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COMPLEX RANDOM MATRICES AND RAYLEIGH CHANNEL 

CAPACITY∗ 

T. RATNARAJAH† , R. VAILLANCOURT†‡ , AND M. ALVO† 

Abstract. The eigenvalue densities of complex central Wishart matrices are investigated with 

the objective of studying an open problem in channel capacity. These densities are represented by 

complex hypergeometric functions of matrix arguments, which can be expressed in terms of complex 

zonal polynomials. The connection between the complex Wishart matrix theory and information 

theory is given. This facilitates the evaluation of the most important informationtheoretic measure, 

the socalled channel capacity. In particular, the capacity of multiple input, multiple output (MIMO) 

Rayleigh distributed channels are fully investigated. We consider both correlated and uncorrelated 

channels and derive the corresponding channel capacity formulas. It is shown how the channel cor

relation degrades the capacity of the communication system. 
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complex hypergeometric functions, Rayleigh distributed MIMO channel, channel capacity 
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1. Introduction. Let an n × m complex Gaussian random matrix A be dis
tributed as A ∼ CN (0, In ⊗Σ) with mean E{A} = 0 and covariance cov{A} = In ⊗Σ. 
Then the matrix W = AH A is called a complex central Wishart matrix and its dis
tribution is denoted by CW m(n, Σ). 

In this paper, we investigate the densities of the eigenvalues of complex central 
Wishart matrices and their applications to multiple input, multiple output (MIMO) 
channel capacity. We consider that the elements of random matrices are complex 
Gaussian distributed with zero mean and arbitrary covariance matrices. This will 
enable us to consider the beautiful but difficult theory of complex zonal polynomials 
(also called Schur polynomials [11]), which are symmetric polynomials in the eigen
values of a complex matrix [14]. Complex zonal polynomials enable us to represent 
the densities of the eigenvalues of these complex Wishart matrices as infinite series. 

The theory of these complex Wishart matrices is used to evaluate the capacity of 
MIMO wireless communication systems. Note that the capacity of a communication 
channel expresses the maximum rate at which information can be reliably conveyed 
by the channel [1]. In a wireless communication system, data is delivered from a 
transmitter to a receiver using radio waves or other electromagnetic waves. The waves, 
however, may be reflected off objects in the environment and scattered randomly while 
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propagating from the transmitter to the receiver. Therefore, transmitted signals are 
attenuated and phase shifted during the transmission. This channel effect can be 
modeled by complex channel coefficients. A MIMO channel can be represented by an 
nr ×nt complex random matrix H ∼ CN(0, I ⊗Σ), where nt and nr are the number 
of inputs (or transmitters) and outputs (or receivers) of the wireless communication 
system. If Σ = σ2Int then the channel is called an uncorrelated Rayleigh distributed 
channel, otherwise it is called a correlated Rayleigh distributed channel. 

Recently, industrial researchers have exploited the use of MIMO systems to meet 
the demand for higher bit rates in wireless communications. These studies show 
that MIMO systems increase capacity significantly over single input, single output 
(SISO) systems. For example, when n = min{nt, nr }, a MIMO uncorrelated Rayleigh 
distributed channel achieves almost n more bits per hertz for every 3dB increase 
in signaltonoise ratio (SNR) compared to a SISO system, which achieves only one 
additional bit per hertz for every 3dB increase in SNR [18]. However, the channel 
coefficients from different transmitter antennas to a single receiver antenna can be 
correlated. This channel correlation degrades the capacity [4], [17]. The channel cor
relation depends on the physical parameters of a MIMO system and the scatterer 
characteristics. The physical parameters include the antenna arrangement and spac
ing, the angle spread, the angle of arrival, etc. One of the objectives of this paper is to 
evaluate this capacity degradation by deriving closed form ergodic capacity formulas 
for correlated channels and their numerical evaluation. 

This paper is organized as follows. Section 2 provides the necessary tools for 
deriving the distribution theory and channel capacity. Complex central Wishart ma
trices are studied in Section 3. The capacity of MIMO channels is formulated in 
Section 4 and the computational methods are given in Section 5. 

nr 

2. Preliminary tools. In this section we present tools that will be used in the 
sequel. 

2.1. Complex zonal polynomials. First, we define the multivariate hyperge
ometric coefficients [a]κ 

(α) which frequently occur in integrals involving zonal polyno
mials. Let κ = (k1, . . . , km) be a partition of the integer m ≥ 0k with k1 ≥ · · · ≥ k

and k = k1 + + km. Then [2] · · · 

= 
m� 1(α)[a] (i− 1)a−κ α kii=1 

where (a)k = a(a + 1) (a + · · · k − 1) and α = 1 for complex and α = 2 for real 
multivariate hypergeometric coefficients, respectively. In this paper we only consider 
the complex case; therefore, for notational simplicity we drop the superscript [9], i.e., 

m�
(1)[a]κ := [a] = (a− i + 1)ki .κ 

i=1 
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The complex zonal polynomial (also called Schur polynomial [11]) of a complex matrix 
X is defined in [8] by 

(1)	 Cκ(X) = χ[κ](1)χ[κ](X), 

where χ[κ](1) is the dimension of the representation [κ] of the symmetric group given 
by 

�m 
i<j (ki − kj − i + j)

(2)	 χ[κ](1) = k! �m 
i=1(ki + m − i)! 

and χ[κ](X) is the character of the representation [κ] of the linear group given as a 
symmetric function of the eigenvalues λ1, . . . , λm of X by 

kj +m−j 
��

det 
��

λi 
(3)	 χ[κ](X) = . 

det 
��

λm
i 
−j 

�� 

Note that both the real and complex zonal polynomials are particular cases of the 
(general α) Jack polynomials C(α)(X). See [2] for details. Again α = 1 for complex 
and α = 2 for real zonal polynomials, respectively. For the same reason as before, 
we shall drop the superscript of Jack polynomials, as was done in (1), i.e., Cκ(X) := 
C

(1)(X). 

κ 

κ 

The following basic properties are given in [8]: 

(tr X)k = 
� 

Cκ(X) 
κ 

and 

(4)	
� 

Cκ(AXBXH )(dX) = 
Cκ(A)Cκ(B) 

, 
U (m) Cκ(Im) 

where (dX) is the invariant measure on the unitary group U(m), normalized to make 
the total measure unity, and 

�r 

Cκ(Im) = 22k k!
� 
1 

m 

� 
i<j (2ki − 2kj − i + j) 

,
2 

�
i
r 
=1(2ki + r − i)!κ 

where 
r� 

1 
m 

� 

= 
� � 

1 
� 

2
(m − i + 1) .

2 κ i=1	 ki 

Note that the partition κ of k has r nonzero parts. 

2.2. Complex hypergeometric functions. The probability distributions of 
random matrices are often derived in terms of hypergeometric functions of matrix 
arguments. The following definitions of hypergeometric functions with a single and 
double matrix argument are due to Constantine [5] and Baker [2]. 
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Definition 1. The hypergeometric function of one complex matrix is defined as 

[a1]κ 
(α) (α) 

C
(α)(X)∞ [ap]κ κ(5)	 pFq 

(α)(a1, . . . , ap; b1, . . . , bq ; X) = 
� � 

[b1]κ 
(α) 

· · ·
[bq ]κ 

(α) k! 
, 

k=0 κ · · ·
p qwhere X ∈ Cm×m and {ai} and {bi}i=1 are arbitrary complex numbers. Note that i=1 �

κ denotes summation over all partitions κ of k and α = 1 and 2 for complex and 

real hypergeometric functions, respectively. 
In this paper we consider only the complex case, and hence, we shall drop the 

superscript, i.e., pFq := pFq 
(1) . Note that none of the parameters bi is allowed to be 

zero or an integer or halfinteger ≤ (m − 1)/2. Otherwise some of the terms in the 
denominator will be zero [14]. 

Remark 1. The convergence of (5) is as follows [14]: 
(i) If p ≤ q, then the series converges for all X. 
(ii) If p = q +1, then the series converges for σ(X) < 1, where the spectral radius 

σ(X) of X is the maximum of the absolute values of the eigenvalues of X. 
(iii) If p > q+1, then the series diverges for all X = 0, unless it terminates. Note 

that the series terminates when some of the numerators [aj ]κ in the series 

vanish. 
Special cases are 

0F0(X) = etr(X), 1F0(a; X) = det(I −X)−a , 

and 

0F1(n; ZZH ) = etr(ZE + ZE)(dE), 
U (n) 

where Z is an m× n complex matrix with m ≤ n, etr denotes the exponential of the 
trace, etr(·) = exp(tr(·)) and ZE denotes the complex conjugate of ZE. 

Definition 2. The complex hypergeometric function of two complex matrices is 

defined by 

∞ [a1] [ap]κ Cκ(X)Cκ(Y ) 
pFq (a1, . . . , ap; b1, . . . , bq ;X, Y ) = 

� � 

[b1]
κ · · ·

[bq ]κ k! Cκ(Im) 
, 

k=0 κ κ · · ·

where X, Y ∈ Cm×m . 
The splitting formula is 

� 

pFq (AEBEH )(dE) = pFq (A,B). 
U (m) 

3. The complex central Wishart matrix. In this section, we describe the 
complex central Wishart distribution and give the joint eigenvalue density of the 
complex central Wishart matrix. From this density we derive a single unordered 
eigenvalue density of the complex central Wishart matrix. 



� 

COMPLEX RANDOM MATRICES AND RAYLEIGH CHANNEL CAPACITY 123 

The definition of the complex central Wishart distribution is as follows. 
Definition 3. Let W = AH A, where the n × m matrix A is distributed as 

n ⊗Σ). Then W is said to have the complex central Wishart distribution A ∼ CN(0, I

with n degrees of freedom and covariance matrix Σ, denoted by W ∼ CWm(n,Σ). 
Let W ∼ CWm(n, Σ) with n ≥ m. Then the density of W is given by 

1
(6) f(W ) = CΓm(n)(det Σ)n 

etr 
�−Σ−1W

� 
(det W )n−m , 

where CΓm(n) denotes the complex multivariate gamma function, 

m

πm(m−1)/2 CΓm(n) = 
� 

Γ(n− k + 1). 
k=1 

Next, we consider the eigenvalue density of a complex Wishart matrix. 
Proposition 1. Let W be an arbitrary m × m positive definite complex ran

dom matrix with distribution function f(W ). Then the joint density function of the 

eigenvalues, λ1 > λ2 > > λm > 0, of W is · · · 

πm(m−1) m

(7)	 f(Λ) = CΓm(m) 

�
(λk − λl)2 

� 
f(EΛEH )(dE), 

k<l U (m) 

where Λ = diag(λ1, . . . , λm) and W = EΛEH is the eigendecomposition of W . 
The following proposition gives the joint density of the eigenvalues of a complex 

Wishart matrix [8]. 
Proposition 2. Suppose that n > m − 1 and consider the m × m positive 

definite Hermitian matrix W ∼ CWm(n,Σ). Then the joint density of the eigenvalues, 
λ1 > λ2 > > λm > 0, of W is · · · 

πm(m−1)(det Σ)−n 

(8)	 f(Λ) = CΓm(m)CΓm(n) 
m m

n−m 
�

(λk − λl)2 
� 

etr 
�−Σ−1EΛEH 

� 
(dE),

� 
λk×

k=1 k<l U (m) 

where Λ = diag(λ1, . . . , λm). Moreover, 

(9) etr 
�−Σ−1EΛEH 

� 
(dE) = 

� 

0F0 

�−Σ−1EΛEH 
� 
(dE) 

U (m) U (m)


= 0F0 

�−Σ−1 ,Λ
�


∞
Cκ(−Σ−1)Cκ(Λ)

= 
� � 

k! Cκ(Im) 
. 

k=0 κ 

Proof. By substituting the complex Wishart density (6) into (7) and noting that 
det W = det EΛEH = 

�m 
λk we obtain (8). �k=1 
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Note that the integral in (8) depends on the population covariance matrix Σ only 
through its eigenvalues υ1, . . . , υm. This can be seen by writing Σ = FΥFH , where 
F ∈ U(m) and Υ = diag(υ1, . . . , υm). Now we have 

etr 
�−Σ−1EΛEH 

�
(dE) = 

� 
etr 

�−FΥ−1FH EΛEH 
�
(dE) 

U (m)	 U (m) 

= 
� 

etr 
�−Υ−1FH EΛEH F

�
(dE) 

U (m) 

= 
� 

U (m) 

etr 
�
−Υ−1EΛ � E)� EH 

�
(d �

= 0F0	 E)
�	

� EH 
�

(d �
U (m) 

�
−Υ−1EΛ �

= 0F0 

�−Υ−1 , Λ
� 

∞
Cκ(−Υ−1)Cκ(Λ)

= 
� � 

k! Cκ(Im) 
, 

k=0 κ 

where E = FH E ∈ U(m) and (dE) = (d �E). This was observed in [14]. In general, 
the integral in (8) is not easy to evaluate. An infinite series representation for this 
integral in terms of complex zonal polynomials is shown in (9). 

Note that the density given in (8) is an ordered eigenvalue density and the un
ordered eigenvalue density is obtained by dividing (8) by m!, i.e., 

m
πm(m−1)(det Σ)−n m

(10) 
m! CΓm(m)CΓm(n) 

�
λn−m 

�
(λk − λl)20F0 

�−Υ−1 , Λ
�
.k 

k=1 k<l 

Let Υ−1 = diag(a1, . . . , am). Then 0F0 

�−Υ−1 ,Λ
�

can be written [10] as 

(11)	
Γm(m) det [(exp (−aiλj ))] 

m m .0F0 

�−Υ−1 , Λ
�

= 
πm(m−

C
1)/2 

�
k<l(λk − λl)

�
k<l(al − ak)

A single unordered eigenvalue density is given by the following theorem to be used 
for computing the correlated MIMO channel capacity in Section 5. 

Theorem 1. Suppose that n > m − 1 and consider the m ×m positive definite 

Hermitian matrix W ∼ CWm(n,Σ). Then the single unordered eigenvalue density 

f(λ1) of W is given by 

πm(m−1)/2 
�m n 

(12) f(λ1) =	 k=1 ak 
m 

ak)m! CΓm(n)
�

k<l(al −
� ⎧ ⎛

m
⎞⎫

⎨��
(−1)per(i1 ,...,im ) exp 

⎬
aij λj× ⎩ i	

⎝�
− ⎠

⎭
j=1 

m

(−1)per(k1 ,...,km ) 
�

λn−m+kl 

�
m

�
�	�

l 

�
dλk , 

k
× 

l=1 k=2 

where ��i denotes summation over all permutations (i1, . . . , im) of (1, . . . , m), �� dek 

notes summation over all permutations (k1, . . . , km) of (0, . . . ,m−1), and per(k1, . . ., 
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km) is 0 or 1 depending on the permutation being even or odd. Similarly for per(i1, . . ., 
im). 

Proof. The single unordered eigenvalue density is obtained by substituting (11) 
in (10) and integrating with respect to λ2, . . . , λm, i.e., 

πm(m−1)/2 
�m n 

(13) f(λ1) = k=1 ak 
m 

m! CΓm(n)
�

k<l(al − ak ) 
m� m� m�

det [(exp (−aiλj ))] (λk − λl) n−mλk dλk .× 
k<l k=1 k=2 

The integrand in (13) can be written as 
m� m�

det [(exp (aiλj ))] (λk − λl) n−mλk 
k<l k=1 ⎡

⎢⎢⎢⎢

⎤
⎥⎥⎥⎥

⎡
⎢⎢⎢⎢

m� 

⎤
⎥⎥⎥⎥

e−a1 λ1 e−a1 λm · · · 
e−a2 λ1 e−a2 λm · · · 

1 1 · · · 
λ1 λm· · ·

det det n−mλk = . . . . . . . . . . . .⎣ ⎣⎦ ⎦. . . . . . k=1 

m−1 
1 · · · λλ1 λm m−1 

me−am e−am λ· · · 
⎡ 

⎢⎢⎣ 

⎤ 

⎥⎥⎦ det 

⎡ 

⎢⎢⎣ 

⎤ 

⎥⎥⎦ 

e−a1 λ1 e−a1 λm · · · 
. . . . . . . . . 

n−m λn−mλ1 m· · · 
. . . . . . . . .det= 

n−1 
1 

λ1 λm n−1 
me−am e−am λ λ· · · · · · 

⎫
⎬ 

⎭ 

⎧
⎨ 

⎩ 

⎛
⎝ 

⎞
⎠ 

m�
(−1)per(i1 ,··· ,im ) exp λj = aij−

i
j=1 

m�
n−m+kl 
lk 

(−1)per(k1 ,··· ,km ) λ .× 
l=1 

The result follows. � 

Note that, if Σ = σ2Im, then the joint density of the eigenvalues λ1, . . . , λm has 
a simple form and does not require a zonal polynomial representation. 

Proposition 3. Let W ∼ CWm(n, σ2Im) with n > m−1. Then the joint density 

of the eigenvalues, λ1 > λ2 > > λm > 0, of W is · · · 

λk , 
m�

n−mλk 

m� m�πm(m−1)(σ2)−nm 1
(λk − λl)2(14) g(Λ) = exp −CΓm(m)CΓm(n) σ2 

k=1 k<l k=1 

where Λ = diag(λ1, . . . , λm).

Proof. Putting Σ = σ2Im in Proposition 2 and noting that


1 1 
EΛEH (dE) = etr Λ (dE)etr − −

σ2 σ2 
U (m) U (m) 

1 
= exp −

σ2 

m�
λi 

i=1 
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completes the proof. � 

The single unordered eigenvalue density f(λ1) of W is given by the following 
theorem. 

Theorem 2. Let W ∼ CWm(n, σ2Im) with n > m−1. Then the single unordered 

eigenvalue density f(λ1) of W is given by 

πm(m−1)(σ2)−nm 

(15) f(λ1) = 
m! CΓm(m)CΓm(n) 

m� m� m� m�1
(λk − λl)2n−mλk λk dλkexp −

σ2
× 

k=1 k<l k=1 k=2 

m�1 
[ϕk(λ1)]

2 
,= 

m 
k=1 

where ϕk form the orthonormal set which can be obtained by applying the Gram– 

Schmidt procedure to the sequence of functions 

λk+(n−m)/2 e−λ/(2σ2 ), k = 0, 1, 2, . . . ,m− 1. 

Proof. See [19] for similar work. The joint eigenvalue distribution can be written 
as � 

m� 1 
��

m�K 
(λk − λl)2(16) f(Λ) = n−mλk λkexp −

m! σ2 
k<l k=1 

⎧
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

⎫
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 

⎤
⎥⎥⎥⎥⎦ 

2⎡
⎢⎢⎢⎢

1 1 · · · � 
m�λ1 λ· · · 1K 

m! 
nt

det n−mλk λk = exp −. . σ2. . . . 
λm−1 λm−1 

1 m· · · 
⎣ k=1 

⎧
⎪⎪⎨
⎪⎪

⎫
⎪⎪⎬
⎪⎪

2⎡ 

⎢⎢⎣ 

⎤ 

⎥⎥⎦ 

λ1 λm 
λ

(n−m)/2 
e− 

2σ2 λ
(n−m)/2 

e− 
2σ2 

1 · · · m 

. . . . . . 

λ
(n+m)/2−1 λm 

λ
(n+m)/2−1 λ1 

2σ2 e− 
2σ2e−1 · · · m 

K 
m! 

det= 
⎩ ⎭ 

⎧
⎪⎪⎨
⎪⎪

⎫
⎪⎪⎬
⎪⎪

⎡ 

⎢⎢⎣ 

⎤ 

⎥⎥⎦ 

2 
ϕ1(λ1) ϕ1(λnt )· · · 

. . . . . . 
ϕ ϕm(λm)m(λ1) · · · 

K1 

m! 
det= , 

⎩ ⎭ 

where ϕk is defined in Theorem 2 and satisfies 

ϕk(λ)ϕl(λ) dλ = δkl. 

The last determinant squared in (16) can be expanded as 

(−1)per(r1 ,...,rm )(−1)per(s1 ,...,sm ) 
� 

ϕrk (λk )ϕsk (λk ) 
r,s 

k 
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where �� denotes summation over all permutations (r1, . . . , rm) and (s1, . . . , sm) of r,s 

(1, . . . , m) and per(r1, . . . , rm) is 0 or 1 depending on the permutation being even or 
odd. Similarly for per(s1, . . . , sm). Hence, f(λ1) can be obtained by integrating (16) 
with respect to λ2, . . . , λm, i.e., 

m� 

k=2 

dλkf(λ1) f(Λ)= 

K1 = 
m! r,s 

(−1)per(r1 ,...,rm )(−1)per(s1 ,...,sm ) 

� 

k 

ϕrk (λk )ϕsk (λk) 
m� 

k=2 

dλk× 

m� 

k 2≥
δ

K1 

m!
(−1)per(r1 ,...,rm )(−1)per(s1 ,...,sm )ϕr1 (λ1)ϕs1 (λ1)= rk sk r,s 

m� 

k=1 

K1(m− 1)! 
m! 

[ϕk (λ1)]
2 = 

1 
m 

m� 

k=1 

[ϕk (λ1)]
2 = . 

Since 
�

f(λ1) dλ1 = 1, then K1 = 1. � 

Remark 2. The evaluation of (15) for σ2 = 1 is given in [3], [12] and [18], where 

the following formula 

m� 

l=1 

1 
ϕl(λ1)]

2(17) f(λ1) [= 
m 

is obtained with 

1/2 1 dk 

dλk 
(e−λλ

k! 
λ(n−m)/2 e−λ/2 e λλ n−m+k)ϕk+1(λ) m−n= 

(k + n− m)! 

k! 

k! 
1/2 

λ(n−m)/2 e−λ/2 n−m(λ), k = 0, . . . ,m− 1,Lk = 
(k + n− m)! 

nt� 

i=1 

and Lk 
n−m(λ) is the generalized Laguerre polynomial of order k. 

4. The channel capacity. A MIMO channel can be represented by an nr × nt 

complex random matrix H, where nt and nr are the number of inputs (or transmitters) 
and outputs (or receivers) of the communication system, as shown in Figure 1. The 
complex signal received at the jth output can be written as 

(18) hij xi +yj = vj , 

where hij is the complex channel coefficient between input i and output j, xi is the 
complex signal at the ith input and vj is complex Gaussian noise. The signal vector 



+

+

+

x1

x2

v1

v2

y2

nx
t

y1

ynr

vnr

h11

h12 h21

h22

h2nr

hn  1t

hn  2t
hn  nt r

h1nr

� 

� � 
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received at the output can be written as 
⎡ 

⎢⎢⎣ 

⎤ 

⎥⎥⎦ = 

⎡ 

⎢⎢⎣ 

⎡ 

⎢⎢⎣ 

⎤ 

⎥⎥⎦ 

x1 

. . . 

⎤ 

⎥⎥⎦ + 

⎡ 

⎢⎢⎣ 

v1 

. . . 

⎤ 

⎥⎥⎦ , 

h11 hnt 1· · · 
. . . . . . . . . 

y1 

. . . 
h1nr hnt nr· · ·ynr xnt vnr 

or, in vector notation, 

(19) y = Hx + v, 

where y, v ∈ Cnr , H ∈ Cnr ×nt , and x ∈ Cnt . The total power of the input is 
constrained to ρ, 

H tr E{xx HorE{x x} ≤ ρ } ≤ ρ.


We shall deal exclusively with the linear model (19) and derive the capacity of MIMO


channel models in this section. In this work, we are particularly interested in Rayleigh


Fig. 1. A MIMO communication system. 

distributed channels. The following proposition defines this channel model [13]. 
Proposition 4. Let z = reiθ (= hij ) ∼ CN(0, σ2), where r = z and θ = arg z.| |

Moreover, we have 

21 
var{z} = z 2 = σ2 and f(z) = 

πσ2 
exp 

� −|z|E| | 
σ2 

. 

The density of the magnitude or envelope r is called the Rayleigh density and is given 

by 

(20) h(r σ2) =|
22r exp 

� 
−r 

σ2 σ2 r ≥ 0, 

0 r < 0. 
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The distribution of the phase θ is uniform and its density is given by 

1
� 

0 ≤ θ < 2π, 2π(21)	 k(θ|σ2) = 
0 otherwise. 

We assume that H is a complex Gaussian random matrix whose realization is 
known to the receiver, or equivalently, the channel output consists of the pair (y, H). 
The input power is distributed equally over all transmitting antennas. Moreover, if 
we assume a blockfading model and coding over many independent fading intervals, 
then the Shannon or ergodic capacity of the random MIMO channel is given in [18] 
by 

� �
ρ 

��
(22)	 C = H log det Int + HH H ,E

nt 

where the expectation is evaluated using a complex Gaussian density. By Proposi
tion 4, if H ∼ CN(0, Inr ⊗Σ) then the channel is Rayleigh distributed. This is typical 
of fixed or mobile communication environments. 

In the calculation of capacity we assume nr ≥ nt. In this case, the distribution 
of the channel matrix is given by H ∼ CN(0, Inr ⊗Σ). Therefore, the distribution of 
an nt ×nt complex Wishart matrix is given by W = (nr , Σ). Here the HH H ∼ CW nt 

covariance matrix of the rows of H is denoted by Σ, which is an nt × nt Hermitian 
matrix. 

5. Computation of the capacity. In a correlated Rayleigh channel, the distri
bution of an nr ×nt channel matrix H is given by H ∼ CN(0, Inr ⊗Σ), with nr ≥ nt. 
Note that the offdiagonal elements of an nt ×nt Hermitian matrix Σ are nonzero for 
correlated channels. In other words, the channel coefficient from different transmitter 
antennas to a single receiver antenna is correlated. The following lemma is required 
in the sequel. 

Lemma 1. If X is an n × m (n ≥ m) full rank matrix and the function f(X) 
depends on X through XH X, then 

πnm 

(23)	
� 

f(XH X)(dX) = CΓm(n)
(det A)n−mf(A). 

XH X=A 

Proof. Since XH X = A, we have 
� 

f(XH X)(dX) = f(A) (dX). 
XH X=A XH X=A 

Let X = ET and A = T H T , where EH E = Im and T is an upper triangular matrix 
with real and positive diagonal elements. Then, from [15, Theorems 4 and 2] we have 
the following Jacobians for the change of variables 

m

(dX) = 
� 

t2n−2k+1(dT )(EH dE)kk 
k=1 
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and 
m

(dA) = 2m 
� 

t2m−2k+1(dT ).kk 
k=1 

Hence 
m

(dX) = 2−m 
� 

t2n−2m(dA)(EH dE).kk 
k=1 

Moreover, we have 
m� 

tkk = det T = (det T H T )1/2 = (det A)1/2 . 
k=1 

Therefore, 

f (A)
� 

(dX) = 2−mf (A)(det A)n−m 
� 

(EH dE) 
XH X=A CV m,n 

πnm 

= CΓm(n)
(det A)n−mf (A). 

The last equality follows from [15, Theorem 5]. � 

The channel capacity is given by the following theorem. We shall assume that the 
realization of H is known to the receiver, or equivalently, the channel output consists 
of the pair (y, H). 

Theorem 3. Consider the correlated Rayleigh channel, i.e., H ∼ CN (0, Inr ⊗Σ), 
with nr ≥ nt. If the input power is constrained by ρ, then the capacity C is given by 

1 
� 

log det 
�
Int + 

ρ
W 

� 

(det W )nr −nt etr 
�−Σ−1W 

� 
(dW ), CΓnt (nr)(det Σ)nr 

W >0 nt 

where W = HH H. 
Proof. From formula (22), the capacity C is given by 

�
ρ 

�
C = 

� 
log det Int + HH H f (H)(dH), 

H nt 

where 

f (H) = π−nr nt (det Σ)−nr etr 
�−Σ−1HH H

� 
. 

Using Lemma 1, we can write C as 
� �

ρ 
C = π−nr nt (det Σ)−nr log det Int + HH H

� 

etr 
�−Σ−1HH H

� 
(dH) 

H nt 

= π−nr nt (det Σ)−nr 

� � �
ρ × 

W >0 HH H=W 
log det Int + HH H

� 

etr 
�−Σ−1HH H

� 
(dH)(dW ) 

nt 

1 
= CΓnt (nr)(det Σ)nr 

� �
ρ × 

W >0 

log det Int + W 

� 

(det W )nr −nt etr 
�−Σ−1W 

� 
(dW ). 

nt 
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This completes the proof.	 � 

Theorem 3 can also be obtained by using (22) and the complex central Wishart 
density given in (6). Now, using the eigenvalue density of a complex central Wishart 
matrix, the correlated Rayleigh channel capacity can be expressed as follows. 

Theorem 4. Consider the correlated Rayleigh channel, i.e., H ∼ CN(0, Inr ⊗Σ), 
with nr ≥ nt. If the input power is constrained by ρ, then using the joint eigenvalue 

density of the complex central Wishart matrix W = HH H we can write the capacity 

C as 

nt nt	 nt
� 

nt ρ 
K

� 
log 

� �
1 + λk 

�� � 
λk 

nr −nt 
�

(λk − λl)20F0 

�−Σ−1 ,Λ
� � 

dλk , 
Λ>0 nt

k=1 k=1 k<l	 k=1 

where λ1 > > λnt > 0 are the eigenvalues of W, Λ = diag(λ1, . . . , λ ), and · · · nt 

πnt (nt −1)(det Σ)−nr 

K = CΓnt (nt)CΓnt (nr ) 
. 

Proof. From Theorem 3, the capacity C is given by 

� �
ρ 

��	 � 
nt ρ 

��� 

(24)	 C = EW log det Int + W = EΛ 

� 

log 
� �

1 + λk . 
nt nt

k=1 

The result follows by using the following joint eigenvalue density (see Propositions 2), 

ntπnt (nt −1)(det Σ)−nr


nt
f(λ1, . . . , λ ) =	
� 

λk

nt

nr −nt 
�

(λk − λl)20F0 

�−Σ−1 ,Λ
� 
. CΓnt (nt)CΓnt (nr ) 

k=1 k<l 

The proof is complete.	 � 

Theorem 5. Consider the correlated Rayleigh channel, i.e., H ∼ CN(0, Inr ⊗Σ), 
with nr ≥ nt. If the input power is constrained by ρ, then using the single unordered 

eigenvalue density we can write the capacity C as 

(25)	 C = ntEλ1 [log(1 + (ρ/nt)λ1)] . 

The density f(λ1) is given by 

πnt (nt −1)/2 
�nt nr 

(26)	 f(λ1) = 
nt! CΓnt (nr )

�nt 
k=1 ak 

k<l(al − ak) ⎛ 
nt

⎞⎫� ⎧
(−1)per(i1 ,...,int ) exp 

⎬⎨��
i	

⎝� 
−aij λj ⎠× ⎩ 

j=1 
⎭ 

nt nt

(−1)per(k1 ,...,knt ) 
� 

λnr −nt +kl 

� � 
dλk ,

�	�
lk

× 
l=1 k=2 
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where ��i denotes summation over all permutations (i1, . . . , i ) of (1, . . . , nt), �
�

k de
notes summation over all permutations (k1, . . . , k ) of (0, . . . , nt − 1) and per(k1, . . ., 

nt 

nt 

knt ) is 0 or 1 depending on the permutation being even or odd. Similarly for per(i1, . . ., 
int ). Note that (a1, . . . , a ) are eigenvalues of Σ−1 . 

Proof. From (24), C can be written as 
nt 

nt ρ 
��	

ρ 
��

(27)	 C = 
� 

Eλk 

�
log 

�
1 + λk = ntEλ1 

�
log 

�
1 + λ1 , 

nt nt
k=1 

where the expectation is with respect to λ1. Because we are using the single unordered 
eigenvalue density (12), the result follows. � 

5.1. Correlated Rayleigh nr × 2 channel matrix. In this subsection, a nu
merical evaluation of a correlated Rayleigh nr × 2 channel matrix is given. Thus, we 
assume that we have a twoinput (nt = 2), nr output communication system operating 
over a correlated Rayleigh fading environment (typical mobile wireless environment). 
As mentioned before, the joint eigenvalue density of a central Wishart matrix depends 
on the population covariance matrix Σ only through its eigenvalues υ1, . . . , υ , i.e.,nt 

0F0 

�−Σ−1 , Λ
� 

= 0F0 

�−Υ−1 , Λ
� 
, 

where Υ = diag(υ1, . . . , υ ). Let nt = 2 and Υ−1 = diag(a1, a2). Then we have [10]nt 

1
(28) 0F0(−Υ−1 ,Λ) =

(a2 − a1)(λ1 − λ2) 
× [exp {−(a1λ1 +	 a2λ1)}] .a2λ2)} − exp {−(a1λ2 + 

The following theorem gives the correlated Rayleigh channel capacity for an nr × 2 
matrix. 

Theorem 6. Consider a twoinput correlated Rayleigh channel, H ∼ CN(0, Inr ⊗
Σ), with nr ≥ 2. If the input power is constrained by ρ, then the capacity C is 

nr ρ
(29) C = 

a1 a2 
� ∞ 

log 
�
1 + λ1 

� 
λnr −1 e−a1 λ1 dλ11(a2 − a1)Γ(nr ) 20 

nr ρa1a2 

� ∞ 

log 
�
1 + λ1 

� 
λnr −1 e−a2 λ1 dλ11− 

(a2 − a1)Γ(nr ) 20 
nra	 ρ1 

� ∞ 

log 
�
1 + λ1 

� 
λnr −2 e−a1 λ1 dλ11− 

(a2 − a1)Γ(nr − 1)	 20 
nra	 ρ 

+ 2 

� ∞ 

log 
�
1 + λ1 

� 
λnr −2 e−a2 λ1 dλ1,1(a2 − a1)Γ(nr − 1) 20 

where λ1 is an unordered eigenvalue of W = HH H and (a1, a2) are eigenvalues of 
Σ−1 . 

Proof. By (28), the unordered eigenvalue density of W is given by 

(30) f(λ1, λ2) =
(a1a2)nr (λ1λ2)nr −2(λ1 − λ2) �

e−a1 λ1 −a2 λ2 − e−a1 λ2 −a2 λ1 
� 
.

2(a2 − a1)Γ(nr )Γ(nr − 1) 
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Now, integrating with respect to λ2 and noting that 

a(31) 
� ∞ 

x a−1 e−x/b dx = Γ(a)b , 
0 

we obtain the density of λ1, 

nr1 
� 

a1 a2λ1 
nr nr −1 e−a1 λ1 a1a2 λnr −1 e−a2 λ1 

1f(λ1) = 
2(a2 − a1) Γ(nr ) 

− 
Γ(nr ) 

nr nra λnr −2 e−a1 λ1 a λnr −2 e−a2 λ1 
�

1 1 + 2 1 − 
Γ(nr − 1) Γ(nr − 1) 

. 

It is easy to see that 
�
0

∞
f(λ1) dλ1 = 1. Finally, evaluating (25) with f(λ1) gives (29). 

Table 1 shows the capacity in nats1 for an nr × 2 correlated Rayleigh fading 
channel matrix with correlation coefficient 0.9. Note that each column represents 
different levels of input power or signaltonoise ratio (SNR) in dB. Figure 2 shows 
the capacity in nats vs nr for the correlation coefficient 0.9. Figure 3 shows the 
capacity vs SNR and Figure 4 shows the capacity vs the correlation coefficient. From 
these tables and figures we note the following: (i) the capacity is decreasing with 
increasing channel correlation, (ii) the capacity is increasing with increasing nr and 
SNR. � 

1 0.9 
� 

Note that the covariance matrix is Σ = and its eigenvalues are 1.9 
0.9 1 

and 0.1. Hence Υ = diag(1.9, 0.1), a1 = 1/1.9, and a2 = 1/0.1. Note also that the 
offdiagonal element of Σ gives the correlation between the channel coefficient from 
different transmitter antennas to a single receiver antenna, i.e., 

� 
0.9 i =� k = 1, 2, j = l = 1, . . . , nr , 

kl} =E{hij h
∗

0 otherwise. 

This offdiagonal element is called a channel correlation coefficient or correlation co
efficient. 

5.2. Uncorrelated Rayleigh nr × 2 channel matrix. In this subsection, the 
numerical evaluation of an uncorrelated Rayleigh nr × 2 channel matrix is given. 
In other words, we assume we have a twoinput (nt = 2), nr output communication 
system operating over an uncorrelated Rayleigh fading environment, which is a typical 
fixed wireless environment. The following theorem gives an expression for the capacity 
C. 

Theorem 7. Consider a twoinput uncorrelated Rayleigh channel, i.e., H ∼ 

CN(0, Inr ⊗ σ2I2), with nr ≥ 2. If the input power is constrained by ρ, then the 

1In (29), if we use loge then the capacity is measured in nats. If we use log2 then the capacity 

is measured in bits. Thus, one nat is equal to e bits/sec/Hz (e = 2.718 . . .). 
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Table 1 

The capacity in nats for a twoinput, nr output communication system operating over a corre

lated Rayleigh fading channel, where ρ is signaltonoise ratio in dB and the correlation coefficient 

is equal to 0.9. 

ρ in dB 

nr 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB 

2 1.0326 1.9252 3.1157 4.5641 6.2023 7.9419 9.7221 11.5165 

4 1.6408 2.8426 4.4118 6.3154 8.4439 10.6803 12.9577 15.2490 

6 2.0685 3.4398 5.1852 7.2250 9.4266 11.6948 13.9863 16.2855 

8 2.4033 3.8917 5.7454 7.8540 10.0862 12.3653 14.6604 16.9606 

10 2.6804 4.2568 6.1838 8.3330 10.5817 12.8666 15.1635 17.4643 

12 2.9179 4.5639 6.5437 8.7196 10.9786 13.2669 15.5650 17.8661 

14 3.1265 4.8293 6.8489 9.0437 11.3096 13.6003 15.8992 18.2005 

16 3.3129 5.0631 7.1139 9.3226 11.5936 13.8860 16.1853 18.4869 

18 3.4817 5.2722 7.3479 9.5674 11.8422 14.1359 16.4357 18.7373 

20 3.6361 5.4612 7.5574 9.7855 12.0634 14.3580 16.6581 18.9599 

Fig. 2. Capacity vs number of outputs for SNR = 0, 5, 10, 15, 20, 25, 30, 35 dB. Note that H is 

an nr × 2 correlated Rayleigh fading channel matrix with correlation coefficient equal to 0.9. 
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Fig. 3 Capacity vs SNR for correlation coefficient , and , i.e., 

is an correlated Rayleigh fading channel matrix. 

Fig. 4. Capacity vs correlation coefficient for SNR = 20 dB, nt = 2, and nr = 2, 4, 6, 8, 10, 

i.e., H is an nr × 2 correlated Rayleigh fading channel matrix. 
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capacity C is given by 

ρ
(32) C =

(σ2)−nr −1 � ∞ 

log 
�
1 + λ1 

� 
λnr e−λ1 /σ2 

dλ11Γ(nr ) 20 

ρ2(σ2)−nr 
� ∞ 

log 
�
1 + λ1

� 
λnr −1 e−λ1 /σ2 

dλ11− 
Γ(nr − 1) 20 

(σ2)−nr +1Γ(nr + 1) 
� ∞ 

log 
�
1 + 

ρ � 
λnr −2 e−λ1 /σ2 

+ λ1 1 dλ1,Γ(nr )Γ(nr − 1) 20 

where λ1 is an unordered eigenvalue of W = HH H. 
Proof. By (14), the unordered eigenvalue density of W is 

(33) f (λ1, λ2) =
(σ2)−2nr (λ1λ2)nr −2(λ1 − λ2)2 

e−(λ1 +λ2 )/σ2 

.
2Γ(nr )Γ(nr − 1) 

Integrating with respect to λ2 and using (31), we obtain the density of λ1, 

f (λ1) =
(σ2)−nr −1 

λnr e−λ1 /σ2 (σ2)−nr 

λnr −1 e−λ1 /σ2 

1 12Γ(nr ) 
− 

Γ(nr − 1)
(σ2)−nr +1Γ(nr + 1) 

λnr −2 e−λ1 /σ2 

+ 
2Γ(nr )Γ(nr − 1) 1 . 

It is easy to see that 
�
0

∞
f (λ1) dλ1 = 1. Finally, evaluating (25) with f (λ1) gives (32). 

Table 2 shows the capacity in nats for an nr × 2 uncorrelated Rayleigh fading 
channel matrix with different levels of input power. Figure 5 shows the capacity in 
nats vs nr for different signal to noise ratios. It is clearly seen from the table and 
figure that the capacity is increasing with increasing nr and SNR. 

6. Conclusion. In this paper, joint and single unordered eigenvalue densities 
of complex central Wishart matrices are derived. These densities are used to derive 
formulas for the capacity of correlated and uncorrelated MIMO Rayleigh channels. 
The capacity of nr × 2 MIMO Rayleigh channel matrices are computed for both 
correlated and uncorrelated channels. This study shows how the channel correlation 
degrades the capacity of the communication system. 
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Table 2 

The capacity in nats for a twoinput, nr output communication system operating over an un

correlated Rayleigh fading channel, where ρ is signaltonoise ratio in dB. 

ρ in dB 

nr 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB 

2 1.1671 2.2890 3.8382 5.7066 7.7633 9.9062 12.0815 14.2676 

4 1.9831 3.5910 5.5788 7.7614 10.0227 12.3119 14.6102 16.9114 

6 2.5857 4.4125 6.5274 8.7649 11.0462 13.3420 15.6425 17.9444 

8 3.0573 5.0020 7.1725 9.4308 11.7191 14.0172 16.3183 18.6204 

10 3.4425 5.4595 7.6605 9.9296 12.2214 14.5206 16.8221 19.1244 

12 3.7672 5.8326 8.0528 10.3285 12.6225 14.9223 17.2240 19.5263 

14 4.0475 6.1475 8.3808 10.6609 12.9563 15.2566 17.5585 19.8608 

16 4.2939 6.4197 8.6626 10.9458 13.2423 15.5429 17.8449 20.1473 

18 4.5136 6.6595 8.9096 11.1952 13.4924 15.7933 18.0953 20.3977 

20 4.7117 6.8736 9.1294 11.4169 13.7147 16.0158 18.3179 20.6203 

Fig. 5. Capacity vs number of outputs for SNR = 0, 5, 10, 15, 20, 25, 30, 35 dB. Note that H is 

an nr × 2 uncorrelated Rayleigh fading channel matrix. 
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