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On the Capacity of Spatially Correlated MIMO 
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Abstract—In this paper, we investigate the capacity distribution 
of spatially correlated, multiple-input–multiple-output (MIMO) 
channels. In particular, we derive a concise closed-form expression 
for the characteristic function (c.f.) of MIMO system capacity 
with arbitrary correlation among the transmitting antennas or 
among the receiving antennas in frequency-flat Rayleigh-fading 
environments. Using the exact expression of the c.f., the probability 
density function (pdf) and the cumulative distribution function 
(CDF) can be easily obtained, thus enabling the exact evaluation 
of the outage and mean capacity of spatially correlated MIMO 
channels. Our results are valid for scenarios with the number of 
transmitting antennas greater than or equal to that of receiving 
antennas with arbitrary correlation among them. Moreover, the 
results are valid for an arbitrary number of transmitting and re­
ceiving antennas in uncorrelated MIMO channels. It is shown that 
the capacity loss is negligible even with a correlation coefficient 

� �between two adjacent antennas as large as for exponential 
correlation model. Finally, we derive an exact expression for the 
mean value of the capacity for arbitrary correlation matrices. 

Index Terms—Eigenvalues distribution, multiple input–multiple 
output (MIMO), multiple antennas, Rayleigh-fading channels, 
Shannon capacity, Wishart matrices. 

I. INTRODUCTION 

I T has been recognized in recent years that the use of mul­
tiple transmitting and receiving antennas can potentially pro­

vide large spectral efficiency for wireless communications in the 
presence of multipath fading environments [1], [2]. The anal­
ysis of capacity distribution for multiple-input–multiple-output 
(MIMO) channels in [3], [4] suggested practical structures to 
obtain large spectral efficiency, leading to the Bell Laboratories 
layered space–time (BLAST) architecture and to space–time 
codes [5], [6]. 

These MIMO systems can be studied from two different 
perspectives: one concerns performance evaluation in terms of 
error probability of practical systems, the other concerns the 
evaluation of the information-theoretic (Shannon) capacity. The 
former can be obtained by simulation [7], [8] or analytically, as 
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presented recently in [9], [10]. For the latter, the complemen­
tary cumulative distribution function (CCDF) of the capacity 
(sometimes called capacity outage) was studied by Monte 
Carlo simulation in [2]–[4], and the mean capacity was derived 
in [11] for uncorrelated MIMO Rayleigh-fading channels. The 
analysis of MIMO systems in block Rayleigh-fading channels 
is presented in [12], and a Gaussian approximation to the ca­
pacity distribution is investigated in [13]. All of these analyses 
showed that MIMO systems in uncorrelated Rayleigh-fading 
environments can potentially provide enormous Shannon 
capacities. 

In many practical situations, however, signal correlation 
among the antenna elements exists in realistic environments 
due to poor scattering conditions. This has given an impetus 
for studying MIMO systems in correlated fading environments. 
Toward this end, the effect of signal correlation on MIMO 
systems have been recently studied by Monte Carlo simulation 
in [14]–[16]. 

In this paper, we solve the problem of analytically evaluating 
the capacity distribution. More precisely, we derived the char­
acteristic function (c.f.) of the capacity for MIMO Rayleigh-
fading channels in concise closed form with arbitrary correla­
tion among the transmitting elements or among the receiving 
elements. This enables the analytical evaluation of the capacity 
in terms of probability density function (pdf), cumulative distri­
bution function (CDF), and CCDF. Using the identities given in 
the Appendix, we also derive the exact expression of the mean 
value of the capacity. 

In Section II, we present the system model and, in Section III, 
we investigate the distribution of the eigenvalues of a Wishart 
matrix with a given correlation. In Sections IV and V, we pro­
vide the exact compact expressions for the c.f. and the mean 
value of the capacity, respectively. In Section VI, we show some 
results and, in Section VII, we present a summary and conclu­
sions. Finally, in the Appendix, we derive some useful identities 
for evaluation of multiple integrals. 

II. MIMO SYSTEM MODEL 

The MIMO system investigated in this work consists of 
transmitting and receiving antennas. We consider 

the equivalent low-pass signals after matched filtering and 
sampling. Throughout the paper, vectors and matrices are 
indicated by bold, and denote the determinant of 
matrix , and is an matrix with 
elements . Also, denotes expectation, 
and in particular denotes expectation with respect to the 
random variable (r.v.) . The superscript denotes conjugation 
and transposition. 

0018-9448/03$17.00 © 2003 IEEE 



2364 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003 

The -dimensional signal at the output of the receiving 
antennas in flat fading can be written as [2]–[4], [11] 

(1) 

is the -dimensional transmitted vector with 
complex components, and 
where 

is an -dimensional vector 
with zero-mean independent and identically distributed (i.i.d.) 
complex Gaussian entries with independent real and imaginary 
parts having equal variance. The channel matrix , defined by 

(2) 

is an random matrix with complex elements 
describing the gain of the radio channel between the th trans­
mitting antenna and the th receiving antenna. We denote the 
th column of by , i.e., the -dimensional propagation 

vector corresponding to the th transmitted signal. 
For uncorrelated MIMO Rayleigh-fading channels, the en­

tries of are i.i.d. Gaussian r.v.’s with zero-mean, indepen­
dent real and imaginary parts with equal variance. When the 
correlation among the receiving antennas exists, the columns of 

are independent random vectors, but the elements of each 
column are correlated with the same mean and covariance ma­
trix. For the case of Rayleigh fading, this implies that 

and correlation matrix indicated as for 
. Without loss of generality, the diagonal elements 

of can be normalized to , i.e., , where the ex­
pectation is with respect to Rayleigh fading. Similarly, correla­
tion among the transmitting antennas can be considered. In this 
case, the rows of are independent, but the elements of each 
row are correlated with a given covariance matrix (the same for 
all rows). 

In this paper, we consider the scenario in which the trans­
mitter has no channel state information (CSI). In this case, each 
antenna transmits an average power ; thus the total trans­
mitted power is . The capacity of MIMO channels 
when the transmitter has no CSI is given by 

(bit/s/Hz) (3) 

where is the average signal-to-noise ratio (SNR) per receiving 
antenna and is the identity matrix [3], [4], [11]. Note that the 
capacity can be also written in terms of nonzero eigenvalues of 
the matrix , since the determinant of is the 

product of the eigenvalues and the zero eigenvalues of do 
not contribute to the product. 

We now recall that, for any given two matrices and 
with matrix, the has the same 

eigenvalues as the matrix , counting multiplicity, 
together with an additional eigenvalues identically equal 
to zero [17, p. 53]. Hence, nonzero eigenvalues of the matrices 

and are identical. Since this is true for every in­
stantiation , the respective nonzero eigenvalues are equal in 
Law. This implies that the statistical distribution of the nonzero 
eigenvalues of and are equal. 

Let denote the nonzero eigenvalues 
matrixof the , with 

defined as 

if 
(4) 

if . 

Then, the capacity (3) can be written as [2], [11] 

(5) 

is randomly varying, is also randomly varying. The 
mean value of 
Since 

for uncorrelated MIMO Rayleigh-fading chan­
nels is evaluated in [11], whereas the outage capacity (the CCDF 
of ) is investigated by Monte Carlo simulation in [2]–[4]. 

In the following sections, we will derive the c.f. of the ca­
pacity given in (5) for with zero-mean complex Gaussian 
entries. We consider both cases with and without correlation 
among the antenna elements. 

III. DISTRIBUTION OF THE EIGENVALUES OF FOR THE 

MIMO RAYLEIGH-FADING CHANNEL 

Let us start by studying the matrix in (4). When the el­
ements of are zero-mean complex Gaussian, is called a 
central Wishart matrix. Wishart matrices are of great importance 
in multivariate statistical theory [18]–[21]. We will consider the 
uncorrelated and correlated cases separately in the following. 
The contribution of this section is to obtain the expressions for 
the joint pdf of the eigenvalues in terms of the product of deter­
minants which are useful for analyzing MIMO systems. 

A. The Uncorrelated Case 

We first consider the scenario with uncorrelated fading 
among the antenna elements, a situation that arises when the 
antenna elements are spaced sufficiently far apart from each 
other. 

The distribution of the ordered eigenvalues of a complex 
Wishart matrix is studied in [21]. The joint pdf of the ordered 
eigenvalues of is [22] 

(6) 

where is a normalizing constant given by 

(7) 

with 

(8) 

and . 
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Denoting , the pdf in (6) can be 
written alternatively, in terms of the Vandermonde matrix 
defined by 

. . . 
. . . 

. . . 
. . . 

(9) 

Since [17, p. 29], (6) becomes 

(10) 
Note that the expression (10) is valid for arbitrary and . 

B. The Correlated Case 

Let us now consider a MIMO system in Rayleigh-fading 
channels with uncorrelated signals at the transmitting antennas, 
but with correlated signals at the receiving antennas, character­
ized by a given correlation matrix . A typical example of this 
is a downlink transmission from a base station (BS) to mobile 
station (MS), where the antennas at the BS can be spaced suffi­
ciently far enough to achieve uncorrelation among them. On the 
other hand, it is more difficult to space the antennas far apart 
at the mobile terminals due to physical size constraints, and 
consequently correlation arises among the antenna elements in 
such scenarios. The dual case of correlation at the transmitter 
will be discussed at the end of this section. 

In studying the scenarios with correlation among the re­
ceiving antennas, we consider the case so that 

is a full rank (with probability ) central Wishart 
matrix. In this case, the joint pdf of the (real) ordered eigen­
values of is given in [21] by 

(11) 

is known as the hypergeometric function of 
Hermitian matrix arguments, whose definition is given in [21, 
eq. (88)] in terms of a series involving zonal polynomials. These 
polynomials are in general very difficult to manage, and the 
form of (11) does not lend itself into a tractable form for fur­
ther analysis. 

where 

It is desirable to obtain a friendlier expression for the joint 
pdf of that is useful for analyzing MIMO 
systems. In the rest of the section, we derive an alternative ex­
pression for the joint pdf that is amenable to further analysis. 
Due to the definitions of zonal polynomial and of hypergeo­
metric functions of Hermitian matrices [21, eq. (85)] and [21, 
eq. (88)], we also have 

(12) 

where and are diagonal matrices whose diagonal ele­
ments are eigenvalues of the and , respectively. Let 

, with de­
noting the ordered eigenvalues of . When these eigenvalues 
are all distinct, can be expressed, using (12) 
together with [23, Lemma 3], in terms of determinants of ma­
trices whose elements are hypergeometric functions of scalar 
arguments. In particular1 

(13) 

where is a constant defined as 

(14) 

is a Vandermonde matrix given by 

(15) 

and is defined by (16) at the bottom of the page.

Now, by recalling that
 [25], substituting (13) 

in (11), and expressing the determinants in (11) as product of 
eigenvalues, we obtain an alternative expression for the joint pdf 
of as 

(17) 

where , a normalizing constant, depends only on the corre­
lation matrix through its eigenvalues, given by 

(18) 

1Note that an equation similar to (13) was used for the �� ��� �� �� to analyze 
minimum mean-square error (MMSE) combining in [24, eq. (6)]. 

. . . . (16). . . . . . . . 
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and is defined by 

. . . . (19). . . . . . . . 

Note that the new expression for joint pdf involves a product 
of determinants, and it will be apparent shortly that the form of 
(17) lends itself into a tractable form for further analysis. 

It is worth noting that (17) requires a correlation matrix 
with all distinct eigenvalues. The other extreme case is the un-
correlated scenario treated in the previous subsection, where all 
eigenvalues of are identical. The intermediate cases where 
some eigenvalues of are equal can be obtained as limiting 
cases of (17). Numerically, it is sufficient to slightly perturb the 
eigenvalues of since all functions are continuous and eigen­
values of are deterministic. 

For the dual case of correlation at the transmitter side only, 
using the fact that and have the same nonzero eigen­
values, we can state the following [17]. 

Theorem 1 (Duality Theorem): The capacity of MIMO sys­
tems with and , operating at 
in a Rayleigh-fading environment with correlation among the 
transmitting antennas, characterized by correlation matrix for 
the rows of the channel matrix , is equal to the capacity of 
MIMO systems with and , operating at 

in a Rayleigh-fading environment with correla­
tion among the receiving antennas, characterized by the corre­
lation matrix for the columns of the channel matrix . 

By using the Theorem 1, the results for MIMO systems with 
correlation among the transmitting antennas can be obtained 
from the results for the case with correlation among the re­
ceiving antennas. Hence, we will only consider the latter case 
in the following. When correlation is present at both ends, our 
results (neglecting the correlation on one side) are to be consid­
ered as upper bounds on the capacity. 

IV.	 EXACT EXPRESSION OF THE CHARACTERISTIC 

FUNCTION OF 

In this section, we will derive the c.f. of capacity using the 
joint pdf of the eigenvalues given in (10) and (17). By intro­
ducing the function 

(20) 

the c.f. of the capacity is written as 

(21) 

(22) 

where the multiple integral is over the domain 

and . Now the problem in (22) is the 
evaluation of the average of the product of a function ap­
plied to the different eigenvalues of a Wishart matrix, where the 
average is taken with respect to eigenvalues distribution. Recall 
that in both the uncorrelated (10) and correlated (17) cases, the 
joint pdf’s of the ordered eigenvalues of are proportional to 
the product of determinants of matrices. 

For the uncorrelated MIMO Rayleigh-fading channels, the 
eigenvalues distribution is given by (10). Applying Corollary 2 
in the Appendix with 

(23) 

(24) 

, the c.f. of the capacity re­
duces to the following compact expression: 
and 

(25) 

where is an Hankel matrix with th elements 
given by 

(26) 

For the correlated MIMO Rayleigh-fading channels, the 
eigenvalues distribution is given in (17). Again, by using 
Corollary 2 in the Appendix with 

(27) 

(28) 

and , the expected value of the product 
reduced to the following compact expression: 

(29) 

where 

(30) 

is an matrix with th elements given by 

In both cases, the functions in (26) and (30) can be evaluated in 
a compact closed form using the identity 

(31) 

valid for , where is the 
Gamma function and is the hypergeometric function 
[26]. 

Therefore, the c.f. of the capacity for the Rayleigh MIMO 
channel is written in concise closed form as the determinant 
of a matrix, as indicated by (25) and (29); these are the key 
contributions of this paper. Due to its simplicity, from the c.f. 
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all other distribution functions (pdf and CDF) can be simply 
obtained by means of a single integral, that can be evaluated 
efficiently for instance by fast Fourier transform (FFT) methods. 

To give an example, we provide the expression for the CDF 
of the capacity 

(32) 

where we used the fact that the random variable is not nega­
tive. 

V. MEAN CAPACITY FOR CORRELATED MIMO SYSTEMS 

Here we derive the mean capacity expression for correlated 
MIMO systems, by using an identity from the Appendix. From 
(5), the mean capacity can be written as 

(33) 

that can be interpreted as the mean of the sum of a given function 
applied to the different eigenvalues of . Thus, starting from 
(17) and using Theorem 3 in the Appendix with 

(34) 

(35) 

and , we imme­
diately obtain the following expression: 

(36) 

are the eigenvalues of the correlation matrix, and 
is defined in (54). 

The expression (36) thus extends the result of [11, eq. (8)] 
on the mean capacity to the case of spatially correlated MIMO 
Rayleigh-fading channels. Moreover, by differentiating the c.f. 
in (25) and (29) using well-known rules for the derivative of the 
determinant of a matrix [27, eq. (6.5.9)], all moments of the r.v. 

can be also easily derived. 

where 

VI. ANALYSIS OF SOME CORRELATED SCENARIOS 

The analytical framework we derived is general and valid for 
arbitrary correlation matrices . To give an example, we con­
sider two well-known correlation models: exponential correla­
tion with and [28]; and 
a recent model proposed in [15]. In the latter model, in case 
of Rayleigh-fading environment, the generic element of be­
comes 

Fig. 1. CCDF of the capacity for a MIMO system with � � �, � � �, 
and SNR per receiving antenna � � 10 dB. Exponential correlation case with � 
ranging from � to ���. 

with [15, eq. (27)]. The parameter con­
trols the width of the angle-of-arrival (AOA), ranging from 
(isotropic scattering) to (extremely nonisotropic scattering), 

accounts for the mean direction of the AOA, 
is the distance (normalized with respect to the wavelength) be­
tween elements and of the receiving antenna array, and 
is the zero-order modified Bessel function. 

A. Exponential Correlation Model 

Fig. 1 shows the CCDF of the capacity, which gives the prob­
ability that is larger than the abscissa , for a MIMO system 
with , ; the SNR per receiving antenna is fixed 
to 10 dB and the parameter ranges from to . The 
figure shows that the capacity reduction is negligible for small 
values of , but it becomes significant for . It can be seen 
that we have a 90% probability that the capacity is larger than 
13 bits/s/Hz at and reduces to 9 bits/s/Hz at . We  
also compare our exact analytical expressions with Monte Carlo 
simulations; the latter are carried out by generating 10 000 real­
izations of and evaluating (3). As expected, the comparison 
shows an excellent agreement between analysis and simulation. 

It can be concluded from Fig. 1 that, for this exponential cor­
relation model, the effect of correlation is negligible when the 
maximum correlation between pairs of antenna elements is 
less than . This result is in agreement with previous results 
on the effect of spatial correlation [15], [16], [29]. 

We next investigate effects of SNR and the number of an­
tennas on the CCDF of the capacity. The CCDF of the capacity 
for various values of is plotted in Fig. 2, for , 

ranging from 5 to 30 dB. If we fix again 
90% probability, the value of 

, with 
we obtain ranges from about 6 

bits/s/Hz for 5 dB to about 37 bits/s/Hz for 30 dB.

The CCDF of the capacity for various values of

is plotted in Fig. 3 for
 10 dB, and . The figure 
shows that at 90% probability, is larger than 3 bits/s/Hz when 

, and becomes larger than 19 bits/s/Hz when 
. Even with as high as , it can be observed 

that the capacity increase is almost linear with , as  
in the case for the capacity of uncorrelated MIMO systems [3], 
[4].



2368 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003 

Fig. 2. CCDF of the capacity for a MIMO system with � � �, � � �, 
and � � 5 to 30 dB. Exponential correlation case with � � ���. 

Fig. 3. CCDF of the capacity for a MIMO system with � � 10 dB. Exponential 
correlation case with � � ���, and � � � � �  to ��. 

Finally, Fig. 4 shows the mean capacity obtained by (36) as 
a function of , for 10 dB and different values 
of . The figure shows that the mean capacity increases almost 
linearly with the number of antennas; the presence of exponen­
tialcorrelation among the receiving antennas only affects the 
slope of the curves. Furthermore, the reduction of capacity due 
to the correlation is negligible for values of smaller than . 
On the other hand, when and six antennas are consid­
ered, the reduction in terms of compared to the uncorre­
lated case is almost 4 bits/s/Hz. 

B. Correlation Model of [15] 

In this subsection, we show some example of the CCDF of the 
capacity for a MIMO system with the correlation model pro­
posed in [15]. Here, we consider a linear array at the receiver 
with equally spaced antenna elements. 

In Fig. 5, we have fixed 20 dB, , and the 
normalized (with respect to the wavelength) distance between 
the two adjacent antenna elements is ; two values of are 
considered, (isotropic scattering) and , with as a parameter 
ranging from to . Note that, in the case of , the curves 

Fig. 4. Mean value of the capacity as a function of � � � for a MIMO 
system with � � 10 dB. Exponential correlation case with � ranging from � to 
���. 

Fig. 5. CCDF of the capacity for a MIMO system with � � � � �, and 
� � 20 dB. Correlation model of [15] with � � ���, � � �, ��, and � 
ranging from � to ���. 

for different values of coincide (this can be easily derived by 
[15, eq. (27)]). When the propagation conditions range from 
an isotropic to a nonisotropic scattering, 
the capacity decreases; in particular, the reduction is significant 
when (the mean direction of the AOA) approaches


Finally, Fig. 6 shows the effect of the parameter

. 

on the ca­
pacity; , 20 dB, , and 
The figure clearly shows that 

. 
, which controls the width of the 

AOA, has a strong influence on the capacity; if we fix CCDF 
, the reduction in terms of , as  ranges from (isotropic 

scattering) to , is of about 7.5 bits/s/Hz. 

VII. CONCLUSION 

In this paper, we have derived a concise closed-form expres­
sion for the distribution in terms of c.f. of the capacity for mul-
tiple-antenna systems in frequency-flat, correlated, Rayleigh-
fading channels. The analytical methodology we propose is gen­
eral and can be used for arbitrary correlation on one side (trans­
mitter or receiver). The proposed analysis allows a fast evalua­
tion of the capacity pdf and of the outage capacity for MIMO 
systems. Moreover, the exact expression for the mean value of 
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Fig. 6. CCDF of the capacity for a MIMO system with � � � � �, � � 
20 dB, � � ���, and � � ���. Correction model of [15] with � ranging from 
� to �. 

the capacity has been derived; this result is a generalization 
of that provided in [11] for the uncorrelated case. Finally, nu­
merical results show that, in case of an exponential correlation 
model, when the correlation coefficient between adjacent an­
tenna elements is smaller than 
pacity is negligible. 

, the reduction in terms of ca-

APPENDIX 

SOME USEFUL IDENTITIES 

Let us start by recalling some basic results from linear al­
gebra. The definition for the determinant of a generic matrix 

is given by [30] 

(37) 

is a permutation of the integers 
, the sum is over all permutations, and 

where 
denotes 

the sign of the permutation. Using (37), we obtain a slightly dif­
ferent expression that is more useful for our purposes. We first 
note that permuting columns or rows of a matrix changes the 
sign of the determinant according to the sign of the permuta­
tion; we obtain an alternative expression for the determinant of 
a matrix as 

(38) 

is an arbitrary permutation.

We now give an extension of this definition to rank


where 
tensors, 

i.e., three-dimensional matrices. 

Definition 1: Given a rank tensor 

where the sums are over all possible permutations , and of 
.the integers 

Note that when are independent of , i.e., 
, we have  

(40) 

i.e., the degenerates into times the determinant of 
. Using the above definition, we give a useful 

theorem. 

Theorem 2: Given two arbitrary matrices and 
with th elements and , and arbitrary func­

tions , the following identity holds: 

(41) 

where the multiple integral is over the domain 

and . 
Proof: By rewriting the determinant using (37) we have 

(42) 

(43) 

and substituting the definition (39) into (43) gives (41). 

Corollary 1: Given two arbitrary matrices and 
with th elements and , and an arbitrary 

, the following identity holds: function 

we define the operator as 

(44)(39) 
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where the multiple integral is over the domain 

and . 
Proof: This can be seen as a special case of Theorem 2 for 

degenerate tensors, where (40) applies. 
Alternatively, (44) can be proven directly without Theorem 2 

by writing the determinants explicitly using (37) as 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

where we used (38) for passing from (48) to (49). 

To the best of the authors’ knowledge, the preceding proof is 
original. However, Corollary 1 can be thought of as a contin­
uous analog of the Cauchy-Binet formula and has been known 
in multivariate analysis as early as 1883 [31]. 

Corollary 2: Given two arbitrary matrices and 
with th elements and , and an arbitrary 

function , the following identity holds: 

(51) 

where the multiple integral is over the domain 
. 

Proof: Although and are not individu­
ally symmetric functions of (a permutation of 

corresponds to a permutation of the column of 
the matrices, and the determinant changes with the sign of the 

Theorem 3: Given two arbitrary matrices and 
with th elements and , and two arbitrary 

and , the following identity holds: functions 

(52) 

(53) 

where the multiple integral is over the domain 

and the function is defined by 

if 
(54)

if


Proof: We first consider the domain


We can write 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

where we used (38) for passing from (58) to (59). Then, we 
observe that even in this case, the integrand function in (52) is 
symmetric in the variables , which justifies the scaling of a 
factor when integrating over . 

permutation), their product is clearly symmetric. Therefore, in 
Corollary 1, the integrand on the left side of (44) is a symmetric ACKNOWLEDGMENT 

function of , which can be attributed for the scaling The authors wish to thank A. Giorgetti for discussions about 
of a factor from (44) to (51). the capacity of correlated channels. 
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