequences 

Proposition 1: Suppose the N K matrix S consists of i.i.d. zero-mean random variables with � 

variance 1=N , D is a K K diagonal matrix with non-negative diagonal elements, and the � 

empirical distribution of the diagonal elements of D converges almost surely (a.s.) to a non-
random limit distribution. Then the mth moment of the limit eigenvalue distribution G(�) of 
SDS

H as K, N go to infinity with K =N = � is: 

Z m 

�mdG(�) = 

X 

�k 

X 

c(m1 

; : : : ; m k 

) � E[�m1 ] � � � E[�mk ]; (1) 
k=1 

m1 

+���+mk 

=m 

where � is a nonnegative random variable whose distribution is the non-random limit distribution 
of the diagonal elements of D, and 

m! 

c(m1 

; : : : ; m k 

) = ; (2)
(m � k + 1)! � f (m1 

; : : : ; m k 

) 

with f (m1 

; : : : ; m k) is as defined above. 

Proof: In Appendix A. 
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An equivalent result on the asymptotic eigenvalue moments in the i.i.d.-sequences 
case can be found in [21] in a slightly different form. The reason we still present our proof 
for this case (in Appendix A) is to introduce necessary techniques that are to be used in 
the generalization to other cases. A few remarks on the assumption made in Proposition 
1 will be made in Section 3.1.1. 

2.2 Repeated Sequences with Block I.I.D. Phases 

Proposition 2: Let N = LN 

0. Let tk 

= ( Uk; 1 

; : : : ; U k ;N 

0 )T (1 � k � K), where Uk ;j 

’s (1 � k � 

K; 1 � j � N 

0) are an array of real- valued i.i.d. zero-mean random variables with unit variance. 
Let S = ( s1 

; : : : ; sK 

) where 

1 j� k;1 

j� k;L  )Tsk 

= 

p (tT e ; : : : ; t
T e ; (3)k k 

N 

and �k ;l 

’s (1 � k � K; 1 � l � L) are i.i.d. random variables uniformly distributed on [0; 2�),p 

and 1= N D K �is the normalizing factor. is a K diagonal matrix with non-negative diagonal 
elements, and the empirical distribution of the diagonal elements of D converges a.s. to a non-
random limit distribution. Then the mth moment of the limit eigenvalue distribution G(�) of 
SDS

H as K, N go to infinity with K =N = � is the same as in Proposition 1, i.e. (1). 

Proof: Refer to Appendix B for a brief explanation of the proof. 

2.3 Conjugate Sequences 

Proposition 3: Let N=2N’. Let tk 

= (Uk; 1 

; : : : ; U k ;N 

0 )T (1 � k � K), where Uk ;j 

’s (1 k� � 

K; 1 � j � N 

0) are an array of real- valued i.i.d. zero-mean random variables with unit variance. 
Let S = ( s1 

; : : : ; sK 

) where 

1 j� k ; t
T e�j� ksk 

= 

p (tT e )T ; (4)k k 

N 

and �k 

’s (1 k K) are i.i.d. random variables uniformly distributed on [0; 2�), and 1=� � 

is the normalizing factor. D is a K � K diagonal matrix with non-negative diagonal elements, 
and the empirical distribution of the diagonal elements of D converges a.s. to a non-random limit 
distribution. Then the mth moment of the limit eigenvalue distribution G(�) of SDSH as K, N 

go to infinity with K =N = � is the same as in Proposition 1. 

p 

N 

Proof: Refer to Appendix B for a brief explanation of the proof. 

2.4 Repeated Sequences with Conjugate Block I.I.D. Phases 

Proposition 4: Let N=2LN’. Let tk 

= (Uk; 1 

; : : : ; U k ;N 

0 )T (1 � k � K), where Uk ;j 

’s (1 � k � 

K; 1 � j � N 

0) are an array of real- valued i.i.d. zero-mean random variables with unit variance. 
Let S = ( s1 

; : : : ; sK 

) where 

1 

sk 

= 

p 

j� k;1 

j� k;L  ; t
T j� k;1 

j� k;L  )T(tT e ; : : : ; t
T e e� ; : : : ; t

T e� ; (5)k k k k 

N 
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and �k ;l 

’s (1 � k � K; 1 � l � L) are i.i.d. random variables uniformly distributed on [0; 2�),p 

and 1= N D K �is the normalizing factor. is a K diagonal matrix with non-negative diagonal 
elements, and the empirical distribution of the diagonal elements of D converges a.s. to a non-
random limit distribution. Then the mth moment of the limit eigenvalue distribution G(�) of 
SDS

H as K, N go to infinity with K =N = � is the same as in Proposition 1. 

Proof: In Appendix B. 

2.5 Repeated Sequences with Linearly Increasing Phases 

Proposition 5: Let N=LN’. Let tk 

= (Uk; 1 

; : : : ; U k ;N 

0 )T (1 � k � K), where Uk ;j 

’s (1 k� � 

K; 1 � j � N 

0) are an array of real- valued i.i.d. zero-mean random variables with unit variance. 
Let S = ( s1 

; : : : ; sK 

) where 

1 j� k ; t
T e2j� k eLj�k )Tsk 

= 

p (tT e ; : : : ; t
T ; (6)k k k 

N 

and �k 

’s (1 k K) are i.i.d. random variables uniformly distributed on [0; 2�), and 1=� � 

is the normalizing factor. D is a K � K diagonal matrix with non-negative diagonal elements, 
and the empirical distribution of the diagonal elements of D converges a.s. to a non-random limit 
distribution. Then the mth moment of the limit eigenvalue distribution G(�) of SDSH as K, N 

go to infinity with K =N = � is the same as in Proposition 1. 

p 

N 

Proof: Refer to Appendix B for a brief explanation of the proof. 

2.6 Repeated Sequences with Conjugate Linearly Increasing Phases 

Proposition 6: Let N=2LN’. Let tk 

= (Uk; 1 

; : : : ; U k ;N 

0 )T (1 � k � K), where Uk ;j 

’s (1 � k � 

K; 1 � j � N 

0) are an array of real- valued i.i.d. zero-mean random variables with unit variance. 
Let S = ( s1 

; : : : ; sK 

) where 

1 j� k eLj�k ; t
T e�j� k e�Lj�k )Tsk 

= 

p (tT e ; : : : ; t
T ; : : : ; t

T ; (7)k k k k 

N 

and �k 

’s (1 k K) are i.i.d. random variables uniformly distributed on [0; 2�), and 1=� � 

is the normalizing factor. D is a K � K diagonal matrix with non-negative diagonal elements, 
and the empirical distribution of the diagonal elements of D converges a.s. to a non-random limit 
distribution. Then the mth moment of the limit eigenvalue distribution G(�) of SDSH as K, N 

go to infinity with K =N = � is the same as in Proposition 1. 

p 

N 

Proof: Refer to Appendix B for a brief explanation of the proof. 

3 Motivations and Applications 

In this section, we discuss motivations and applications of the results in Section 2. 
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3.1 Asymptotic Reduced-Rank Receiver 

Expressions for the asymptotic moments can be used to implement the asymptotic redu-
ced-rank MMSE/LCM receivers. With the pre-calculated asymptotic weights, the redu-
ced-rank MMSE/LCM receivers can be implemented in an efficient way as discussed in 
[12]. In what follows, we consider six situations: (i) reduced-rank single antenna MMSE 
receiver; (ii) reduced-rank multiantenna MMSE receiver; (iii) reduced-rank single antenna 
LCM receiver; (iv) reduced-rank multiantenna LCM receiver; (v) reduced-rank multi-
antenna MMSE receiver in line-of-sight transmission; (vi) reduced-rank multiantenna 
LCM receiver in line-of-sight transmission. These situations correspond to applications 
of Propositions 1-6, respectively. 

In these situations, we assume synchronous DS-CDMA with processing gain N 

2and number of users K. Ak 

is the received amplitude of user k, bk 

f�1g is the bit 
transmitted by user k, and sk 

is the spreading sequence of user k. For a single antenna 
j�receiver, the phase of the complex fading coefficient of user k is e k . For a multiantenna 

receiver, the phase of the complex fading coefficient of user k at the lth antenna element 
j� k 

(l)is e . The phases (�k’s or �k 

(l)’s) are modelled as i.i.d. random variables uniformly 
distributed on [0; 2�). The spreading sequences are assumed known at the receiver. Per
fect knowledge of the fading channel gain (magnitude and phase) at the receiver is also 
assumed, which could be the case at a base station. For a single antenna receiver, the 
noise vector at the output of the chip-matched filter is n. For a multiantenna receiver, 
nl 

is the chip-matched filter output noise vector at the lth antenna element, and they are 
independent across antenna elements. The distribution of the noise vector is N(0; � 

2 

I). 
Random spreading is used to model the spreading sequences. Specifically, 

1 

sk 

= 

p 

N 

� (Vk; 1 

; : : : ; V k ;N 

)T ; (8) 

� �where Vk ;j 

’s (1 k K; 1 � j � N ) are i.i.d. random variables taking equiprobable p 

values on f�1g. 1= N normalizes the energy of the spreading sequences. 

3.1.1 Reduced-Rank Single Antenna MMSE Receiver 

In a single antenna DS-CDMA system, the output of the chip-matched filter is 

K X 

Ake
j�

r = 

k bk 

sk 

+ n: (9) 
k=1 

j� kwhere Ak 

e is a complex gain taking into account the channel effects. 
Put in matrix form 

r = SAb + n; (10) 

(s1 

ej� 

sK 

ej� �where S = 

1 ; : : : ; 

K ) is an N K matrix, A = diagfA1 

; : : : ; A K 

g, and b = 

(b1 

; : : : ; b K 

)T . The MMSE receiver for user 1 is 

c = ( S1 

D1 

S
H + �2 

I)�1 

s1 

ej� 1 ; (11)1 
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(s2 

ej� 

sK 

ej� 2where S1 

= 

2 ; : : : ; 

K ), and D1 

= diagfA2 ; : : : ; A K 

g. The rank D (D N )2 

� 

reduced-rank MMSE receiver for user 1 is 

D�1 X


S1 

D1 

S
H + �2 

I
�m 

s1 

ej� 1 ; (12)1 

�


= wmcD 

m=0 

where the weight vector w = ( w0 

; : : : ; w D�1 

)T is chosen to maximize the output SINR and 
is given by [11, 16] 

3


�1 

22
 3


+ A2 HD 

+ A2 HD�1 

H0� � �H1 1 

H0 

H0 1 

H0 

. . . . . . (13) w =
64


64


75


75


;


. . .. . . 
+ A2 

1 

� � �HD 

+ A2 HD�1 

H0 

H2D�1 

HD�1 

HD�1 

HD�11 

where the (i; j)-entry of the matrix above is Hi+j�1 

+ A2 Hi�1 

Hj�1 

with1 �m 

Hm 

= s
H 

1 

�


S1 

D1 

S
H + �2 

1 

I (14)s1 

: 

From the expression above, we see that the optimal weights depend on the realizations 
of the spreading sequences. Therefore in a system using long sequences, they need to 
be computed and updated symbol to symbol, which hampers real-time implementation. 
It is therefore desirable to find a set of suboptimal weights that do not depend on the 
spreading sequences while maintaining acceptable performance. The asymptotic values 
of the weights in the large system limit seem to be a promising solution. The large system 
limit is taken as N and K go to infinity with K =N = �. Using Corollary 1 in [4] and the 
results in [21], it can be shown that if the empirical distribution of the diagonal elements 
of the matrix D1 

converges almost surely (a.s.) to a fixed non-random limit distribution, 
then Z
�m a:s: 

1 �
S1 

D1 

S
H 

1 

�m gs
H 

1 

�
S1 

D1 

S
H 

1 

] = �mdG(�); (15)lim lim E[Tracef!s1 

NK;N K;N!1 !1 

K
N 

K
N

=� =� 

where G(�) is the limit eigenvalue distribution of S1 

D1 

S
H and the convergence is almost 1 

surely. For proof see Appendix C. 
Let w1 denote the asymptotic weight vector, from (15) it is readily shown that 

�1 

22
 3
 3


H1 + A2 H1H1 H1 + A2 H1 H1 

1 1 0 0 

� � � D 1 D�1 0 

H1 

0 

. . . . . . ; (16)w
1 =

64


64


75


75


. . .. . . 
H1 + A2 H1 H1 H1 + A2 H1 H1 H1 

D 1 D�1 0 

� � � 2D�1 1 D�1 D�1 D�1 

where Z


H
1 = (� + �2 )mdG(�): (17)m 

Now we can apply Proposition 1 to obtain H1 and therefore the asymptotic weights. m 
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Proposition 1 requires that the empirical distribution of the received powers of the 
interfering users, which are the diagonal elements of D1 

, converges a.s. to a fixed non
random limit distribution. Based also on the observation given at beginning of the Section 
2, we recall here that in order to verify the a.s. convergence of empirical distribution of 
the diagonal elements of D1 

to a fixed non-random limit distribution it is enough to verify 
that all the moments of the matrix D1 

exist, i.e. the limit in the following equation exists 

1 pD 

, lim E[TracefD1 

g]�p (K � 1) 

K!1 

pand that 8p the normalized trace of the matrix D1 

converges a.s. to a non-random limit 
given by the moments of D1 

i.e.: 

1 p 

a:s:
lim TracefD1 

g ! 

D 0 � p < 1�p(K � 1) 

K!1 

Notice also that the received power of each user is a positive random variable with a dis
tribution function induced by the channel fading. If all the users experience independent 
fading, then a sufficient condition for the a.s. convergence of the empirical distribution 
of the interfering received powers to a non-random limit is given in [3, Theorem 2.3] in 
terms of the diagonal elements of the matrices Dp with 0 p < 1. It easy to verify that 1 

� 

most cases of practical interest satisfy those conditions. In particular, assuming that all the 
users experience i.i.d fading with uniformly bounded transmitted powers, it can be eas
ily shown that if the common distribution of the users’ fading coefficients is p�integrable 

�with 0 p < 1, then the the empirical distribution of the received powers converges a.s. 
to a non-random limit. Certainly, in all cases, this limit depends on the fading coefficients 
distribution and, consequently, it is subject to change if the channel characteristics change 
considerably. In practice, this means we need to update the distribution of the received 
powers periodically or when we detect a considerable change in it. In the implementation 
of the asymptotic reduced-rank receiver, we can use the moments of the empirical distri-

2 2bution of A2 

; : : : ; A when K is finite to approximate the moments of the limit empirical K 

distribution of the received powers used in (1), i.e. 

K 

E[�m] � 

1 

X 

A2m: (18)
K � 1 

k 

k=2 

(18) is in fact what we use in the numerical results of this paper. 

3.1.2 Reduced-Rank Multiantenna MMSE Receiver 

In a multiantenna DS-CDMA system, the output of the chip-matched filter at the lth an
tenna element is 

K X 

Ak 

ej� k 

(l)
rl 

= bk 

sk 

+ nl 

l = 1 ; : : : ; L : (19) 
k=1 

In the equation above, we assume that for each user, the received amplitudes at different 
antenna elements are the same for simplification. This is valid if the antenna elements 
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are close enough to each other so that for a given user, the received powers at different 
antenna elements vary little. However, the received phases still vary considerably among 
antenna elements because different propagation paths have a much greater impact on the 
received phases due to the usually high carrier frequency. 

Put in matrix form 

r = SAb + n; (20) 

rwhere = (rT ; : : : ; r
T )T is an LN - vector, S = (s1 

; : : : ; sK 

) (LN )is an =1 L


j� j� k 

(L) )T


� K matrix, sk 

(sT e k 

(1) ; : : : ; s
T e , A = diagfA1 

; : : : ; A K 

g, b = ( b1 

; : : : ; b K 

)T , and k k


n
T


n = ( 1 

; : : : ; n
T )T . The MMSE receiver for user 1 is L 

H 

c = ( S1 

D1 

S + �2 

I)�1 

s1 

; (21)1 

2where S1 

= ( s2 

; : : : ; sK 

), and D1 

= diagfA2 ; : : : ; A K 

g. The rank D (D � LN ) reduced-rank 2 

MMSE receiver for user 1 is 

D�1 X � �mH 

cD 

= wm 

S1 

D1 

S + �2 

I s1 

; (22)1 

m=0 

where the weight vector w = ( w0 

; : : : ; w D�1 

)T is given by (13), and � �m 

Hm 

= s
H 

H 

S1 

D1 

S + �2 

I s1 

: (23)1 1 

To calculate the limit of Hm 

as N and K go to infinity, we notice that the situation here 
is similar to the situation in 3.1.1, the only difference being that the energy (defined by 
Efk � k 

2 g s1) of  and every column of S1 

L L s1is now . After taking out the factor from and 
absorbing the L factor of S1 

into D1 

, we have that Z 

H
1 = L (� + �2 )mdG(�); (24)m 

~H p 

S1 

(LD1 

)S1 

with ~where G(�) is the limit eigenvalue distribution of ~ S1 

= S1 

= L. Proposi
tion 2 can be applied to find H1 and therefore the asymptotic weights (16). m 

3.1.3 Reduced-Rank Single Antenna LCM Receiver 

The single antenna LCM receiver for user 1 is [16] 

�
c = F S1a 

D1 

S
H + �2 

I
�
�1 

s1a; (25)1a 

where F = [ IN 

0], IN 

is an N � N identity matrix, and �� 

s1 

ej� 

� 

s2 

ej� 

sK 

ej� 

�
1 2 K � � � 

s1a 

= 

s1 

e�j� 

; S1a 

= 

s2 

e�j� 

sK 

e�j� 

: (26)
1 2 K � � � 

The rank D (D � 2N ) reduced-rank LCM receiver for user 1 is [16] 

9 



D�1 X


S1aD1 

S
H + �2 

I
�m 

s1a; (27)1a 

�


= wmcD 

m=0 

with the weight vector w = ( w0 

; : : : ; w D�1 

)T given by [16] 
32
�1 

2 3


� � �H1 

HD 

H1 

. . . 64


75


. . . (28) w =
64


75


;


. . .. . . 
� � �HD 

H2D�1 

HD 

where 

�m 

Hm 

= s
H 

1a 

�


S1aD1 

S
H + �2 

1a 

(29) I s1a: 

After taking out the factor of 2 from s1a 

and S1a 

�2 

2 

Z


H
1 = 2m 

m+1 (� + )mdG(�); (30) 

where G(�) is the asymptotic eigenvalue distribution of ~ ~ S1a 

= S1a 

= 

p 

2.S1aD1 

S
H with ~1a 

Proposition 3 can be applied to find H1 and the asymptotic weight vector w1 .m 

3.1.4 Reduced-Rank Multiantenna LCM Receiver 

As discussed in 3.1.2, the output of the chip-matched filter in a multiantenna system is 

(31)r = SAb + n: 

Similar to the single antenna case, the multiantenna LCM receiver for user 1 is 

H 

�
�1 

+ �2 

I s1a; (32)1a 

�


c = F S1aD1 

S 

where F = [ ILN 

0], and �
 �� �


s1 

� � �s2 

sK (33)= ; S1a 

=s1a 

: 

s
� 

1 

s
� 

s
� 

2 

� � � K 

The rank D (D � 2LN ) reduced-rank LCM receiver for user 1 is 

D�1 �mH 

+ �2 

I s1a; (34)1a 

�
X


= wm 

S1aD1 

ScD 

m=0 

where the weight vector w = ( w0 

; : : : ; w D�1 

)T is given by (28), and �m�


H 

1aHm 

= s
H + �2 

I s1a: (35)S1aD1 

S1a 

To calculate the limit of Hm 

as N and K go to infinity, we notice that the energy (defined 
2by Efk � k g s1a) of  and every column of S1a 

is 2L. By following similar arguments in 
Section (3.1.2) and (3.1.3), it is easily shown that 

10 



Z 

�2 

H
1 = L2m+1 (� + )mdG(�); (36)m 2 

~H p 

S1a(LD1 

)S1a with ~where G(�) is the asymptotic eigenvalue distribution of ~ S1a 

= S1a= 2L. 
Proposition 4 can be applied to find H1 

m 

and the asymptotic weight vector w1 . 

3.1.5 Reduced-Rank Multiantenna MMSE Receiver in Line-of-Sight Transmission 

In a line-of-sight transmission DS-CDMA system with multiple receive antenna, the out
put of the chip-matched filter at the lth antenna element is 

K X 

Ake
lj  �

rl 

= 

k bksk 

+ nl 

l = 0 ; : : : ; L � 1; (37) 
k=1 

where �k 

= 2�d cos �k=�, d is the distance between two adjacent antenna elements, �k 

is 
the incident angle of user k, and � is the wavelength of the carrier. Due to the random
ness in the geographic distribution of users, it is reasonable to assume that �k’s are i.i.d. 
random variables uniformly distributed on [0; 2�). Put in matrix form 

r = SAb + n; (38) 

where r = (rT ; : : : ; r
T )T is an LN -vector, S = (s1 

; : : : ; sK) is an (LN ) �0 L�1


j� k ; 

�1)j�


K matrix, sk 

= 

(sT e0 : : : ; s
T e(L k )T , A = diagfA1 

; : : : ; A Kg, b = ( b1 

; : : : ; b K)
T , and k k


n
T


n = ( 1 

; : : : ; n
T )T . The MMSE receiver for user 1 is L

H 

c = ( S1 

D1 

S + �2 

I)�1 

s1 

; (39)1 

2where S1 

= ( s2 

; : : : ; sK), and D1 

= diagfA2 ; : : : ; A g. The rank D (D � LN ) reduced-rank 2 K

MMSE receiver for user 1 is 

D�1 �mX � 

H 

cD 

= wm 

S1 

D1 

S1 

+ �2 

I s1 

(40) 
m=0 

with the weights given by (13) and � �m 

Hm 

= s
H 

H 

S1 

D1 

S1 

+ �2 

I s1 

: (41)1 

The asymptotic weights can be obtained by using Proposition 5 in the same way we used 
Proposition 2 in 3.1.2. 

3.1.6 Reduced-Rank Multiantenna LCM Receiver in Line-of-Sight Transmission 

As discussed in 3.1.5, the output of the chip-matched filter in a line-of-sight transmission 
DS-CDMA system is 

r = SAb + n: (42) 

11 



Similar to the discussion in 3.1.4, the LCM receiver for user 1 is 
� �

�1H 

c = F S1aD1 

S1a 

+ �2 

I s1a;	 (43) 

where F = [ ILN 

0], and � � � � 

� � �s1
s1a 

= 

s2 

sK :	 (44); S1a 

= 

s
� 

s
� 

s
� 

1 2 

� � � K 

The rank D (D � 2LN ) reduced-rank LCM receiver for user 1 is 

D�1 X �	 �mH 

cD 

= wm 

S1aD1 

S1a 

+ �2 

I s1a 

(45) 
m=0 

with the weights given by (28) and �	 �m 

Hm 

= s
H 

H 

S1aD1 

S1a 

+ �2 

I s1a:	 (46)1a 

The asymptotic weights can be obtained by using Proposition 6 in the same way we used 
Proposition 4 in 3.1.4. 

3.2 Relationships among Asymptotic Eigenvalue Distributions in Var-
ious Cases 

In Section 2, the moments of the asymptotic eigenvalue distributions of several classes 
of random matrices are shown to be equal. In this section, we study the relationships 
among these distributions through the moments. And because the asymptotic output 
SINR is a certain integrable function averaged with respect to the asymptotic eigenvalue 
distribution, the relationships among them are also characterized. 

The multiantenna LCM receiver serves as an example to illustrate the idea. Similar 
results on the multiantenna MMSE receiver and the single antenna LCM receiver were 
obtained in [8] and [16], respectively, by using free probability theory. 

Similar to the result on the single antenna receiver in [16], the output SINR of the 
multiantenna LCM receiver is 

� 

P1 

s
H 

H 

�
�1 

S1aD1 

S1a 

+ �2 

I s1a;	 (47)1a 

where D1 

= diagfP2 

; : : : ; P K 

g, and Pk 

= A2 

k 

is the received power of user k at one antenna 
element. s1a 

and S1a 

s1a 

S1a 

E fk � k 

2 g 2L L of s1a 

and S1a 

into 
are given by (33). We notice that in (47), the energy of and each 

column of (defined as ) is  . After absorbing the factor 
P1 

and D1 

, and taking the factor 2 of S1a 

out of the matrix inversion, we have 

�� 

P1 

s
H 

H 

�
�1 

LP1 

)~
H ~ ~H �2 

�
�1 

S1aD1 

S1a 

+ �2 

I s1a 

= ( s1a 

S1a(LD1 

)S1a 

+ I 

~s1a; (48)1a 2 

12 



where tilded quantities denote the normalized untilded ones. Now we consider a single 
antenna MMSE receiver in a DS-CDMA system with processing gain 2LN , number of 
users K, noise level �2 =2, and received power of user k LP k 

, its output SINR is 

� 

�2 

�
�1 

(LP1 

)sH 

S1 

(LD1 

)SH + I s1 

; (49)1 1 2 

where the 2LN -vector sk 

is the spreading sequence of user k, S1 

= (s2 

; : : : ; sK 

), D1 

= 

diagfP2 

; : : : ; P K 

g, and Pk 

= A2 

k 

. All the spreading sequences are normalized. Suppose 
the asymptotic eigenvalue distribution of S1 

(LD1 

)SH is G(�), the asymptotic eigenvalue 1 

~H 

distribution of ~S1a(LD1 

)S1a 

is G�(�), then from Proposition 4 Z Z 

�mdG(�) = �mdG�(�) m = 0 ; 1; 2; : : : (50) 

Denote the distribution density functions of G and G� by g and g�, we have Z 

��m(g(�) g�(�))d� = 0 m = 0 ; 1; 2; : : : (51) 

So, g � g� is orthogonal to every polynomial, therefore g � g� is zero almost everywhere, 
as a result G = G� almost everywhere. From [15] 

� 

�2 

�
�1 

Z 

1 

s
H 

S1 

(LD1 

)SH + I s1 

dG(�); (52)1 1 

! 

2 � + 

�2 

2 

and from a similar argument in the proof of Lemma 4.3 in [15] 

� Z 

~H ~ ~H �2 

�
�1 

1 

S1a(LD1 

)S1a 

+ I 

~s1a 

dG�(�): (53)!s1a 2 � + 

�2 

2 

Therefore the asymptotic output SINR of the single antenna MMSE receiver with 
(K; 2LN; �2 =2) is the same as that of the multiantenna LCM receiver with (K ; N ; � 

2 ). Sim
ilar results hold for the MMSE/LCM receivers in line-of-sight transmission. 

Remark: In [8], the output SINR of the multiantenna MMSE receiver with (K ; N ; � 

2 ) and 
L antenna elements is shown to be equal to that of the single antenna MMSE receiver with 
(K ; LN ; � 

2 ) asymptotically. In that proof, free probability theory was used to obtain the 
asymptotic equality. By using the combinatorial techniques provided in the appendices 
of this paper, it can be shown that the expected values (with respect to the spreading se
quences) of the SINR’s of both systems are equal even for K and N finite. For the LCM 
receiver, however, since there are conjugate parts in the effective spreading sequences, 
from the proof in Appendix B, we need to let K and N go to infinity to make some terms 
vanish. Therefore, it is still open whether the expected values (with respect to the spread
ing sequences) of the SINR’s of both systems (single antenna MMSE with (K; 2LN; �2 =2) 

and multiantenna LCM with (K ; N ; � 

2 )) are equal for K and N finite. Since the output 
SINR’s are random variables for K and N finite, they themselves are generally not equal 
when K and N are finite. 

13 



4 Deriving the Tse-Hanly Formula by Means of the Mo-
ments 

By using the Silverstein-Bai theorem [13], it is shown in [15] that the asymptotic output 
SINR  of the MMSE receiver in a DS-CDMA system with random spreading satisfies 
the following fixed point equation (without loss of generality, the desired user is received 
with unit power) 

1 

 = ; (54)
�2 

�P+ 

R 

dF (P ) 

1+P 

where F (P ) is the limit of the empirical distribution of P2 

; : : : ; P K 

as K goes to infinity. 
In this section, we give a self-contained proof of (54) using the combinatorial convolution 
defined on the incidence algebra of non-crossing partitions. Based on these tools, we 
reduce (54) to a combinatorial equality involving the asymptotic moments. 

Let G(�) be the asymptotic eigenvalue distribution of S1 

D1 

S
H . If  G(�) is a com-1 

pactly supported probability measure on R, its Stieltjes transform is defined as: Z 

1 

m(z) = dG(�) (55)
� � z 

1which is an analytic function in C n supp(G). By expanding with respect to z, ex-
��z 

changing the summation and integration and by analytical extension, (55) can be written 
8z 2 C n supp(G) as: 

1 X1 �k 

m(z) = � ;	 (56)
z zk 

k=0 

where Z 

�k 

= �kdG(�)	 (57) 

�	 2 2is given in Proposition 1. Notice that regardless of G(�), C n supp(G) z C+ = fz 

C : Im (z) > 0g. Notice that if z 2 C+ then also m(z) C+ . To avoid cumbersome negative 2 

powers of �1 we denote g(z) = �m(z), so  

1 1 X X1 �k 

�k�1 

g(z) = + = :	 (58)
zk+1 zkz 

k=1 k=1 

As in Remark 3.3.3 in [19], g(z) has a unique inverse k(� ), i.e. � = g(z); z = k(� ), 

1 X1 

k(� )	 = + ak+1 

� 

k; (59)
� 

k=0 

where ak 

is a polynomial in �1 

; : : : ; � k 

. Thus, from (59) we have: 

1 X1 

z = k(g(z)) = + ak+1 

g(z)k ; (60)
g(z) 

k=0 
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or equivalently: 
1 1 X X 

zg (z) = 

�k 

= ak+1 

g(z)k+1 : (61)
zk 

k=1 k=0 

Finally, from (61) we get the following equality between two power series: 

1 1 X 

�k 

xk = 

X 

aky
k; (62) 

k=1 k=1 

with 
1 X1 

x = ; y = �k�1 

xk : 

z 

k=1 

Eq. (62) is satisfied when the sequence (a1 

; a ; : : : ) satisfies the following implicit equation 
[6]: 

2 

m X X 

� � ��m 

= ak 

�m1 

�1 

�mk 

�1 

: (63) 
k=1 

m1 

+���+mk 

=m 

1 

The series 
X 

ak 

� 

k is known as the R-transform of the asymptotic eigenvalue distribution, 
k=0 

G(�), and the series coefficients fak 

g are known as the free cumulants of G(�) [19, 14]. In 
the following we will prove an explicitly expression for the free cumulants fak 

g: 

ak 

= E f�k g�; (64) 

where � is a random variable with cumulative distribution F (P ) as defined in Proposition 
1. The proof of (64) requires tools from set partition theory. Our treatment here is very brief; 
for more details please consult [1] and [14]. 

4

Definition 1: Let m be a natural number. A partition � = fV1 

; : : : ; V kg of the set f1; : : : ; m g 

gis a decomposition of f1; : : : ; m into disjoint and non-empty sets Vi 

such that 
Sk 

Vi 

=i=1 

f1; : : : ; m g. The elements Vi 

are called the blocks of the partition �. We will denote the 
gset of all partitions of f1; : : : ; m by P(m). This set becomes a lattice if we introduce the 

following partial order (called refinement order): � � if each block of � is a union of � 

blocks of �. We will denote the smallest and the biggest elements of P(m) — consisting of 
m blocks and one block, by: 

0m 

= f(1); (2); : : : ; (m)g; 1m 

= f(1; 2; : : : ; m )g (65) 

2Definition 2: A partition � P(m) is a crossing partition if there exist four numbers 
1 � i < k < j < l < m such that i and j are in the same block V , k and l are in the same 
block V 

0 and V = V 

0. The set of all non-crossing partitions in P(m) is denoted by NC(m),6
i.e: 

4 

NC(m) = f� 2 P(m)j � non � crossingg (66) 
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2 � � �Define interval in NC(m) as the following set [� ; � ] = f� NC(m)j � � �g 8� 

� NC(m). Each of these intervals can be decomposed into a product of lattices of non-2 

2 �crossing partitions, i.e. for all �; � NC(m) with � � there exist canonical natural 
numbers k1 

; k ; : : : ; such that 2 

�[� ; � ] = 

NC(1)k1 � NC(2)k2 � � � � (67) 

For example we have: 

�[f(1); (2); (3); (4); (5); (6); (7); (8)g; f(1; 2; 3); (4; 5); (6); (7; 8)g]NC(8) 

= 

�= [f(1); (2); (3)g; f(1; 2; 3)g]NC(3) 

� [f(4); (5)g; f(4; 5)g]NC(2) 

��[(6); (6)]NC(1) 

� [f(7); (8)g; f(7; 8)g]NC(2) 

= 

�= 

NC(1) � NC(2)2 � NC(3) 

Having this factorization property at hand it is quite natural to define a multiplica-
tive function f (for non-crossing partitions) corresponding to a sequence (a1 

; a ; : : : ) of 
complex numbers by requirement that: 

2 

� 

k1 

k2 

4 a1 

a2f(� ; � ) = 

� � � (68)
0 whenever � � � 

if [� ; � ] has a factorization as above. We use the notation f ! (a1 

; a ; : : : ) to denote the 2 

dependence of f on the sequence (a1 

; a ; : : : ). In particular we have that f(0m; 1m) = am2 

�Definition 3: The (combinatorial) convolution (� � ) of f and g defined as in (68), ( f � g), 
is equal to: 

4 

X 

( f � g) = f(� ; � ) g(�; � ) for � � � 2 NC(m): (69) 

� NC(m)2 

� � � �� 

Now we have the machinery to prove (54). According to Proposition 1: 

m 

�m 

= 

X 

�k 

X 

c(m1 

; : : : ; m k) Ef�m1 Ef�mk � g � � � g 

k=1 

m1+���+mk 

=m X (70) 
� � � �= c(m1 

; : : : ; m k 

) Qm1 

Qmk 

; 

m1+���+mk 

=m 

1�k�m 

where Qmj 

= Ef�mj g�. Define the following multiplicative functions on the lattice of 
non-crossing partitions: 

- L ! (�1 

; � ; : : : ) as the multiplicative function on the lattice of non-crossing partitions 
corresponding to the moments �m 

of the random matrix SDSH , 
2 

- Q ! (Q1 

; Q ; : : : ) as the multiplicative function on the lattice of non-crossing partitions 
corresponding to the sequence Qm. 

2 
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It is easy to see that: 

�m 

= L (0m; 1m) 

�Q (� ; � ) = 

k1 

k2 � � � iff [� ; � ] = 

NC(1)k1 � NC(2)k2 � � � � 

(71)Q1 

Q2 

From Theorem 2 in Appendix A, we know that c(m1 

; : : : ; m k 

) is the number of non-
crossing partitions of m into k disjoint sets, such that the numbers of elements in these 
sets are m1 

; : : : ; m k 

. As a consequence, from (69) and (71), (70) can be rewritten as X 

�m 

= Q(0m; � ) zeta(�; 1m) = Q � zeta (72) 

� NC(m)2 

0m 

� 1m� � 

where zeta is the zeta function defined as in [1, 14]: � 

1; � � � 

zeta(� ; � ) = (73)
0; otherwise 

By taking into account the non-crossing character of the involved partition, the relation 
L = Q � zeta can be written more concretely in a recursive way as (�0 

= 1 ) [14]: 

m X X 

� � ��m 

= Qk 

�i1 

�1 

�ik 

�1 

: (74) 
k=1 i1 

; : : : ; i k 

� 0 

i1 

+ � � � + ik 

= m 

Comparing Eq. (63) with Eq. (74) it follows immediately that ak 

= Qk 

= Ef�k g�, as we  
wanted to show. As a consequence, 

1 X1 

k(g(z)) = + Ef�k g�(g(z))k 

g(z) 

k=1 

1 X1 

= � + Ef�k g�(�1)k (m(z))k (75)
m(z) 

k=1 

1 

Z 

= � + 

m(z) 

�P 

dF (P ): 

1 + Pm (z) 

For (75) we have used the fact that for z 2 C+ : Z1 X �P 

Ef�k g�(�1)kzk = dF (P ) (76)
1 + Pz 

k=1 

1which can be easily shown by analytic extension expanding with respect to z and 
1+Pz 

exchanging the summation and the integration with respect to F (P ). Since k(g(z)) = z, 
so: 

1 

m(z) = : (77)
�P �z + 

R 

dF (P ) 

1+Pm (z) 
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Therefore, via the asymptotic moments we obtain the same result originally shown by 
Silverstein and Bai [13]. 

Using Corollary 1 in [4] and the results in [21] , it can be shown that if the empirical 
distributions of the diagonal elements of the matrix D1 

converges almost surely (a.s.) to a 
fixed distribution, then as N and K go to infinity with K =N = �, the output SINR of the 
MMSE receiver for user 1, , converges almost surely for N to : !1 

s = s
H (S1 

D1 

S
H + �2 

I)�1 

a:s: 

1 

I)�1 

	�
1 

! lim E 

�
Trace 

�
(S1 

D1 

S
H + �2 : 

(78)1 1 

N !1 N 

1 

Since 

1 

I)�1 

	�  

Z 

lim E 

�
Trace 

�
(S1 

D1 

S
H + �2 = lim 

1 

dG(�) = lim m(z) (79) 
N !1 N 

1 

z!��2 � � z z!��2 

letting z = ��2 in (77), (54) is obtained. 

5 Numerical Results 
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Figure 1: Output SINR vs. input signal- Figure 2: Output SINR vs. input signal-
to-noise ratio for two reduced-rank single to-noise ratio for multiantenna MMSE re-
antenna receivers. ceivers. 

In this section, we compare the performance of four receivers: (i) the asymptotic 
reduced-rank MMSE/LCM receiver that uses the asymptotic weights; (ii) the reduced-
rank MMSE/LCM receiver that uses the exact optimal weights; (iii) the full-rank MMSE-
/LCM receiver; (iv) the asymptotically equivalent single antenna MMSE receiver with 
enlarged processing gain and possibly reduced noise level. In all the results, N = 32, 
K = 25, L = 2 (number of receive antenna elements), D = 5 (number of stages of the 
reduced-rank receiver) are used. For simplification, we simulate the case in which the re
ceived powers of the interfering users are equal and are 5 dB above the desired user. This 
corresponds to power-controlled interferers and makes the desired user to operate in a 
relatively challenging environment. In the case of single antenna receivers, the horizontal 
axis represents the input signal-to-noise ratio P1 

=�2 in dB. For multiantenna receivers, the 
horizontal axis is LP1 

=�2 , taking into account the total received power of the desired user. 
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Figure 1 shows the performance of two reduced-rank single antenna MMSE re
ceivers. The upper curve is the output SINR of the reduced-rank MMSE receiver that uses 

O
ut

pu
t S

IN
R

 (
dB

) 

exact optimal weights, and the lower curve is for the asymptotic reduced-rank receiver 
that uses asymptotic weights. From the figure we can see that the later lies within 1 dB 
from the former. And we found that (not shown in the figure) if N > 80, the performance 
loss due to using asymptotic weights will be less than 0:5 dB. 

Figure 2 shows the performance of the multiantenna MMSE receivers. From the 
figure we can see that we lose about 1 dB in SINR by using asymptotic weights. And 
as predicted, the performance of the full-rank MMSE receiver is very close to that of the 
asymptotically equivalent single antenna MMSE receiver with processing gain LN . We  
also found that (not shown in the figure), if LN (the effective processing gain) is raised to 
above 100, the penalty of using asymptotic weights will be less than 0:5 dB, and if D � 8, 
the performance gap between the reduced-rank receiver and the full-rank one will be less 
than 0:5 dB. 
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Figure 3: Output SINR vs. input signal- Figure 4: Output SINR vs. input signal-
to-noise ratio for single antenna LCM re- to-noise ratio for multiantenna LCM re
ceivers. ceivers. 

Figure 3 illustrates the performance of the single antenna LCM receivers. We ob
serve that the penalty due to using asymptotic weights is within 1.25 dB. And as pre
dicted, performance of the full-rank LCM receiver is very close to that of the asymptoti
cally equivalent single antenna MMSE receiver with processing 2N and noise level �2 =2. 
We found that (not shown in the figure) if N > 60, the performance loss due to using 
asymptotic weights will be less than 0:5 dB, and if D 8, the performance gap between � 

the reduced- rank receiver and the full-rank one will be less than 0:5 dB. For comparison 
purposes, the output SINR of the reduced-rank MMSE receiver in Figure 1 is also shown 
here. We can see the significant performance gain obtained by LCM processing. 

Figure 4 illustrates the performance of the multiantenna LCM receivers. From the 
figure we see that the performance loss due to using asymptotic weights is very small 
(about 0:5 dB). Additionally the performance difference between the full-rank LCM re
ceiver and the asymptotically equivalent single antenna MMSE receiver with processing 
2LN and with noise level �2 =2 is also very small, almost indistinguishable. This is be
cause the effective processing 2LN = 128, which is large enough to guarantee sufficient 
convergence. By comparison of Figures 2 and 4, we can see that the output SINR in Figure 
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4 is  4 5 dB higher than those in Figure 2. This confirms the analytical result given in � 

(53) that the LCM receiver asymptotically reduces the number of interferers and the noise 
level by half. 
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Figure 5: Output SINR vs. input signal-to- Figure 6: Output SINR vs. input signal-
noise ratio for MMSE receivers in line-of- to-noise ratio for LCM receivers in line-of-
sight transmission. sight transmission. 

Figure 5 illustrates the performance of the MMSE receivers in line-of- sight trans
mission. We see that Figure 5 quite resembles Figure 2. This agrees with our analytical 
result that their performances are asymptotically equal. All observations in Figure 2 can 
be directly applied here. 

Figure 6 illustrates the performance of the LCM receivers in line-of- sight transmis
sion. Again we see that Figure 6 resembles Figure 4. This agrees with our analytical result 
that their performances are asymptotically equal. Observations in Figure 4 can again be 
applied here. 

6 Conclusion 

In this paper, we obtain explicit expressions for the asymptotic eigenvalue moments 
of several classes of infinite random matrices that arise in multiuser detection in DS
CDMA system with random spreading. The results are used in the design of the asymp
totic reduced-rank MMSE/LCM receivers that use the asymptotic values of the optimal 
weights. Numerical results show that the penalty in the output SINR due to using the 
asymptotic weights in place of the exact optimal weights is about 1 dB for reasonably 
large processing gain, e.g. 32. For larger processing gain, say 80 or larger, the perfor
mance loss is less than 0:5 dB. The asymptotic reduced-rank receivers are desirable in 
real-time implementation of systems using long sequences because they do not depend 
on realizations of the spreading sequences. The equivalence of the asymptotic moments 
in these cases is used to obtain the asymptotic equality of the output SINR’s of these re
ceivers to that of the single antenna MMSE receiver with enlarged processing gain and 
possibly reduced noise level. The asymptotic equality is confirmed by numerical results. 
An explicit expression for the free cumulants of the asymptotic eigenvalues distribution 
of several classes of infinite random matrices is given from which the Tse-Hanly formula 
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is proved. The technique used for finding the free cumulants of our infinite random ma
trices, has independent interest: in fact it permits, in the more general case, to find, using 
the free cumulants property of some suitable random matrix [19], an explicit expression 
for the moments of random matrices with more complex structure. 

Appendix 

A Proof of Proposition 1 
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We then investigate all the possible ways to partition indices i1 

; : : : ; i m 

into k dis-

i

� �joint sets for 1 k m. Indices in the same set keep identical in the summation and 
indices in different sets keep distinct in the summation. Suppose for a given partition of 
1 

; : : : ; i m 

into k disjoint sets such that numbers of elements in the sets are m1 

; : : : ; m k 

, then 
g � � � g �this partition contributes a non-zero term Ef�m1 Ef�mk �k to 

R 

�mdG(�) if there ex
ists a partition of j1 

; : : : ; j m 

into m � k + 1 disjoint sets such that in the following figure, 
every ordered pair in the upper row is matched with exactly one ordered pair in the lower 
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row, and every ordered pair in the lower row is matched with exactly one ordered pair in 
the upper row. 

(i1 

; j 1 

) (i2 

; j 2 

) . . .  (im; j m) 

. . .(i1 

; j 2 

) (i2 

; j 3 

) (im; j 1 

) 

j

Two ordered pairs are matched iff the first indices in both of them are in the same set, and 
so are the second indices. The matching above ensures that no random variable appears 
alone in the expectation, which would make the expectation zero. If such a partition of 
1 

; : : : ; j m 

exists, we call it a good partition for the given partition of i1 

; : : : ; i m. Therefore, 
from the discussion above, 

R 

�mdG(�) is the sum of all the terms 

c(m1 

; : : : ; m k 

) � E[�m1 ] � � � E[�mk ] � �k ; (88) 

� �for all m1 

+ � + mk 

= m and all 1 � k � m. The coefficient c(m1 

; : : : ; m k 

) is the solution 
to the following combinatorial problem: 

Theorem 1: Among all the partitions of i1 

; : : : ; i m 

into k disjoint sets such that the cardi-
m!nalities of these sets are m1 

; : : : ; m k 

(totally there are 
m1 

!���mk 

!�f (m1 

;:::;mk 

) 

such partitions, where 
f (m1 

; : : : ; m k 

) is defined in Section 2), the coefficient c(m1 

; : : : ; m k 

) in (88) is the number of par-
titions such that there exists a good partition of j1 

; : : : ; j m 

into m � k + 1 disjoint sets for each of 
them. 

Another combinatorial problem the solution of which is c(m1 

; : : : ; m k 

) is proposed 
in [20], basically it is: 

m

Theorem 2: Consider m balls arranged on a circle, numbered from 1 to m clockwise. Among 
all the partitions of the m balls into k disjoint sets, such that the cardinalities of these sets are 

1 

; : : : ; m k, the coefficient c(m1 

; : : : ; m k 

) in (88) is the number of non-crossing partitions. A 
partition is called crossing if there exist two sets A and B and for some a; b 2 A and c; d 2 B such 
that the segment drawn from a to b and the segment drawn from c to d cross. 

We use Theorem 2 to obtain c(m1 

; : : : ; m k 

), while the concept of mutually good par
titions defined in Theorem 1 is used in the proof of extensions to Proposition 1. In what 
follows, we prove that 

m! 

c(m1 

; : : : ; m k 

) = : (89)
(m � k + 1)! � f (m1 

; : : : ; m k 

) 

In Theorem 2, sets that contain the same number of elements are considered indistin
guishable. That is to say, if for some partition two sets (denoted by A and B) both contain 
p balls, then we consider the partition obtained by switching balls in A and B the same as 
the original one. 

Here we first consider the case in which these sets are distinguishable and prove 
that the number of non-crossing partitions is given by 

m! 

: (90)
(m � k + 1)! 
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To make the sets distinguishable, we number them from 1 to k. The caridinality of Si 

is mi 

(1 � i � k). Now we select a ball, denoted by b1 

, from the  m balls, then we select another 
ball, denoted by b2 

, from the remaining m � 1 balls, and so on until we select bk�1 

. It  is  
easy to see that there are m!=(m � k + 1)! ways to make the selection. Next, we describe a 
procedure that generates a non-crossing partition from any such selection. Then we prove 
that non-crossing partitions generated from different selections must also be different, 
and for each non-crossing partition, there must exist a selection that generates it. 

(i) Suppose b1 

; : : : ; b k�1 

are selected as in Figure 7 (without loss of generality, we 
� �assume that b2 

is located after b1 

on the circle, and so on.) Because m1 

+ � + mk 

= m, 
there must exist i such that there are at least mi 

balls between bi 

and bi+1 

, with bi 

included 
and bi+1 

excluded. We assign the mi 

balls starting from bi 

(bi 

included) to set Si. Then we 
take away the already assigned mi 

balls from the circle. Now we have a smaller circle of 
m � mi 

balls with k � 2 selected. Then for the same reason, there exists j such that there are 
at least mj 

balls between bj 

and the next selected ball after bj 

, with bj 

included and the next 
selected ball after bj 

excluded. We then assign mj 

balls starting from bj 

to set Sj 

. Then the 
already assigned mj 

balls are taken away from the circle. This procedure can be repeated 
� � � ��until the k � 1 selected balls are used up. At that stage, we have m � m1 

mk�1 

= mk 

balls left, and we assign them to set Sk 

. 
Since at each stage of the procedure described above, we always assign a continu

ous block of balls to a set, it is readily shown by induction that a partition generated by 
this procedure is non-crossing. 
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Figure 7: Figure 8: 

(ii) Here we prove that two different selections of balls, say b1 

; : : : ; b k�1 

and 
0b0 ; : : : ; b k�1 

, generate different partitions. We prove this by means of contradiction. Sup-1 

pose that bi 

and b0 

i 

are different shown as in Figure 8, and the two selections generate the 
same partition. Now we consider the balls assigned to set Si 

on the original circle of m 

balls. According to the procedure in (i), we know that on the original circle, the mi 

balls 
in Si 

consist of several continuous blocks of balls, and both bi 

and b0 

i 

must be the first (in 
clockwise direction) ball of the block they belong to. From the procedure in (i), for the first 
set of selected balls, we go clockwise from bi 

when we assign balls to Si. Since b0 Si, b0 

i 

2 i 

is reached. Similarly, for the second set of selected balls, bi 

is reached as we go clockwise 
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from b0 to assign balls to Si. So, at the stage that we assign balls to Si, we go clockwise i 

from bi 

and returned to bi 

again (shown in Figure 8). That means, all the unassigned balls 
are traversed and assigned to Si. However, this is a contradiction because after all the 
selected balls are used up, we still have to have mk 

unassigned balls left for Sk 

. Therefore 
we proved that different selections generate different partitions. 

(iii) Here we prove that for every non-crossing partition, there exists a set of k � 1 

selected balls that generates it. First we introduce the following lemma which is proved 
at the end of Appendix A. 

Lemma: For a given non-crossing partition, there exists a set Si 

such that all the balls in Si 

form 
a continuous block on the original circle. 

Suppose that Si 

is such a set, we select the first ball (in clockwise direction) of Si 

as 
bi. Then we take away Si 

from the circle. Now we have a partition of m � mi 

balls into 
k � 1 disjoint sets which is non- crossing. The lemma above can be applied again. The 
same procedure can be repeated until k � 1 balls are selected. It is easy to verify that this 
set of selected balls indeed generates the same partition that we start with. 

From the discussion in (i), (ii), and (iii), a one-to-one and onto mapping from the 
selections of k � 1 balls to the non-crossing partitions has been established. Therefore, the 
number of non-crossing partitions is given by 

m! 

(91)
(m � k + 1)! 

when sets are distinguishable. 
If instead, sets are considered indistinguishable, the number of non-crossing parti

tions will be reduced. This is because we are free to switch balls in sets that contain the 
same number of balls and still get the same partition. For example, the partition does not 
change no matter S1 

= fa; bg and S2 

= fc; dg or S2 

= fa; bg and S1 

= fc; dg. It is readily 
shown the number of non-crossing partitions is reduced by a factor f (m1 

; : : : ; m k 

) and is 
given by 

m! 

: (92)
(m � k + 1)! � f (m1 

; : : : ; m k 

) 

The factor f (m1 

; : : : ; m k 

) makes the sets of the same size indistinguishable by mix
ing up these sets. 

Proof of the Lemma: We pick up any set from the partition, if it consists a single continu
ous block (such a set is called a continuous set), the proof ends. If it consists of at least two 
separate continuous blocks, we pick up any two of them (denoted by Block 1 and Block 
2, shown as in Figure 9). If there is a continuous set between x1 

and x2 

(with x1 

and x2 

included), the proof ends. If none of the sets between x1 

and x2 

is continuous, we pick up 
any set between x1 

and x2 

and consider any two blocks that belong to this set (denoted 
by Block 3 and Block 4, as shown in Figure 10). The same reasoning can be applied when 
we further consider sets between y1 

and y2 

. This procedure must stop after finite number 
of steps. A continuous set is found when the procedure stops. The lemma is therefore 
proved. 
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Figure 9: Figure 10: 

B Proof of Proposition 4 

For simplicity of notation, we prove Proposition 4 only for the equal received power case. 
That is, D is assumed to be an identity matrix. The proof in the general unequal received 
power case can be obtained by incorporating the corresponding treatment in the proof for 
Proposition 1. As in the proof of Proposition 1, Z 

�mG(�)d� = lim 
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where G(�) is the limit eigenvalue distribution of SSH as K, N go to infinity with K =N = 
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Eq. (103) holds for every 2m-tuple that (i1 

; : : : ; i m; j ; : : : ; j m) takes values on. Let us recall 
that indices in the same set keep identical and indices in different sets keep distinct in the 
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, so there are totally i1 
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N 
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2m-tuples that (i1 

; : : : ; i m; j ; : : : ; j m) take values on. Since each of them contribute 1, the 
total contribution of the two mutually good partitions is (104). And the limit is 

1 
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From the proof of Proposition 1, we know that the two given mutually good parti
tions also contribute �k under the i.i.d. assumption there. Also from the proof of Propo
sition 1, we know that all non-mutually-good partitions contribute zero to 
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In what follows, we prove that this again holds true (at least asymptotically) here. 
Suppose the partition of i1 
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into k disjoint sets and the partition of j1 
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into m � k + 1 disjoint sets are not mutually good. Then there is some factor in 
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other factor in the product, V 
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For the given partition of i1 
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0, then the number 
of 2-tuples that (j1 

; j u) take values on is N . Therefore, the number of 2m-tuples is 
not large enough to survive the 1=N 

m+1 in (101) when we take the limit. 
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the expectation of the random phase and the random chip value is zero, we get 
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Therefore from (i) and (ii), we know that contribution from non-mutually-good par
titions is again always zero, and Proposition 4 is proved. 

The proofs of Propositions 2, 3, 5 and 6 can be obtained following methods similar 
to those used in the proof of Proposition 4. Indeed, we notice that the classes of the 
matrices defined Proposition 2, 3, 5 and 6 can be considered as special cases of that defined 
in Proposition 4. 

In Proposition 2, the matrix S with columns given by (3) is just a sub-block of 
the matrix in Proposition 4 obtained by considering only the first LN0 first rows. And 
all discussion regarding the mutually good partitions in the proof of Proposition 4 can 
be repeated for Proposition 2; the difference between the two is the non-mutually-good 
partition. In Proposition 2, Viu 

;ju 

= V 

� as discussed in case (i.a) will not happen. So i1 

;j1 

according to (i.b) we have that: 
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The discussion in Case (ii) still holds true. 
Regarding Proposition 3, it is simply a special case of Proposition 4 without se

quence repetitions. 
Regarding Propositions 5 and 6, we notice that the only difference between them 

and Propositions 2 and 4 is that in Propositions 5 and 6 the repeated sequences are mul
tiplied by phases that are integer multiples of one fundamental uniformly distributed 
phase �k 

on [0; 2�) (see Eq. (6) and Eq. (7) ), while in Proposition 2 and 4 they are multi-
gplied by independent and uniformly distributed phases f�k;l 

L (see Eq. (3), and Eq.(5)). l=1 

According to the distribution of �k 

, and from the fact that in the computation of the mo
ments of the matrices only the average of mixed products of the entries of the matrices is 
involved, the discussion of the Case (i) and (ii) is again applicable. 

C Proof of Equation 15 

! 1To begin we use Corollary 1 in [4] to show that as N ; K while K =N = � is kept 
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H are mutually statistically independent. 1 

Next, observing that the empirical distribution of the diagonal elements of the ma
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