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Spectral Efficiency of CDMA 
with Random Spreading 

Sergio Verdú, Fellow, IEEE, and Shlomo Shamai (Shitz), Fellow, IEEE 

Abstract— The CDMA channel with randomly and indepen
dently chosen spreading sequences accurately models the sit
uation where pseudonoise sequences span many symbol peri
ods. Furthermore, its analysis provides a comparison baseline 
for CDMA channels with deterministic signature waveforms 
spanning one symbol period. We analyze the spectral efficiency 
(total capacity per chip) as a function of the number of users, 
spreading gain, and signal-to-noise ratio, and we quantify the 
loss in efficiency relative to an optimally chosen set of signature 
sequences and relative to multiaccess with no spreading. White 
Gaussian background noise and equal-power synchronous users 
are assumed. The following receivers are analyzed: a) optimal 
joint processing, b) single-user matched filtering, c) decorrelation, 
and d) MMSE linear processing. 

Index Terms—Channel capacity, code-division multiple access, 
Gaussian channels, multiuser detection, multiuser information 
theory, spread spectrum. 

I. INTRODUCTION AND SUMMARY OF RESULTS 

A. Spectral Efficiency 

DIRECT-Sequence Spread-Spectrum code-division multi
ple access (CDMA) has well-known desirable features: 

dynamic channel sharing, robustness to channel impairments, 
graceful degradation, ease of cellular planning, etc. These 
advantages result from the assignment of “signature wave
forms” with large time–bandwidth products to every potential 
user of the system. Each signature can be viewed as a unit-
norm vector in an -dimensional signal space, where is 
the spreading gain or number of chips per symbol. In the 
model considered in this paper, users linearly modulate their 
signatures with the outputs of respective autonomous encoders. 
The central question we address is the capacity loss incurred by 
the imposition of such a structure on the transmitted signals, 
and by the imposition of several suboptimal, but practically 
appealing, receiver structures based on single-user decoding. 
Our analysis considers a white Gaussian channel with users 
constrained to have identical average received powers. 

The fundamental figure of merit is the spectral efficiency 
C, defined as the total number of bits per chip that can be 
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transmitted arbitrarily reliably. Since the bandwidth of the 
CDMA system is (roughly) equal to the reciprocal of the 
chip duration, the spectral efficiency can be viewed as the 
bits per second per hertz (bits/s/Hz) supported by the system.1 

Note that if the code rates (bits per symbol) employed by 
each individual user are identical and denoted by 
spectral efficiency is equal to the product 

, then the 

(1)C 

In a system where no spreading is imposed, the encoders 
are able to control the symbols modulating each chip inde
pendently. Therefore, assuming chip-synchronism, the Cover-
Wyner capacity region of the conventional Gaussian multiac
cess channel [1] applies to this case and the spectral efficiency 
in the absence of spreading is given by 

C SNR (2) 

where, for consistency with the results below, SNR denotes 
the energy per transmitted chips divided by the Gaussian 
noise spectral level . This means that the energy per bit 
divided by is 

SNR 
(3) 

Once the spectral efficiency is determined, it is possible 
to obtain the minimum bandwidth necessary to transmit a 
predetermined information rate or the maximum information 
rate that can be supported by a given bandwidth. In order to 
compare different systems (with possibly different spreading 
gains and data rates), the spectral efficiency must be given 
as a function of . According to (1) and (3), if the spectral 
efficiency of the system reaches the optimum level C in (2), 
then SNR can be substituted by 

SNR C 

so the maximum spectral efficiency C in the absence of 
spreading is the solution to 

C (4)C 

1 With quadrature orthogonal modulation, one bit per chip corresponds 
to essentially 2 bits/s/Hz. Without loss of conceptual scope, we focus on 
real-valued channels in this paper. 
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or equivalently 

C 

C 

Since (4) does not depend on , when the transmitted signals 
are not constrained to the spread-spectrum format, the spectral 
efficiency is the same as in a single-user system with power 
equal to the sum of the powers. 

The solution to (4) is well known [2] to be positive if and 
only if 

dB 

Furthermore, the asymptotic growth satisfies 

C 
bits/dB (5) 

Assuming maximum-likelihood decoding, the capacity 
of synchronous and asynchronous CDMA white Gaussian 
multiple-access channels was found in [3], [4] as a function of 
the assigned signature waveforms and signal-to-noise ratios. 
CDMA channel capacity depends on the signature waveforms 
through their crosscorrelations. For example, the spectral 
efficiency of a synchronous CDMA system where identical 
signature waveforms are assigned to all users is given by 

Csgle SNR (6) 

whereas in the case of orthogonal sequences the spectral 
efficiency is equal to 

Corth SNR if (7) 

Substituting 

SNR Corth 

we obtain that if , then 

Corth C (8) 

The equality of Corth and C for is a consequence of 
the well-known fact [1] that orthogonal multiple access incurs 
no loss in capacity relative to unconstrained multiple access 
for equal-rate equal-power users in an additive Gaussian noise 
channel. It is also known [5] that even if , there 
exist spreading codes that incur no loss in capacity relative 
to multiaccess with no spreading. 

Despite their overlap in time and frequency, the users can 
be completely separated at the receiver by means of a matched-
filter front-end provided the signature waveforms are mutually 
orthogonal. In that case, single-user error-control coding and 
decoding is sufficient. Nonorthogonal CDMA arises whenever 

or the users are asynchronous. Moreover, channel 
distortion (such as multipath) and out-of-cell interference are 
common impairments that destroy the orthogonality of signa
ture waveforms. Optimal spectral efficiency in nonorthogonal 

CDMA requires joint processing and decoding of users. As 
advocated in a number of recent works [6]–[24], it is sensible 
in terms of complexity–performance tradeoff to adopt as a 
front-end a (soft-output) multiuser detector [25] followed by 
autonomous single-user error-control decoders. In our analysis 
of spectral efficiency we consider, in addition to optimal 
decoding, some popular linear multiuser detector front-ends 

•	 single-user matched filter, 
•	 decorrelator, 
•	 Linear Minimum Mean-Square-Error (MMSE). 

In those three cases we study suboptimal single-user decod
ing of individual linear transformation outputs. Suboptimality 
results from two different simplifications: a) the output of only 
one linear transformation is used, and b) no attempt to exploit 
knowledge of the codebooks of interferers is made at each 
individual single-user decoder. 

Unlike the aforementioned references [3], [4], our purpose 
is to evaluate the spectral efficiency of CDMA systems where 
signature waveforms are assigned at random. Denote the unit-
norm signature of the th user by 

and assume that are chosen equally 
likely and independent for all . (Nonbinary random 
signature sequence models are also analyzed in the paper.) 
The rationale for averaging capacity with respect to random 
signature waveforms is twofold. 

•	 It accurately models CDMA systems (such as IS-95, [26], 
[27]) where pseudonoise sequences span many symbol 
periods. 

•	 The spectral efficiency averaged with respect to the choice 
of signatures provides a lower bound to the optimum 
spectral efficiency achievable with a deterministic choice 
of signature waveforms. 

Most analyses of multiuser detectors have focused on the 
bit-error rate of uncoded communication [25]. The results 
found in this paper for the decorrelator and MMSE receivers 
give the best achievable performance with error-control coding 
assuming random signature waveforms. As we mentioned, this 
serves as a lower bound to the performance achievable through 
design of signatures with favorable crosscorrelation properties. 
Furthermore, this analysis is directly applicable to multiuser 
detectors operating with spreading codes whose periodicity is 
much larger than the spreading gain (e.g., [28]–[30]). 

B. Previous Results 

We now summarize the main results available in the lit
erature relevant to the problem considered here. Other than 
[3], [31], most existing capacity results pertain to the symbol-
synchronous case. 

1) Optimal Decoding: Optimal decoding can be performed 
by a bank of matched filters (which converts the received 
process to a discrete-time vector process) followed by joint 
maximum-likelihood decoding of the error control code (e.g., 
[32], [33]). The formula in [4] for capacity as a function 
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of the signature waveforms was used in [5] to show that 
with Welch-bound-equality (WBE) signature waveforms the 
spectral efficiency of the CDMA system is equal to the case 
of no-spreading (2). A necessary condition for the existence 
of WBE signature waveforms is . When the number of 
users is an integer multiple of the spreading gain , 
then an optimum signature sequence assignment is obtained 
by selecting a set of orthogonal sequences and assigning 
each of them to users. It is straightforward to check that 
the spectral efficiency of such a CDMA system is given by 
(2) if optimal decoding is used. 

More generally, WBE signature waveforms with binary 
antipodal spreading are known to exist for many other choices 
of . For example, given a Hadamard matrix of size 

one can take any rows of the matrix to form an 
matrix of WBE signature vectors with binary antipodal 

spreading. Hadamard matrices of size 
with are 

known to exist [34]. Thus for any , sequences of WBE 
signature waveforms whose ratio converges to are 
guaranteed to exist.2 

It had been conjectured in [38] that as and 
SNR the loss incurred by a random choice of signatures 
vanishes. This was verified independently by Monte Carlo 
simulation in [21] and with an asymptotic 
lower bound on the average capacity for random signature 
waveforms in [39], [40]. 

2) Single-User Matched Filter: The capacity of the single-
user matched filter followed by single-user decoding has 
been previously analyzed approximating the multiaccess in
terference at the output of the matched filter by Gaussian 
noise. When the signatures are random and are antipodally 
modulated, then [41] (see also [42], [43]) found that the 
spectral efficiency as goes to 0.5 nat/chip 0.72 
bit/chip. 

3) Decorrelator: If the signature waveforms are linearly 
independent, a front-end consisting of a bank of decorrelators 
[44] incurs no loss of information since it is a one-to-one trans
formation of the sufficient statistics and eliminates multiaccess 
interference from each of its outputs. Optimal decoding still 
requires joint processing of all outputs due to the correlation 
among the noise components. The point of studying capacity 
with a decorrelating front-end is that it lends itself naturally to 
a suboptimal approach in which single-user decoding is based 
on each individual decorrelator (unquantized) output. Since 
the output of each single-user decorrelator is uncontaminated 
by multiaccess interference, the analysis of the single-user 
decorrelator capacity requires the single-user capacity formula 
evaluated at the decorrelator output signal-to-noise ratio, which 
is equal to the maximum near–far resistance [25]. The 
expected maximum near–far resistance with random binary 
sequences is shown in [45] to be lower-bounded by 

for . This bound is shown to be tight as in [25] 
(see also [17]). An analogous problem in the asynchronous 
setting is considered in [46] (see also [12]). Bounds and Monte 
Carlo simulation of capacity using the decorrelator were given 
in [21] and [22]. Random sequences with complex-valued 
chips where sequences are uniformly distributed on the surface 
of the unit-radius -dimensional sphere are considered in [20] 
and [23]. Those references find an expression for the density 
function of the maximum near–far resistance as a function of 

and , and an asymptotic expression for 
as a function of the desired spectral efficiency. 

4) MMSE: The linear MMSE receiver [47], [48] offers a 
compromise between the multiaccess interference suppression 
capabilities of the decorrelator and the optimal background-
noise-combating capabilities of the single-user matched filter. 
Unlike the decorrelator, the MMSE filter is well-defined 
regardless of whether is smaller or larger than . As  
in the case of the decorrelator, we are interested in the 
spectral efficiency of the bank of MMSE linear transformations 
followed by single-user decoders. When the channel symbols 
are binary and binary decisions are made at the output of the 
linear transformation, [49] shows that the spectral efficiency 
(of both the matched filter and of the MMSE transformation) 
tends to 0.46 bits/chip as in the synchronous 
case and to 0.69 bits/chip in the asynchronous case. Monte 
Carlo simulation of the expected MMSE capacity with binary 
sequences and (nonbinary) power-constrained codewords was 
given in [21]. Monte Carlo simulations with spherical random 
codes are also undertaken in [20]. Up to now, no analytical 
results existed on the asymptotic spectral efficiency of MMSE 
processing or on the optimal spreading gain as a function of 
the number users. Simultaneously to a conference version [50] 
of the present paper, [51] gives an equation satisfied by the 
large- output signal-to-noise ratio of the MMSE receiver 
without assuming equal received powers. 

C. Summary of Results 

Next we summarize the main conclusions found in this 
paper on the capacity of spread-spectrum systems with random 
spreading. Since the spectral efficiency depends on the spread
ing sequences, it is a random variable itself. In our asymptotic 
(in ) analysis we do not just average spectral efficiency with 
respect to the spreading sequences, but we show convergence 
of the (random) spectral efficiencies to deterministic quantities. 
Such asymptotic determinism holds regardless of whether the 
period of the spreading sequence is equal or longer than the 
symbol interval. Fig. 1 shows the spectral efficiencies of the 
optimal receiver, the MMSE receiver, the decorrelator, and 
the single-user matched filter with random spreading and a 
fixed . For comparison purposes, we show the spectral 
efficiencies achievable by an optimum joint decoder with no 
spreading and an orthogonal CDMA system for . 

Throughout the paper, the key ratio of number of users to 
number of dimensions is denoted by 

2 Relaxing the condition that the signature waveforms are binary-valued, the 
construction of WBE signatures has been studied in [35] with equal powers 
and [36], [37] with arbitrary powers. 
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Fig. 1. Large-� spectral efficiencies for �� ��� � ��  dB. No spreading (4); orthogonal (8). Random signatures: optimal (9), matched filter (10), 
decorrelator (11), MMSE (12).


1) Asymptotic Optimum Spectral Efficiency: The optimum

spectral efficiency for converges almost surely as 

to 

Copt SNR SNR 

SNR SNR 

SNR 
SNR (9) 

where 

2) Loss in Spectral Efficiency: When 
random sequences achieve 75% of the spectral efficiency of 
orthogonal sequences. When 

, binary 

is large, the loss in spectral 
efficiency as a function of due to a random choice of 
sequences (as opposed to optimal) vanishes as or 
as . The maximum loss is 50% and occurs at , 

. 
3) Matched-Filter Spectral Efficiency: The spectral effi

ciency of the single-user matched filter converges almost 
surely as to 

Csumf SNR 
(10)

SNR 

The maximum (over ) spectral efficiency of the single-
user matched filter receiver is 

Csumf 

for . Unless is relatively low and is high, 
the use of random signatures as opposed to optimally chosen 
sequences brings about substantial losses in spectral efficiency 
for the single-user matched filter. For example, if 
random signatures achieve at most of the capacity of 
orthogonal signatures. 

4) Decorrelator Spectral Efficiency: If , the spectral 
efficiency of the decorrelator converges in mean-square sense 
as to 

Cdeco SNR 

which yields 

Cdeco C (11) 

5) MMSE Spectral Efficiency: If , the spectral ef
ficiency of the linear MMSE transformation converges in 
mean-square sense as to 

Cmmse SNR SNR (12) 

The difference between the optimum spectral efficiency and 
the MMSE spectral efficiency is equal to 

SNR 
Copt Cmmse 

SNR 
(13) 

where 

and 

SNR 

Since as 

SNR 

, the loss of spectral efficiency due 
to linear processing (followed by single-user decoding) grows 
without bound with SNR when . 
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Fig. 2. Large-� spectral efficiencies with optimum ��� . 

6) Optimum Coding–Spreading Tradeoff: When the spread
ing gain is a free design parameter, it is of course interesting 
to solve for the value that optimizes the spectral efficiency 
with random spreading. The answer, as we can see in Fig. 1, 
depends heavily on the type of receiver. For either optimum 
processing or matched filtering followed by single-user decod
ing, spectral efficiency is maximized by letting . 
Thus for those receivers, the coding–spreading tradeoff favors 
coding: it is best to use error-correcting codes with very low 
rates (cf. (1)) and a negligible spreading gain with respect to 
the number of users. This conclusion was known to hold for 
the single-user matched filter [41] (although it may not extend 
to noncoherent demodulation models [52]). Note, however, 
that the behavior of optimum processing and the conventional 
single-user matched filter at are quite different: 
the optimal spectral efficiency grows without bound with , 
whereas the matched-filter efficiency approaches 0.72 bit/chip 
monotonically as . 

For large , the optimum choice of for the decor-
relator ranges from for 1.6 dB to for 
(cf. Fig. 3). The optimum coding–spreading tradeoff of the 
decorrelator dictates using codes whose rates (bits/symbol) lie 
between ( 1.6 dB) and Cdeco . With an 
optimum choice of spreading gain, the decorrelator spectral 
efficiency with random signature waveforms is better than that 
of the single-user matched filter for 5.2 dB (Fig. 2). 
Unlike the single-user matched filter, the spectral efficiency of 
the decorrelator grows without bound as . 

As far as the optimum coding–spreading tradeoff for the 
MMSE receiver, for low it favors making very 
large in which case the MMSE receiver achieves essentially 
the same spectral efficiency as the single-user matched filter 
(Fig. 2). The optimum reaches at 4 dB, and 
reaches a minimum of 0.75 at 10 dB (cf. Fig. 3). 

7) Dynamic Power Allocation: Assuming maximum-like-
lihood decoding and long spreading sequences, the gain in 
spectral efficiency achievable by allocating instantaneous 

Fig. 3. Optimum ��� for large �. 

power as a function of the instantaneous crosscorrelations 
is small enough not to warrant the required increase in 
complexity. 

II. CROSSCORRELATIONS OF RANDOM SEQUENCES


The th user sends the codeword


by transmitting 

The signature waveform has duration-
lives in an -dimensional space. 

, unit energy, and 

where 



627 ´VERDU AND SHAMAI: SPECTRAL EFFICIENCY OF CDMA WITH RANDOM SPREADING 

is the spreading code assigned to the th user. The chip 
waveforms are orthonormal3 

The crosscorrelations between the signature waveforms are 
denoted by 

A. Binary Sequences 

In the binary sequence model, the -chip signatures as
signed to the users are independently equiprobably chosen 
from the vertices of an -dimensional hypercube, i.e., for 
all and are independent 
equally likely to be or . The matrix of 
crosscorrelations has unit diagonal elements and off-diagonal 
elements equal to 

(14) 

(15) 

where are independent equally likely to be 
or . Thus is binomially distributed 

(16) 

with the following moments: 

(17) 

(18) 

(19) 

By the DeMoivre–Laplace central limit theorem, we have4 

(20) 

The crosscorrelations are pairwise independent but not 
jointly independent [25, p. 70]. 

When the ratio is kept constant (or converges 
to a constant), then the distribution of the eigenvalues of 
converges according to the following result. 

Proposition II.1 [53]: For random binary sequences the 
proportion of the eigenvalues of that lie below 
converges (as ) to the cumulative distribution function 
of the probability density function 

(21) 

3 ��� � � if � � � ; ��� � � if � �� � . 

4 Convergence in distribution is denoted by 
���� 
� . 

where is a unit point mass at , 

and 

Furthermore, the distribution of the eigenvalues of 

converges to the cumulative distribution function of . 
It follows from either Proposition II.1 or [54] that if , 

then the probability that is nonsingular goes to as . 
Obviously, if , then is singular. 

B. Spherical Sequences 

In the spherical random sequence model, the -chip sig
natures are drawn uniformly from the surface of the unit 

-sphere. Accordingly, the sequence assigned to the th user 
admits the representation 

where are independent zero-mean Gaussian 
random variables with identical variance. By symmetry, the 
distribution of the crosscorrelation 

does not depend on . Thus , the density of 
, is the same as the density of 

which is [25, p. 72] 

(22) 

with 

even 

odd 

and 

The second moment of the crosscorrelation in the spherical 
model satisfies 

(23) 

and using the weak law of large numbers [55, p. 285] it can 
be concluded that (20) also holds in the spherical model. 
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Regarding the behavior of the eigenvalues of the crosscor
relation matrix in the spherical sequence model, we note that 
Proposition II.1 remains true for any matrix whose coefficients 
are given by (14) where are independent and identically 
distributed (i.i.d.) with finite variance [53]. This means that 
Proposition II.1 holds for a matrix defined as 

(24) 

(25) 

, and is its Euclidean norm. 
In order to show that the asymptotic eigenvalue distributions 
of 

where 

and coincide, it is enough to show [56] that the weak 
norm of their difference 

vanishes almost surely. 
In general, analytical results are easier if unnormalized 

Gaussian sequences are considered. For example, the 
nonasymptotic eigenvalue distribution is known. If a model 
of long spreading sequences is considered, then the ergodicity 
of the Gaussian sequence implies that the average transmitted 
power is asymptotically deterministic even if the encoder 
does not take into account power fluctuations in the signature 
waveforms. As , the same spectral efficiency obtains 
as in the normalized spherical sequence model. 

III. OPTIMUM DECODING 

A. Preliminaries 

Throughout this paper we assume that codewords are power-
constrained 

Then, the total capacity (sum-rate) of the synchronous CDMA 
channel 

was found in [4] to be equal to 

is the spectral level 
of the white Gaussian noise 
where , and 

. 
If the users have equal power, then 

SNR 

and the optimum spectral efficiency is equal to 

Copt SNR SNR (26) 

The average with respect to is denoted by 

C
opt 

SNR SNR (27) 

yields the capacity of long-code 
CDMA systems where the periodicity of the spreading code 
is much larger than the symbol duration. The reason is that 
as the blocklength goes to infinity, all realizations of 

Averaging with respect to 

occur 
(many times) and the encoding/decoding system can treat the 
symbols corresponding to each realization as an independent 
subcodeword. Although this reasoning strictly applies to the 
case where takes a finite number of values (e.g., binary 
sequence model), it can also be extended to encompass the 
spherical random sequence model. 

Interestingly, in the setting of long spreading codes, we can 
do better than (27) by means of dynamic power allocation, 
namely, subcodewords corresponding to different realizations 
of can be allocated different powers, as long as their average 
power remains intact. For example, we would expect that the 
optimal strategy will assign more power to the propitious times 
at which the signatures are orthogonal, than to the times at 
which all users are assigned the same signature. With dynamic 
power allocation, the average capacity becomes 

C
opt 

SNR 

(28) 

where the maximum is over all mappings from 
crosscorrelation matrices to positive diagonal matrices, such 
that 

B. Two-User Channel 

As usual, it is illustrative to consider the two-user case first. 
In this case 

and the average static (27) and dynamic (28) spectral efficien
cies particularize to 

C
opt 

SNR 

SNRSNR (29) 

and 

C
opt 

SNR 

SNRSNR 

(30) 

and 
the maximum in (30) is with respect to the function SNR 
that satisfies 

respectively, where the expectations are with respect to 

SNR SNR (31) 



629 ´VERDU AND SHAMAI: SPECTRAL EFFICIENCY OF CDMA WITH RANDOM SPREADING 

The solution to this optimization problem is 

SNR 

(32) 

where is the associated Lagrange multiplier chosen 
so that (31) is satisfied. It can be verified from (32) that 

SNR SNR 

Let us now evaluate (29) and (30) in the case of binary 
sequences in which is binomially distributed (16). If 
then 

, 

and (29), (30) become 

C
opt 

SNR SNR SNR (33) 

and 

C
opt 

SNR SNR (34) 

Comparing (34) and (2) at we see that 

CC
opt 

whereas orthogonal sequences achieve 

C
orth 

C 

Interestingly, we can check that the gain due to dynamic 
power assignment is minute in this case. The maximum 
difference occurs for asymptotically high and is equal to 

C
opt 

SNR C
opt 

SNR 0.03 bit/chip 
SNR 

For all but very low , the maximum relative gain is also 
very small. Its maximum value is attained for 

C
opt 

C
opt 

For a counterpart of the results in this subsection with the 
spherical random sequence model see Appendix I. 

C. -User Channel 

Returning now to the general -user channel, we will see 
that the very small gain realized by dynamic power assignment 
in the two-user case is even smaller for larger number of 
users. The reason is that the likelihood of atypically bad/good 
crosscorrelation matrices decreases with (and also with ). 
Moreover, the maximum difference between dynamic-power 
and static-power capacity occurs at SNR , the reason 
being that constant power allocation is best to combat the 
background noise. Accordingly, it makes sense to focus in 
the asymptotic regime SNR in our analysis of the 

difference between dynamic-power and static-power spectral 
efficiency. The following result (proved in Appendix II) lets 
the power-allocation strategy depend on the instantaneous 
crosscorrelation matrix but not on the user index. In the more 
general case, we conjecture that the asymptotically optimal 
strategy is to let 

SNR 

where the indicator function is denoted 

if is true 
if is false. 

Proposition III.1: Consider the class of dynamic power 
allocation strategies where all users are constrained to use the 
same power SNR SNR . Then 

C
opt 

SNR C
opt 

SNR 
SNR 

(35) 

denotes the rank of . 
The quantity in the right-hand side of (34) is very small. 

As we saw, it is equal to 0.03 bit/chip if 

where 

, it  
equals 0.02 bit/chip if . As  the gain 
vanishes5 because the probability that is not full-rank goes 
to zero [54]. In view of these results we conclude that the 
very small gain in optimal spectral efficiency brought about 
by dynamic power allocation does not warrant the increase 
in complexity in encoding/decoding. Henceforth, we restrict 
attention to encoding with power allocation that does not 
depend on the instantaneous signature waveforms. 

D. 

The complexity of analytical results on spectral efficiency 
quickly grows with the number of users. Fortunately, as 

, not only do analytical results become feasible but, as 
the following result demonstrates, the randomness of spectral 
efficiency due to the random choice of signatures vanishes. 

Proposition III.2: Suppose that the eigenvalue distribution 
of converges to almost surely for all 
optimum spectral efficiency converges almost surely to 

. Then, the 

Copt SNR SNR (36) 

(37) 
SNR 

where the expectation of is with respect to the distribution 
. Thus for binary random sequences 

Copt SNR 

SNR 

(38) 

where , and 
5 This conclusion does not require asymptotically large SNR as we indicate 

in the next subsection. 
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Proof: Fix a crosscorrelation matrix . The 
eigenvalues of the matrix will be denoted by 

, and 

where 

SNR 

Let us also define the cumulative distribution functions 

(39) 

(40) 

Note that by monotonicity of the function 

(41) 

According to (26), 

Copt SNR (42) 

(43) 

(44) 

(45) 
SNR 

where (43) follows from (40), and (45) is a result of a simple 
change of integration variable. 

Upon taking limits in (45) and using the bounded conver
gence theorem (e.g. [57]) to interchange limit and integration 
we obtain 

Copt SNR 

SNR 

Finally, Proposition II.1 and integration per parts can be used 
to verify (38). 

The closed-form expression for the optimal spectral effi
ciency as a function of and SNR given in (9) is obtained 
by means of the identity (100) found in Section VI. This 
circumvents having to deal with the cumbersome definite 
integral in (38). Rapajic [58] solves the definite integral in 
(38) dealing with the cases and separately. 
Unlike (9), the expression found in [58] is not directly related 
to the MMSE spectral efficiency. 

From (9) it is straightforward to show that 

opt SNR opt SNR (46) 

optwhere SNR denotes the right-hand side of (9). The 
optimal spectral efficiency in terms of is the solution to 

Copt opt Copt (47) 

Fig. 4. Optimum spectral efficiencies with orthogonal and random sequences 
� � � � �. 

Using (46) several interesting analytical properties can be 
shown for the solution to (47). 

Copt Copt (48) 

Copt C (49) 

Copt C (50) 

where (50) follows from (48) and (49). 
It is straightforward to show that as the slope of 

the spectral efficiency achievable with random sequences as a 
function of (dB) goes to 

Copt 

bits/dB (51) 

which coincides with the optimum behavior (5) for . 
and CorthIn Fig. 4 we have shown Copt 

C . The slopes of both curves with the logarithm of 
are asymptotically equal. However, there is a nonnegligible 
gap between both curves: 

Copt C 

Copt 

(52)
C 

which can be as large as 

Copt C 

(53) 

0.72 bit/chip (54) 

where (53) follows from the fact that Copt and C have the 
same slope with large (cf. (5) and (51)). A limiting result 
similar to (54) can be found in [40]. 
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Fig. 5. Optimal processing. Spectral efficiency with random signatures di
vided by spectral efficiency with optimally chosen signatures. 

If is close to its lower limit of 1.6 dB, then 
random sequences achieve only 50% of the spectral efficiency 
of orthogonal sequences. Fig. 5 displays the proportion of the 
spectral efficiency of optimum sequences which is achieved 
by random sequences, i.e., if , then 

Copt Copt 
opt 

orth 

Copt 

and if , then 

Copt

opt


Therefore, we get the following identity: 

opt opt 

Note that random sequences are asymptotically optimal (i.e., 
as good as orthogonal for and as good as WBE for 

) under the following conditions (see Fig. 5). 

and .• Fixed 
• Fixed and . 
• Fixed and . 

Adhering to the suboptimal approach where all the users are 
constrained to have the same power as in Proposition III.1, we 
notice that (38) still holds with SNR replacing SNR. Then, 
maximizing with respect to SNR , satisfying SNR 
SNR yields by the concavity of the logarithm that the optimum 
choice is SNR SNR. For asymptotically large SNR, the 
result conforms with (35). 

Another byproduct of the proof of Proposition III.2 is the 
practically relevant fact that without loss of optimality users 
can choose codebooks without regard to the assigned signature 
waveforms or to their evolution in a CDMA system with long 
codes. 

IV. SINGLE-USER MATCHED FILTER 

The output of the matched filter of user 1 is the following 
discrete-time process: 

(55) 

where is an independent Gaussian sequence with 
unit variance and is the input codeword 
of user . The receiver under consideration in this section 
is suboptimal because its scalar observations are not sufficient 
statistics and because it treats the multiuser interference as 
noise without attempting to exploit possible knowledge of the 
codebooks of the interfering users. A rigorous analysis of the 
capacity of this important channel has not been undertaken 
previously. It is customary (e.g. [59]) to simply approximate 
the interference 

as an independent Gaussian sequence. However, the problem 
is more subtle than may appear at first glance. The crosscorre
lations are known at the receiver and the input distribution of 

need not be Gaussian. Thus the single-user channel (55) 
is, in general, non-Gaussian, and its capacity depends on the 
crosscorrelations. Achieving the capacity of (55) requires that 
the receiver of user 1 knows the crosscorrelations and input 
distributions of all the interferers. However, the following re
sult shows that that information becomes useless as the number 
of users grows without bound. Furthermore, the dependence of 
the capacity on the actual realization of signature waveforms 
vanishes asymptotically. 

Proposition IV.1: Let C de
note the capacity of the single-user channel (55) subject to 
the following constraints: 

.• 

, the random variables are 
independent with distribution 

• For 
.


•


•


. 

.


•
 is a memoryless Gaussian process with unit 
variance. 

If the sequences are drawn according to either the binary or 
the spherical random models, then as 

C 

(56) 

Proof: It follows from well-known results on the capac
ity of non-Gaussian channels [60], [61] that 

C (57) 

(58) 
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where 

denotes the non-Gaussianness of the Gaussian plus interfer
ence noise quantified by its divergence from the Gaussian 
distribution with identical variance. 

According to (57) and (58), it is enough to show that 

(59) 

for all , and 

(60) 

To show (59), we recall the behavior of the second moment 
of the crosscorrelations in either the binary model (18) or the 
spherical model (23) and we use a strong law of large numbers 
for independent and identically distributed random variables 
whose distribution may depend on the number of terms in the 
sum [57, Theorem 5.4.1] to show 

and (59) follows. 
To show (60), we invoke the recent version of the central 

limit theorem with convergence in the sense of divergence 
under the Lindeberg–Feller condition6 [62] (see also [63, p. 
601]), which in our setting becomes 

(61) 

in addition to 

which holds because has zero mean. Thus we need to show 
that the set of sequences for which (61) holds 
has asymptotic unit probability for all . 

Let us choose an arbitrary scalar , and let us bound 
each random variable in (61) by 

(62) 

Upon taking expectations with respect to and summing over 
we get that the left-hand side of (61) is upper-bounded by 

(63) 

Since grows without bound and the second moment of 
exists, the first term in (63) vanishes for all . Regarding 
the second term in (63) we multiply it by the constant factor 

and note that by the independence of the crosscorre
lations , we can apply the law of large numbers again to 
obtain 

(64) 

(65) 

where is a standard Gaussian random variable; (65) follows 
from (20) and (18) (binary model) and (23) (spherical model). 
Since the choice of is arbitrary we can make the right-hand 
side of (65) as small as desired, thereby concluding the proof. 

By focusing on asymptotics in we have been able 
to circumvent the open problem of finding the capacity-
achieving distribution when the input distributions of all 
users are constrained to be identical. Furthermore, the result 
of Proposition IV.1 suggests that unless is small the solution 
to that open problem cannot be very far from Gaussian. 

We see from (56) that a CDMA system with random 
sequences, chips per symbol, a single-user matched-filter 
front-end whose output signal-to-noise ratio in the absence of 
interfering users is SNR, and a target output signal-to-noise 
ratio of sumf can accommodate up to 

(66)
sumf SNR 

users—a result obtained independently in [51] without ana
lyzing capacity. 

Equation (56) gives the capacity per user and per symbol ( 
chips). To obtain the spectral efficiency, all we need to do is 
multiply by and divide by . Recalling that the energy per 
symbol divided by the noise spectral level is SNR , 
we obtain that the asymptotic spectral efficiency for the single-
user matched filter as a function of and SNR is 
given by 

Csumf SNR 

SNR 
(67) 

Upon substitution of 

SNR Csumf 

we obtain that the asymptotic spectral efficiency of the single-
user matched filter is equal to 

Csumf (68) 

where is the solution to 
6 Due to the convolution with a Gaussian random variable in the first 

distribution of the divergence in (60), the convergence in (60) can also be 
proven directly without invoking the general result in [62]. 
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Fig. 6. Single-user matched filtering. Spectral efficiency with random signa
tures divided by spectral efficiency with optimally chosen signatures. 

It can be shown from (68) that Csumf is monotonically 
increasing with , and 

Csumf (69) 

. The asymptotic spectral efficiency for large if 
can be seen (from either (67) or (68)) to be 

Csumf (70) 

Thus (cf. Subsection IV-B) 

Csumf 

with asymptotic equality when both and . 
Fig. 6 shows the ratio of spectral efficiency of random 

spreading and single-user matched filtering to the spectral 
efficiency of optimally designed sequences and maximum-
likelihood decoding. Recall that if , orthogonal 
sequences are optimal, and if , they remain optimal 
provided each sequence is assigned to users. In either 
case, the single-user matched filter is an optimal front-end. 
However, in the latter case, the maximum-likelihood receiver 
is different from the receiver considered in this section which 
deals with the interferers as noise. The ratio of spectral 
efficiencies is monotonically decreasing with . At  
1.6 dB, the ratio is	 at , and higher for any other 

. 

V. DECORRELATOR 

In contrast to the single-user matched filter, the decorrelator 
for user correlates the received signal with respect to the 
projection of the signature waveform on the subspace 
orthogonal to the space spanned by the interfering waveforms 
[25]. When the signature waveforms are linearly independent 
( is invertible) then such a projection can be expressed as 

(71) 

where denotes the element of the inverse of the 
crosscorrelation matrix. Since 

such a transformation succeeds in completely eliminating any 
interference from other users, and the decoder sees a single-
user memoryless channel. As we mentioned in Section I, even 
if an optimum single-user encoder/decoder system is used, 
this receiver is not optimal because the output stream of the 
single-user decorrelator is not a sufficient statistic. The spectral 
efficiency is obtained by summing the individual capacities 
and dividing by 

Cdeco SNR (72) 

where is the optimum near–far resistance of the th user 
[25] 

(73) 

What if is not invertible? Then, the decorrelator can still 
be defined through the Moore–Penrose generalized inverse of 

[44], [25]. If is not spanned by the interfering signature 
waveforms, then (72) and (73) still hold provided the inverse 
in (73) is replaced by the Moore–Penrose inverse. If is 
spanned by the interfering signature waveforms, then 
In that case, the decorrelator for user 

. 
cannot tune out 

the interferers, but the capacity achievable by a single-user 
decoder is nonzero, as in the case of the single-user matched 
filter. 

Proposition V.1: For and binary random spreading, 
the spectral efficiency of the decorrelator converges in mean 
square as to 

Cdeco SNR (74) 

Proof: The proof entails showing 

SNRCdeco 

Cdeco	

(75) 

and 

(76) 

The capacity achievable in the event that the crosscorrelation 
matrix is singular is bounded between and SNR . 
Since that event has vanishing probability (as ), 
neither the mean nor the variance of Cdeco will be affected 
asymptotically if we can change the distribution under which 

is chosen by conditioning on it being nonsingular. In that 
case, the spectral efficiency is given by (72). By symmetry, 
the distribution of is independent of . Thus using (72) 
we obtain 

Cdeco SNR (77) 

and using the Cauchy–Schwarz inequality 

Cdeco SNR (78) 
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Note that had the random variables been independent, then 
we could have claimed equality in (78) after dividing the right-
hand side by . Fortunately, the bound in (78) is good enough 
for our purposes. Consider the following result. 

Proposition V.2 [25]: If , then for all 
the maximum near–far resistance satisfies 

where the limit is in mean-square sense. 

It is not true in general that implies 
. However, this implication can be 

shown to hold in our case because SNR is always 
nonnegative. 

Now, we can evaluate (74) at the signal-to-noise ratio 

CdecoSNR 

to get the equation satisfied by the asymptotic spectral effi
ciency of the decorrelator 

Cdeco Cdeco 

which upon comparison to (4), yields 

Cdeco (79)C 

The result in (79) can be interpreted as the decorrelator 
achieving the same efficiency of orthogonal spreading (cf. (8)) 
except for a penalty in signal-to-noise ratio of 

of (79) 

Cdeco Cdeco 

decibels. The system load , that achieves the maximum 

can be obtained as the solution to 

C 

Notice that Cdeco if 

This means that the minimum necessary for reliable 
communication with the decorrelator is equal to 1.6 dB plus 
the noise enhancement factor in decibels. Therefore, for any 
given , the spectral efficiency of the decorrelator becomes 
zero for a value of that is strictly smaller than (cf. Fig. 1). 

When the system load is large enough, the spectral 
efficiency of the decorrelator with random spreading degrades 
to the point that it is even lower than that of the single-user 
matched filter. In such a case, performance can be improved 
by neglecting the presence of a subset of users or, preferably, 
by using the linear transformation discussed in Section VI. 

Fig. 7. Decorrelator. Spectral efficiency with random signatures divided by 
spectral efficiency with optimally chosen signatures. 

Since the decorrelator is an optimum front-end in the case 
of orthogonal sequences, the loss due to the use of random 
sequences is given by (via (8) and (79)) 

Cdeco C
deco (80)

Corth C 

if . Fig. 7 shows (80). Comparing this figure to Fig. 5 
we can see that for high and low the decorrelator almost 
achieves optimal spectral efficiency (see also Fig. 1). As 
should be expected and in contrast to the single-user matched 
filter, the suboptimality of the random choice decreases 
with . 

The results in this section hold verbatim if the received 
powers are different (but nonzero) since neither the decorre
lator nor its output depend on the power of the interferers. 
We call attention to the fact that for the decorrelator (and 
MMSE receiver in the next section) dynamic power allocation 
is useful when exceeds the optimum load for a given 
(Fig. 1). To see this, let be the largest multiple 
of not exceeding . Every encoder can be forced 
to transmit energy only in a fraction of symbols in a way 
that users are simultaneously active at every symbol. This 
allows each user to boost its power by a factor at the 
times at which it is active. If the decorrelator is changed from 
symbol to symbol so as to take into account only those users 
that have nonzero power, then the resulting spectral efficiency 
is equal to Cdeco , which can be as close as desired to 

for sufficiently large .the optimum Cdeco 

VI. LINEAR MMSE RECEIVER 

We start by recalling from [25] several elementary properties 
of the linear MMSE multiuser receiver. If all the received 
signal-to-noise ratios are identical, the MMSE receiver for the 

th user correlates the incoming signal with 

SNR (81) 

This linear transformation does not eliminate multiaccess 
interference from its output but it achieves the maximum 
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output signal-to-interference ratio given by 

(82)
M SNR SNR 

where M SNR is the minimum mean-square error for the 
th user when all users have signal-to-noise ratio equal to 

SNR. The maximum rate achievable by a single-user decoder 
depends on the distribution of the symbols transmitted by 
the interferers. Since the inputs are power-constrained, the 
minimax distribution for the interferers is Gaussian. Although, 
as noted before, this does not imply that Gaussian inputs are 
optimum if all input distributions are constrained to be equal, 
the MMSE spectral efficiency is lower-bounded by the spectral 
efficiency of a single-user channel with signal-to-noise ratio 
given by (82) 

Cmmse SNR (83) 

It has been observed in [64] that the Gaussian approximation 
for the output of the MMSE transformation is excellent even 
if there are very few binary-valued interferers. Moreover, as 

, the central-limit theorem proof in Proposition IV.1 
can be extended to the current case to show that the spectral 
efficiency is not affected by the distribution of the symbols 
transmitted by the interferers. As , not only does 
the bound in (83) become tight but it admits a particularly 
interesting closed-form expression. 

Proposition VI.1: For and binary random spreading, 
the spectral efficiency of the MMSE receiver converges in 

to 

Cmmse 

mean square as 

SNR SNR (84) 

where 

(85) 

Proof: Analogously to Proposition V.1, the result follows 
if we show the following convergence result for the minimum 
mean-square error 

M SNR (86) 

SNR 
SNR (87) 

SNR SNR (88) 

Equation (88) follows from (85) after tedious algebra. To show 
the convergence result in (87) let us show first that it holds 
for the respective expectations. Consider the following chain: 

M SNR 

SNR 

SNR 

SNR 

(89)
SNR 

SNR (90)
SNR 

where the density in (89) was defined in (21). 
To show mean-square convergence (86), we note that 

M , and we follow [25] to express the normalized 
variance of M 

M 

M 

M 

M 

as 

M 

M 

M 

M M 

M 

(91) 

The proposition will follow upon showing that the right-hand 
side of (91) vanishes asymptotically. To that end, recall that 

denotes the spreading code of the th user and define the 
matrix 

SNR 

It can be shown that [47], [25] 

SNR 
M 

Taking expectations with respect to binary spreading codes 
we get 

SNR 
M


SNR

(92) 

SNR 

SNR 

SNR 

SNR 

SNR 

SNR 

SNR 

(93)
SNR 

SNR 

SNR (94) 

, whose 
components are independent and zero-mean; the limit (93) 
follows from Proposition II.1. 

where (92) follows by averaging with respect to 
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It is well known that the maximum sum-rate of the 
Cover–Wyner capacity region of the one-dimensional additive 
white Gaussian noise multiple-access channel can be achieved 
by the technique of successive cancellation [1]. Although 
successive cancellation does not result in maximum-likelihood 
decisions (regardless of whether data are encoded), it 
becomes asymptotically optimum as the error probability of 
intermediate decisions vanishes with code blocklength. This 
implies that in a synchronous system where each user were 
assigned the same signature waveform, a successive canceler 
(each of whose stages consists of a matched filter followed 
by a single-user decoder which ignores previously decoded 
users and treats yet undecoded users as noise) would be also 
asymptotically optimum. Several recent references ([65]–[67]) 
have generalized this result to the -user synchronous CDMA 
channel by noticing that under the assumption of perfect 
cancellation, the succesive canceler which uses an MMSE 
filter that ignores previously decoded users achieves the same 
capacity as the maximum-likelihood decoder. This is a direct 
consequence of the following identity (cf. (26) and (83)): 

SNR SNR (95) 

denotes the th principal minor (crosscorrelation 
matrix of users 
where 

). Equation (95) is a special case of 
the elementary matrix identity 

(96) 

As pointed out in [67], (95) can be used to express the optimum 
sum-capacity as an integral of the MMSE capacity we found 
in Proposition VI.1. Substituting (95) in (26) we obtain 

Copt SNR 

SNR 

SNR (97) 

SNR SNR (98) 

SNR (99) 

SNR SNR (100) 

where the limits in (97) are understood in probability, (98) 
follows from (88), and (99) follows from the definition of 
Riemann integral. The solution of the definite integral in (100) 
is given in (9). The expression for the difference between the 
optimum and MMSE spectral efficiency given in (13) can be 
checked from (9) and (88). 

We emphasize that the capacity found in Proposition VI.1 
holds regardless of whether the signature waveform changes 
from symbol to symbol (long pseudorandom codes) or stays 
constant. Even in the latter case, the randomness due to 
the choice of signatures vanishes as the number of users 

grows. Moreover, since the analysis shows convergence of 
the output signal-to-noise ratio of the MMSE receiver, the 
asymptotic determinism (and equivalence of long and short 
random spreading codes) applies to uncoded systems [25] 
and to the performance of suboptimal error-control codes. 
However, for symbol-synchronous systems with small number 
of users using certain simple error-correcting codes, the short-
term averaging effect of long codes may be beneficial [15]. 

In parallel to (66), if a target output signal-to-noise ratio of 
mmse is desired for the MMSE receiver, then it can be verified 

from the expression for the output signal-to-noise ratio in (94) 
that the number of users that can be accommodated is (cf. [51]) 

(101) 
mmse 

SNR 

As usual, Cmmse 

mmse 

is obtained by substituting 

CmmseSNR 

into 

Cmmse SNR SNR (102) 

Let us study the behavior of the spectral efficiency of the 
MMSE receiver for asymptotically large . For , 
the MMSE and decorrelator spectral efficiencies coincide (cf. 
Fig. 2) 

Cmmse Cdeco (103) 

Thus according to (5) and (103), if , then 

Cmmse 

C 

If , then it can be shown that 

C 

Cmmse 

If , then it can be shown that 

Cmmse 

The asymptotic behavior of the spectral efficiency of the 
MMSE receiver with is identical to that of the 
single-user matched filter 

Cmmse (104) 

for . 
Fig. 8 depicts the function 

Cmmse Cmmse 

mmse 

Corth C 
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Fig. 8. MMSE receiver: Spectral efficiency with random signatures divided 
by spectral efficiency with optimally chosen signatures. 

if , and 

Cmmse 

mmse (105)
C 

if . Comparing Fig. 8 to Fig. 5 we see that, unlike the 
optimal receiver, the MMSE receiver with random spreading 
suffers substantial losses for . For , and in the 
range of considered in Fig. 8, a random choice achieves 
around 40% of the spectral efficiency achieved by orthogonal 
sequences. As the spreading gain increases, the MMSE 
detector loss is more important at low and approaches that 
in Figs. 5 and 7 for large . The deleterious effect of low 

on the decorrelator (Fig. 7) is not suffered by the MMSE 
receiver. Relative to Fig. 6, we see that at low the MMSE 
and single-user matched filter behave similarly; at high the 
comparison depends heavily on . 

VII. CONCLUSION 

A misconception that has arisen in the last few years claims 
that in CDMA systems with a large number of users, error-
control coding, perfect power control, and long codes, little 
can be gained by exploiting the structure of the multiac
cess interference at the receiver (cf. [18]). Our results have 
shown that exactly the opposite conclusion is true. Because 
of the deleterious effects of imperfect power control on the 
single-user matched filter, we would expect that the spectral 
inefficiency of that receiver to be even greater in that situation. 

Another misconception predicts that multiuser detectors 
suffer from high sensitivity to the actual signature waveforms 
(cf. [18]). On the contrary, our convergence results have shown 
that, as the number of users grows, the variability in achievable 
signal-to-noise ratio and spectral efficiency due to the choice 
of signature waveforms vanishes. 

With large , random CDMA incurs negligible spectral 
efficiency loss relative to no-spreading if an optimum receiver 
is used. However, we have shown that linear multiuser de
tection is distinctly suboptimal for large . This warrants 
the study of nonlinear suboptimal multiuser detection, such 
as decision-feedback schemes [66], [65] and iterative decod
ing procedures [68]–[70], which have already demonstrated 

very competitive performance with limited complexity. The 
capacity-achieving nature of error-free successive cancellation 
using single-user decoders with MMSE linear front ends (cf. 
Section VI) lends further motivation for analyzing practical 
approximations to that ideal scheme. 

The optimum coding–spreading tradeoff favors negligible 
spreading (with respect to the number of users) for either 
optimum or single-user matched-filter processing. In contrast, 
nonnegligible spreading is optimum for linear multiuser de
tectors such as the decorrelator and the MMSE receiver. With 
an optimal choice of spreading factor, the spectral efficiencies 
of the decorrelator and MMSE receivers grow without bound 
as increases, in contrast to the single-user matched filter 
for which large signal-to-noise ratios offer little incentive 
(Fig. 2). For large , even if the signal-to-noise ratio is 
very low, the spectral efficiency of the single-user matched 
filter is a fraction of the optimum one. So even though the 
background noise is dominant it pays to exploit the structure 
of the multiaccess interference because there are several users 
per degree of freedom. The loss in spectral efficiency due to 
a random choice of spreading sequences depends on , , 

, and the type of receiver used. Interestingly, we have found 
that for the optimal receiver, the single-user matched filter, 
and the decorrelator, the maximal loss occurs at . 

We have focused exclusively on power-constrained inputs. 
If the channel symbols modulating the signature waveforms 
are restricted to be binary, then existing results on the capacity 
of single-user binary input Gaussian channels can be used to 
deal with the decorrelator, MMSE, and single-user matched 
filter. However, optimal spectral efficiency under such con
straint is unknown, except when is large in which case 
the symbol SNR is low and binary inputs are almost as good 
as Gaussian [4], [71]. 

For low systems (such as state-of-the-art CDMA), 
either the decorrelator or the MMSE are excellent choices and 
little inefficiency results from random rather than orthogonal 
signatures. 

Fading can be incorporated in the analysis, replacing 
by , where are i.i.d. random variables 
known to the receiver but not to the transmitter. This frame
work can be used to model either a classical fading effect 
(independent from symbol to symbol because of interleaving) 
or to account for nonideal power control fluctuations. Our 
asymptotic-in- results can be generalized to this setting and 
to nonequal deterministic received powers, using recent results 
on the spectral distribution of random matrices [72], [73]7. 

The coding–spreading tradeoff considered in this paper 
is not limited to direct-sequence spread-spectrum systems; 
it can be interpreted in a general way, where degrees of 
freedom in time/frequency/space are used for coding and 
spreading purposes. For example, multicarrier CDMA [75] 
can be considered a dual (in frequency) to the direct-sequence 
format (in time) [25]. 

For illustration purposes, let us consider the homogeneous 
fading model [25] where chips are affected by identically 
distributed fading coefficients: . Let us also 

7 See [74] for further discussion. 
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assume that the fading coefficients have unit power and 
are known to the receiver. Under mild conditions on the 
distributions of [72], the optimal spectral efficiency 
found in Proposition III.2 can be shown to extend to this case. 

In the case of , it is interesting to compare the 
performance of such a frequency-division spreading scheme, 
to that where classical frequency division is used as an 
orthogonal channel accessing technique. The latter gives rise 
to the spectral efficiency (in bits per frequency slot) 

orth 
fdm SNR (106) 

where the expectation is taken with respect to the fading power 
random variable and where SNR is the individual signal-to-
noise ratio (over all frequency slots). This is to be compared 
to the results of Proposition III.2. For low SNR both schemes 
yield the same behavior of SNR SNR, and for large 

opt SNR (107) 

while the result in (106) depends on the distribution of . 
Certainly for no fading fdm is advantageous, being equivalent opt 

to the optimal accessing technique [8]. This advantage is also 
maintained for Rayleigh fading where is exponentially 
distributed [76] and 

opt 
fdm SNR (108) 

where is the Euler constant. The comparison 
of (107) to (108) answers in part an open problem posed in 
[76] on the relative advantage of CDMA versus TDMA in a 
single-cell fading channel. 

Our analysis has focused on symbol-synchronous CDMA 
channels. The generalization to symbol-asynchronous CDMA 
is nontrivial (cf. [3]), but highly interesting for many appli
cations8. 

APPENDIX I 

In this appendix we consider the two-user case with the 
spherical random sequence model under which the density of 

is given by (22). Then, the spectral efficiency with static 
power allocation is 

opt 
SNR 

SNR SNR (109) 

SNR 

SNR 
(110)

SNR 

and the dynamic-power spectral efficiency is 

opt 
SNR 

SNR SNR 

(111) 

8 See [77] for a signal-to-noise ratio analysis of the MMSE receiver in the 
chip-synchronous case. 

(112) 

is specified by where the Lagrange coefficient 

SNR 

For low SNR, the following limiting behaviors can be 
verified from (110) and (112): 

C
opt 

SNR 
SNR 

SNR (113) 

C
opt 

SNR 
SNR 

SNR (114) 

whereas at high SNR 

C
opt 

SNR 
SNR 

(115) 

opt SNR 
C SNR 

(116) 

We see that at either extreme of SNR, the gains of dynamic 
power allocation with spherical sequences vanish. 

In the case of , (109) becomes 

opt
C SNR SNR 

SNR 

SNR 

APPENDIX II 
PROOF OF PROPOSITION III.1 

For every realization of we can write 

SNR SNR 

SNR SNR 

SNR SNR SNR 

(117) 

Let us consider the matrix that appears in (117) 

SNR SNR 

Note that if is an eigenvector of with eigenvalue , then 
is an eigenvector of SNR with eigenvalue equal to 

SNR 

C
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Since the determinant of a nonnegative-definite matrix is the 
product of its eigenvalues we have 

SNR SNR SNR 

SNR 
(118)

SNR 

The maximization of the expected value of (118) with respect 
to the power allocation is equivalent to 

where the maximization is with respect to 
SNR SNR if such that 

The method of Lagrange multipliers readily yields 

or, equivalently, 

SNR SNR 
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