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Abstract 

The classic problem of maximizing the information rate over parallel Gaussian independent sub-

channels with a limit on the total power leads to the elegant closed form water-filling solution. In the case 

of multi-input multi-output MIMO frequency selective channel the solution requires the derivation of the 

eigenvalue decomposition of the MIMO frequency response which, for every frequency bin, have generalized 

Wishart distribution. This paper shows the methodology used to derive the statistics of eigenvalues and 

eigenvectors and applies this methodology to the derivation of the average channel Capacity and of its 

characteristic function. The bound on the outage Capacity is then obtained using the characteristic 

function. Simple expressions are derived for the case of uncorrelated Rayleigh fading and for an arbitrary 

finite number of transmit and receive antennas. 
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I. Introduction 

Extensive efforts are being made to improve the spectral efficiency of communication 

channels. To this end, the study of MIMO channels has gained prominent attention. 

Rather than increasing the bandwidth of the channel, which is quite an expensive treat

ment, the MIMO architecture is employed to exploit the propagation diversity. This 

calls for the study of the channel’s limitations. Hence, the analysis of the Capacity of 

the multiple-antenna channels is worth a task and has already attracted a number of 

researchers. 

Telatar [1], Foschini in [2] and Marzetta and Hochwald in [3] studied the Capacity MIMO 

flat fading channels by using a block fading model. Specifically, Telatar [1] investigated 

the use of multiple antennas at both the transmitting and the receiving ends of a single 

user channel and found that the Capacity gain was considerable under the assumption 

of independently faded channels, compared to single-antenna environment. When the 

channel is known at both the transmitter and the receiver side, it was shown that the 

Capacity in Rayleigh flat-fading increases linearly with the minimum between the number 

of transmitters and receivers. The Rayleigh case allows to use several closed form results 

(see also e.g. [4]). 

Zheng and Tse in [5] employed the same model to study the Capacity of the channel 

as a function of the number of transmitter and receiver antennas at high SNR. They 
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used the geometric interpretation of the Capacity expression as the sphere packing in 

the Grassmann manifold to obtain the ergodic (mean) Capacity expression for arbitrary 

number of transmitter and receiver antennas for the case of flat fading channels. 

This paper is concerned mainly with the derivation of the statistics of the MIMO fre

quency selective channel Capacity. Deriving the channel Capacity for MIMO systems 

requires the non trivial step of deriving the joint statistics of the eigenvalues of the ran

dom MIMO frequency response. We use the insight similar to the one used by Zheng and 

Tse [5] and view the matrix factorization as mere change of variables. The contribution 

of this paper is twofold: 1) the condensed review on the key tools and results in the study 

of complex random matrices, 2) the derivation of the channel Capacity and of its charac

teristic function, that allows us to calculate the Chernoff bound on the outage Capacity. 

As part of our overview on the random matrix analysis, in Section III we will present 

the rules of exterior differential calculus which is used to compute the Jacobian of matrix 

decompositions and perform integration over matrix groups. 

Contrary to other authors, who have provided asymptotic results for similar problems 

[see e.g. [3], [6]] the analysis developed in this paper applies for an arbitrary finite number 

of inputs and outputs and our review paves the road for the derivation of other performance 

measures which depend on the factors of MIMO channel decompositions. Unlike [1] and [5], 

we analyze the channel which is frequency selective and look at the outage Capacity rather 

than ergodic Capacity. Our results are particularly useful in the context of the broad-band 

multi-carrier Space-Time communications for wireless local area networks (WLAN), where 

the number of carriers will be relatively high but number of input and output antennas is 

naturally going to be limited to a few elements [7]. For the case of Rayleigh fading, we 

provide simplified expressions for the characteristic function, which are useful to provide 

the Chernoff bound for the outage Capacity. Finally, we present numerical examples that 

support the theoretical results obtained. 

Notation: Boldface letters are vectors (lower case) or matrices (upper case). The 

tr(A), A , λ(A) are the trace, determinant and eigenvalues of A, a = vec(A) is formed | |
stacking vertically the columns of A. Continuous time signals vectors are like a(t) discrete 

time vector sequences like a[n]. Sequences of vectors obtained by stacking consecutive 
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blocks, such as ai = [a[iM ], . . . , a[iM + M − 1]], are characterized by a suffix i. To 

manipulate blocked matrices we introduce vectors of indices k = (k1, . . . , km) and the 

notation A[k] ≡ (A[k1]
H , . . . ,A[km]H )H . 

II. System Model 

The system considered has NT transmit and NR receive antennas. The baseband equiv

alent transmitted signal is the vector x(t) := (x1(t), . . . , xNT (t))
T of complex envelopes 

emitted by the transmit antennas. We assume a digital link with linear modulation so 

that the vector x(t) is related to the (coded) symbol vector x[n] by 

+∞
x(t) = 

� 
x[n]gT (t− nT ),	 (1) 

n=−∞ 

where gT (t) is the transmit pulse. Correspondingly, z(t) = y(t) + n(t) is the received 

NR × 1 vector which contains the channel output y(t) and additive noise n(t). For a linear 

(generally time-varying) channel, the input-output (I/O) relationship can be cast in the 

form of an integral equation 
� ∞ � ∞ 

y(t) = gR(t− θ)H(θ, τ)x(θ − τ)dτdθ.	 (2) 
−∞ −∞ 

where gR(t) is the impulse response of the receive filter (usually a square-root raised cosine 

filter) matched to the transmit filter gT (t), and the (k, l)th entry of matrix H(θ, τ) is the 

impulse response of the channel between the l-th transmit and the k-th receive antennas. 

Introducing the discrete-time time-varying impulse response 

H[k, n] ≡ 
� ∞ 

−∞ 

� ∞ 

−∞ 
H(θ, τ)gT (θ − τ − (k − n)T )gR(kT − θ)dτdθ, (3) 

we can write the vector of received samples y[k] := y(kT ) as 

y[k] = 
∞� 

H[k, k − n]x[n]. (4) 
n=−∞ 

If the channel H[k, n] is causal and has finite memory L we can write the I/O relationship 

(4) as a finite linear system of equations. Specifically, stacking P = K + L transmit 

snapshots in	 a PNT × 1 vector xi vec([x[iP ], . . . , x[iP + P − 1]]) and K received ≡ 

snapshots in a KNR × 1 vector yi ≡ vec([y[iP + L], . . . , y[iP + P − 1]]), where yi starts 
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from the Lth array snapshot so that the inter-block interference (IBI) is not considered, 

we have 

yi = H xi, (5) 

where H is an NRK ×NT P block-Toeplitz matrix: 
⎛
⎜⎜⎜⎜⎜⎜

⎞
⎟
⎟⎟⎟⎟⎟

H [L] H [0] 0 . . . 0 · · · 
. . . .0 H [L] H [0] . . · · ·

H = . . . . .. . . . . . . 0. 

0 0 H [L] H [0] 

. . 

· · · · · · 

. (6)


⎝
 ⎠


NRK×NT P 

Assuming that the Gaussian additive noise is spatially and temporally white, space-time 

OFDM will convert our frequency selective MIMO system into a set of K parallel inde

pendent MIMO systems. In fact, if the channel matrix H is sandwiched between the two 

matrices 

¯
K ⊗ INR×NR ) (7)ET ≡ (WK ⊗ INT ×NT ) , ER ≡ (WH 

¯ Kwhere WK+L,K is an extended (K + L) × K IFFT matrix, i.e., {WK }k,n := ej2π k(n−L) 

, 

k = 0, . . . , K − 1 and n = 0, . . . , P − 1 with a proper phase shift that creates the so called 

cyclic prefix, and WK is the K×K IFFT matrix, i.e., {WK }k,n := ej2π kn 
k = 0, . . . , K−1K 

and n = 0, . . . , K−1, then similar to what happen in the scalar case, the equivalent channel 

is: 

H̃ ≡ ERHET = diag(H̃[k]) , k ≡ (0, . . . , K − 1), 

˜where H [k] is the MIMO transfer function at the kth frequency bin: 

H̃ [k] =

L�

H[l]
e−j2π kl 
K . (8) 

l=0 

Channel modelling and performance analysis over fading wireless channels have been stud

ied extensively and in numerous cases the receiver performance can be expressed in closed 

form (see e.g. [8]). Most of the results apply to narrow-band SISO/SIMO transmission. 

In this context the channel model is often expressed only in terms of the statistics of the 

fading envelope αr,t[l] [l]}r,t of each path coefficient for the (r, t) link. The inter-≡ |{H | 
esting and challenging aspect of the MIMO case is that the performance is expressed in 
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terms of the eigenvalues of the matrix ˜
H ˜H H and thus the results for the scalar case are not 

generalized in a straightforward way to MIMO systems. The goal of this paper is twofold: 

we will first describe how the statistics of the eigenvalues of ˜ H ˜H H are linked to the joint 

statistics of H(d) = (HH [0], . . . , HH [L])H and then we will specialize the analysis to the 

case of wide-sense stationary Rayleigh fading, deriving the statistics of the channel Ca

pacity (C) for an arbitrary number of transmit and receive antennas. Prior to this we will 

provide an overview on exterior differential forms which explain the derivations done in 

the following. 

III. Elements of exterior differential forms 

The study of random eigenvalues, initiated by the pioneering work of Wigner [9], pro

vides a wide range of tools to analyze the statistics of several matrix factorizations beside 

the eigenvalues decomposition (EVD). The first step in deriving the statistics of the result

ing matrices consists in deriving the Jacobian of the change of variables from the original 

matrix to its factors. When the decomposition is unique (at least up to a sign and per

mutation), the number of independent variables in the matrix and in the corresponding 

factors is the same and the Jacobian matrix is square. This can be verified to be true 

in the case of EVD (eigenvalue), QR or LU (lower-upper) decompositions and Cholesky 

decomposition for example [10]. 

To keep the presentation self-cointained, next we informally introduce some of the con

cepts used in the statistical analysis of random matrices (see e.g. [11]). One of such 

´ tools is based on the seminal work of Elie Cartan on exterior differential calculus [12]. 

The concept of exterior product, denoted by the symbol ∧, was introduced by Hermann 

Günter Grassmann in 1844 and was utilized by Cartan in the study of differential forms. 

Ordinary vectors are 1-vectors, wedge products of p independent vectors generates the 

space of p-vectors. Given vectors α, β, γ the basic axioms of Grassman algebra are: 

• Associativity: (α ∧ β) ∧ γ = α ∧ (β ∧ γ) 

• Anti-Commutativity: α ∧ β = −β ∧ α 

• Distributivity: (aα + bβ) ∧ γ = a(α ∧ γ) + b(β ∧ γ). 
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The axioms are sufficient to establish that:1 

α ∧ α = 0 and (Aα) ∧ β = A (α ∧ β). (9)| |

Cartan’s exterior differential calculus (a very clear book is [12]) is built around the observa

tion that, if we do consider the sign in the Jacobian, products of differentials dxdy behave 

as dx ∧dy: this can be easily observed introducing a dummy transformation x(u, v), y(u, v) 

and realizing that dxdy = ∂(x, y)/∂(u, v) dudv equals 0 for u = v = x and equals −dydx |	 |
for u = y and v = x. The rules of exterior differential calculus are derived by applying 

Grassman algebra to 1-forms such as dx or the gradient of a differentiable function �f . 

An r−form is: 

α = 
� 

A(x1, . . . , xn)dxk1 ∧ . . . ∧ dxkr (10) 
k1<k2...<kr 

There is an axiomatic definition of the d operator and, in particular: 

•	 d(r-form) = (r + 1)-form 

•	 d(α + β) = dα + dβ 

if α is an r−form and β is an s−form d(α ∧ β) = dα ∧ β + (−1)r α ∧ dβ• 

• d(dx) = 0 (Poincarè Lemma) 

These rules are systematic and the results are simpler to grasp than the theory of man

ifolds. In addition, they provide a way of deriving the Jacobian of an arbitrary matrix 

factorization, by applying the d operator first and then evaluating the ∧ product of all 

the independent differentials. This last task entails some additional complexity, because it 

requires the description of the group of matrices by mean of their independent parameters 

(see e.g. Section IV). The evaluation of this Jacobian is essential to derive the probability 

density function (pdf) of the factors from the pdf of the original matrix. We will borrow 

the notation from [10] and indicate by dA the matrix of differentials and by (dA) the 

exterior product of the independent entries in dA, for example: 

•	 for an arbitrary A, (dA) = ∧i ∧j daij 

•	 if A is diagonal (dA) = ∧idaii 

if A = AT or A is lower triangular (dA) = ∧1≤i≤j≤ndaij• 

1If A is m× n and m > n or if it is rank deficient A has to be replaced by 0. If m ≤ n, A has to be replaced |	 | | | 
by the matrix compound ∧ mA, i.e. the matrix of all cofactors of order m, if m ≤ n [12]. 
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• see Section IV for Q unitary.


When dealing with complex matrices we can apply the same rules remembering that any


complex dz has associated a (dz) = d�[z] [z] or, more precisely, (dz) = d�[z] [z].
d� ∧ d�
Therefore dz can be treated as a bidimensional vector. Since the multiplication of z = 

x + jy by a complex number α = a + j b can be viewed as: 

(x, y)


⎛
⎝


a −b


b a


⎞
⎠
, (11) 

from (9) it follows that (dαz) = α 2dxdy. In general [11]:| |
Lemma 1: If w = u+jv are analytical functions of z = x+jy then 

� 
∂(u, v) 

=


� 
∂w
 2 

det det 
∂(x, y) ∂z


(12)


Other properties of the complex case are easily derived, for example: i) (dz) = −(dz∗); ii) 

dz ∧ dz∗ = 0. Note that for B = XA (dB) = X n(dA) in Rn (the absolute value square| |
of X in Cn). Because of (9) and Lemma 1, orthogonal or unitary linear mappings of A| | 
do no not change (dA), i.e. if QH Q = I (QH dA) ≡ (dA). 

IV. The Stiefel Manifold 

In the description of the joint distribution of matrix decompositions such as the QR 

the EVD etc., there is the clear need of identifying what is (dQ). A unitary Q can 

be described by n2 smooth functions that can be integrated over nice enough intervals 

which describe the so called Stiefel Manifold: clearly, the independent parameters of the 

Stiefel Manifold are not the real and imaginary parts of the elements of Q, which would 

be 2n2 parameters. For the purpose of studying the statistics of matrix decompositions, 

such as the QR or the EVD, n out of the n2 parameters are redundant (in the sense 

that the decomposition is unique up to n parameters). This ambiguity could be removed 

by having the diagonal elements of Q set to be real for example. Note that, because 

of QQH = I → QdQH = −dQQH : thus, QdQH is antisymmetric and the diagonal 

elements of QdQH are purely imaginary. Note also that, when Q is m × n and semi-

unitary with n ≤ m, we have 2mn − n(n + 1) real parameters (the roles are reversed if 

¯ ¯ H 
n > m) and we can always define an m × m matrix Q = (Q, Q⊥) such that Q Q = Im,n, 

¯ H 
so that (dQ) = (Q dQ). 
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Several different approaches can be taken to represent Q using n2 independent param

eters, for example: 

• Q is product of Givens rotations [Ch.5 [13]], i.e. for Q n× n: 

Q = 
k�n�

G(k, i) (13) 
k=1 i=1 

each G(k, i) is all zero except for the sub-matrix formed with the (k, k), (i, i), (k, i), (i, k) 

elements2 . 
HQ is product of n Householder rotations Hi = I − 2vivi /(v

H vi) [Ch.5 [13]], where for • i 

i = 0, . . . , n− 1 each vi is described by n− i complex parameters. 

Decomposing Q = Ω1DΩ2, with Ωi, i = 1, 2 orthogonal matrices and D = diag(ejφ1 ,• 

. . . , ejφn ). 

Using Q = ejΘ where Θ is Hermitian (the description is unique ∀ Θ : 0 ≤ Θ ≤ πI).• 

• For Q not having eigenvalues equal to −1 (a probability zero event for continuous random 

Q), the Cayley transform Q = (I+jS)−1(I+jS) where S is skew Hermitian, i.e. SH = −S. 

Note that S = (I + Q)−1(I − Q). 

The 3 × 3 orthogonal matrix case is illustrated in Fig. 1. The uniform p.d.f. in the 

Stiefel group of orthogonal or unitary matrices is called Haar distribution [11, Ch.1]. If Q 

is n × n and is decomposed as in (13) with Euler angles θik that define G(k, i) uniquely 

(the number of independent parameters of Q in this case is n(n− 1)/2): 

n−1

2(π)k/2 
k=1 i=1 

k� k�n−1n� Γ(k/2) 
pQ(Q)(QT dQ) = sini−1(θik ) dθik (14) 

k=1 k=1 i=1 

where Γ(x) is the Gamma function and 2(π)k/2/Γ(k/2) is the volume of a unit sphere in 

Rk and θ1k ∈ [0, 2π) , θik ∈ [0, π) i = 2, . . . , k; k = 1, . . . , n− 1. 

To determine the volume of (QH dQ) in Cm integrated over QH Q = I, we can observe, 

Has in [10], that the QR decomposition of an m vector z = rq is trivially given by r = 
√

z z 

⎛
⎝ {G(k, i)}i,i {G(i, k)}i,k 

{G(k, i)}k,i {G(i, k)}k,k 

⎞
⎠ = 

⎛
⎝ c −s 

s∗ c∗ 

⎞
⎠ . 

which is described by one parameter (the Euler angle) when Q is orthogonal (c = cos θik , s = sin θik ). When 
2it is unitary the extra constraint is that c 2 + s = ejφi k , hence the parameters are 4, 3 if unimodular (i.e. | | | |

2 2 c + s = 1). | | | | 
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nand q = z/r. Note that (dq) = i=2dqi because only n − 1 parameters are independent ∧
since �q� = 1. Since (dz) = (drq + rdq), we can write (dz) = r2n−1dr(dq), where 

n(dq) = (1 −�
i
n 
=2 |qi|2)u1(1 −�

i
n 
=2 qi

2) ∧i=2 dqi 
2 and therefore | |

� �
Cm e

−|z|2/2(dz) (2π)m 

(dq) = = . (15)� ∞
r2m−1e−r2/2dr 2m−1Γ(m)

0 

This approach of finding the volume element of a unit sphere can be extended to the case of 

matrices and hence can be employed to find the element of volume of a unitary group. As 

¯ H
mentioned before the element of volume of Stiefel manifold is given by (dQ) = ( Q dQ). 

Extending the ideas given by Edelman3 [10] to the case of unitary group, the element of 

volume can be found to be 

¯ H H(Q dQ) = 
� 

qi dqj (16) 
i≥j 

¯where Q = [ ] is the same as before and qi is a complex unit vector. The details q1 · · · qm

are given in the Appendix -A. 

¯ H
The volume of ( Q dQ) integrated over QH Q = I, for Q unitary, is: 

2n(π)mn−n(n−1)/2 

V ol(Qm,n) = . (17)�n−1 Γ(m − i)i=0 

when the n constraints are added to Qm,n (for example the diagonal elements are con

strained to be real): 
(π)(m−1)n−n(n−1)/2 

V ol(Qm,n) = . (18)�n−1 Γ(m − i)i=0 

V. The statistics of A = BH B and its EVD 

The matrix we are interested in has the form A = BH B, where B is a random m × n 

matrix with continuous p.d.f and we will assume that m ≥ n in which case A is full 

rank with probability one.4 Let us denote by pA(A) and pB (B) the pdfs of the random 

matrices A and B respectively: the pdf of A is called generalized Wishart distribution. To 

derive pA(A) one can follow the approach in [14] which is based on the QR and Cholesky 

3 ¯ T
In [10] the derivation of the volume element of the group of orthogonal matrix is found to be (Q dQ) = 

T�
i>j qi dqj . Note that the elements q T dqi = 0 for the real case. i 
4In case m < n A has n − m zero eigenvalues. Because the non null eigenvalues of BH B and BBH coincide, 

the case m ≥ n is general enough to provide the distribution of the non zero eigenvalues for any choice of n, m. 
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decompositions of B and A respectively: 

B = QR , A = RH R. (19) 

Considering that (dA) = (dRH R + RH dR): 
� � 

k,irk,j + dr∗dr∗ k,j rk,i (dA) = 
1≤i<j≤n 1≤k≤i 

2n 
n�

)2(n−i)+1(dR)( (20)= rii| |
i=1 

with (dR) = ∧i<j (drij ). Therefore: 

n�
)2(n−i)+1 (dR).pA(A)(dA) = pA(RH R) 2n ( (21)rii| |

i=1 

For QR factorization to be unique, we constrain the diagonal elements of R to be real 

(the number of independent parameters of B now equals those of Q and R put together). 

¯ ¯ H
Denoting by Q = (Q, Q⊥) the m × m matrix such that Q Q = Im,n has the top n × n 

portion equal to an identity matrix and the bottom m − n rows equal to zero, (dB) 

¯ H ¯ H 
= (Q dB) = (Q dQR + Im,ndR), taking the wedge product we have (the details can 

be found in the Appendix -A): 

n�
)2(m−i)+1(dR)(dQ),(dB) = ( (22)rii| |

i=1 

¯ H
where (dQ) = ( Q dQ) is the element of volume of the Stiefel manifold. Hence: 

n�
)2(m−i)+1 (dR)(dQ),pB (B)(dB) = pB (QR) ( (23)rii| |

i=1 

n 2and, with 
√

A � R, from (21) and (23) and |A = 
�

i=1 rii it follows: | | |

¯ H 
pB (Q

√
A)(QpA(A) = 2−n A m−n dQ), (24)| | 

which is the form of the so called generalized Wishart density [11]. Generalizing the results 

in [11] to the complex case (21) implies: 

Lemma 2: When the p.d.f. pB (B) = p(BH B) then: 

1) Q and R in the QR decomposition B = QR, are independent. The p.d.f. of Q is 
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uniform over the unit QQH = I (Haar distribution) and R is 

n

pR(R) = 
� �|rii

2
�m−n 

p(RH R)V ol(Qm,n); (25)|
i=1 

2) The p.d.f. of A is [c.f. (17)]: 

pA(A) = 2−n A m−n p(A)V ol(Qm,n), (26)| | 
The Jacobian of the EVD A = U ΛU H can also be obtained by fixing the diagonal 

element of U to be real so that the EVD is unique: 

(dA) = (dU ΛU H + U dΛU H + U ΛdU H ) (27) 

(dA) (U H dAU ) = (U H dU Λ − ΛU H dU + dΛ)≡ 

= 
� 

(λk − λi)
2(dΛ)(U H dU ). (28) 

1≤i<k≤n 

Equations (21) and (28) are the equations that can be used to address the general case 

of A = BH B: 

n
�m−n 

pΛ(Λ) = 2−n
� 

(λk − λi)
2 

�� 
λi Ψ(λ1, . . . , λn) (29) 

1≤i<k≤n i=1 

¯ H
Ψ(λ1, . . . , λn) �

� 
pB (Q

√
ΛU H )(Q dQ)(U H dU ). (30) 

When in Lemma 2 p(A) ≡ p(Λ), the density of the eigenvalues is simple to derive: for ex-

tr(A)ample, in the multivariate Gaussian case {B}i,j ∼ N (0,σ2 ), p(A) = (πσ2)−mn exp(− )
σ2 

[c.f. (26)] and, for λi > 0: 

n
�m−n 

σ2pΛ(Λ) = χ1 

� 
(λk − λi)

2 e− 
�

i λi 

�� 
λi (31) 

1≤i<k≤n i=1 

where χ1 = 2−n(πσ2)−mnV ol(Qm,n)V ol(U n,n). 

Using Wigner’s approach, the density function obtained by averaging over all permuta

tions pΛ(Λ) is 
n
1
! pΛ(Λ), thus [15]: 

Lemma 3: For m ≥ n and any continuous realf(A) = 
�n f(λi(A))i=1 

� ∞
E{f(A)} = f(x)µ m−n(x)dx (32)n 

0 

1 
� ∞ � ∞ 

µ m−n(x) � . . . pΛ(x, λ2, . . . , λn)dλ2 . . . dλn. (33)n n! 0 0 
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Note that, for f(A) = 
�n δ(x − λi(A)), E{f(A)} in (32) is the empirical distribution i=1 

of the eigenvalues or, in other words, the average histogram of the eigenvalues of random 

matrix samples. 

When pΛ(Λ) is as in (31) [16], with α = m− n: 

1 
n−1

α
k (x)2 µn (x) = 

� 
φα (34) 

n 
k=0 

where, denoting by Lα 
k (x) the Laguerre polynomials of order α 

�1/2 
α 

k (x) = 

� 
k! 

x e−x Lαφα
k (x). (35)

Γ(k + α + 1) 

VI. Statistics of the the MIMO frequency selective channel 

We will assume that: 

a1. The noise is AWGN with variance σ2 = 1 n 

and some of the results will be given for the case where:


a2. {H [l] r,t are spatially uncorrelated circularly symmetric zero mean complex Gaussian
}∗
random variables (Rayleigh fading) with RH [l1, l2, r1, r2, t1, t2] [l1]}∗ [l2]}r2,t2 } = r1 ,t1 

{H� E{{H 

δ(t1 − t2) δ(r1 − r2)RH (l2, l1). 

Let us also denote by: 

n � min(NT , NR) , m � max(NT , NR). (36) 

In the MIMO case described in Section II, denoting by γ the signal to noise ratio dictated 

by the large-scale fading and receiver noise power, the conditional channel Capacity is: 

C = log |I + γ ˜
H 

H (37)H ˜ | 

therefore the average Capacity is: 

nK−1

E{C} = 
� � 

E {log(1 + γλl[k])} . (38) 
k=0 l=1 

and the characteristic function of C is: 
�

K−1
H ˜ΦC (s) = E{e sC } = E 

� 
I + γ ˜

� 

(39)| H [k]H [k] s |
k=0 
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˜ ˜both functions of the eigenvalues of H [k]H H [k], k = 0, . . . , K − 1. The average Capacity 

˜can be expressed in integral form and solved in the case when a2 applies. In fact, H [k] is 

˜given by (8) thus, under a2, H [k], k, 0, . . . , K − 1 are also zero mean complex Gaussian 

with variance: 
L

σ2 
K 

H [k] = 
� 

RH (l1, l2)e
−j2π (l1−l2)k 

(40) 
(l1,l2)=0 

as a direct consequence of Lemma 3 we can write: 

Corollary 1: The average Capacity for any (n,m) in (36) is (Telatar in [1] derived the 

expression of mean Capacity for the MIMO channel with Rayleigh faded coefficients): 

K−1

E{C} = 
� � ∞ 

log 
�
1 + γσ2 [k]x

� 
µ m−n(x)dx (41)H n 

0k=0 

where µm−n(x) is given by (29), (32) and under a2, µm−n(x) is given by (34).n n 

The derivation of ΦC (s) is in general more complicated, since it requires averaging over 

˜ ˜the joint density of the eigenvalues of all H [k]H H [k], k = 0, . . . , K − 1 and the matrices 

are dependent. However, it is worth noticing that an approximate result for γ � 1 can be 

obtained quite easily: 

Proposition 1: For γ � 1 

ΦC (s) ≈ E
�

I + γKHH [d]H [d] s
� 

(42)| | 

The eigenvalues of the product HH [d]H [d] can be calculated as described in Section V. 

The interesting consequence of (42) is that at low SNR (in the so called low power regime 

[17]), the statistics of the Capacity of the frequency selective channel are approximately 

equivalent to the ones of a MIMO flat fading channel with NR(L+ 1) antennas rather than 

NR antennas. 

˜Proof: When γ � 1, 
�K−1 

���I + γ ˜ ˜ H [k]H H [k]
���, there-H [k]H H [k]

��� ≈ 
���I + γ

�K−1 ˜
k=0 k=0 

fore (39) is approximately: 

K−1
�����

s� 

˜ H ˜ΦC (s) ≈ E 

������I + γ 
� 

H [k]H [k] . (43) 
k=0 

˜ ˜Recalling that H [k] is the Fourier transform of H [l], H [k] = (W K ⊗ I)H [d], where 

W K is the (K × L + 1) DFT matrix with elements {W K }k,l = exp(−j2πkl/K), k ∈ 
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˜ H ˜ ˜ H ˜[0, K − 1], l ∈ [0, L]. Therefore, 
�K−1 H [k]H [k] = H [k]H [k] = KHH [d]H [d],k=0 

which proves our statement. 

Calculating the dimensions m and n in (36) with NR(L + 1) in place of NR, under a.2 the 

approximate characteristic function in (42) can be expressed in a rather complex closed 

form [18], [19] which is the exact solution for the Rayleigh flat fading case: 

ΦC (s) ≈ χ3 G , (44)| |

where G is n × n and 

i,j = G(i + j − 2) i, j = 1, . . . , m, (45)G}{

with 

1 
G(k) = 

Γ(−s/ ln 2) 
γm−n−k−1Γ(1 + k + m − n)Γ(−1 − k −m + n − s/ ln 2) (46) 

1F1(1 + k + m − n, 2 + k + m − n + s/ ln 2, γ−1)· 
+ γs/ ln 2Γ(1 + k + m − n + s/ ln 2) 1F1(−s/ ln 2, −k −m + n − s/ ln 2, γ−1) 

The above expression looks rather cumbersome to deal with. However, when γ is really 

small, further approximations allow us to obtain a simpler closed form expression for the 

characteristic function which can be handled analytically quite easily. The expression in 

(42) can be written as 

ΦC (s) ≈ E 
�

1 + γKtr(HH [d]H [d]) s
� 

(47)| 
= E 

�
|
e s ln(1+γKvec(H[d])H vec(H[d]))

� 
(48) 

where H [d] ∼ N (0,Rr ⊗Rt ⊗RH ). Approximating ln(1 + x) as x, for small x, and using 

the multivariate Gaussian density for H [d], we obtain the following 

1 
, R = Rr ⊗Rt ⊗RH (49)ΦC (s) ≈ 

I − γsKR| | 
The Capacity in this case looks like a standard χ −square which, if the number of degrees 

of freedom is large enough, can be further approximated by a Gaussian distribution. The 

corresponding mean and variance for the Gaussian approximation are derived in the section 

VI-A. 
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To address the opposite case of high γ, we have to consider that K ≥ L and therefore 

(8) implies that the joint density of the MIMO channel response at all frequency bins is 

dependent. We can decompose p ˜ H [k]) as follows H (
˜

H (
˜ H [p] H [p])p( ˜p ˜ H [k]) = p( ˜ ¯ | ˜ H [p]) (50) 

where k = (0, . . . , K − 1), p = (k0, . . . , kL) is a vector that has, as elements, L + 1 

distinct, but otherwise arbitrary indices extracted from k and p̄ is the vector of the com

plementary indices. For every choice of the vector of frequency indices p, the blocks of 

˜ H ˜ H 
H [p] = ( ˜ H 

[k0], .., H [kL])H are in a one to one mapping with the blocks of H [d] = 

(HH [0], .., HH [L])H ; in fact, (8) for each antenna pair represents a system of linear equa

tions, each corresponding to a different index ki ∈ p, with coefficients forming a full rank 

Vandermonde matrix W L+1(p): 

K{W L+1(p)}li = e−j 2π lki l ∈ [0, L], ki ∈ p, i ∈ [0, L], (51) 

and we can write: 

H̃ [p] = (W L+1(p) ⊗ I)H [d] p = (k0, . . . , kL)T , d = (0, . . . , L)T . (52) 

Because the ki are distinct W −1 must exist. Note that {W −1 
L+1}ilL+1 L+1W L+1}iq = 

�L
l=0{W −1 

2πlkq 
e−j 

K = δiq (Kroneker δ). Hence, the ith row of W −1 is computable as the coefficients L+1 

of the Lth order Lagrange polynomials 

z − e−j2πkj /K 

Pki (z) � 
� 

(53) 
j=i,0≤j≤L 

e−j2πki/K − e−j2πkj /K 

with (ki, kj ) ∈ p. Thus, for any hj we can write: 

L

˜ e−j2πhj l/K ˜ Pki (e
−j2πhj /K ),H [hj ] = 

� 
H [l] = 

� 
H [ki] (54) 

l=0 ki∈p 

and, for hj = kj obviously Pki (e
−j2πkj /K ) = δkj ki . From (53) and (54), it follows that 

H [p] H [p]) is product of Dirac deltas. With p( ˜ ¯ | ˜

P [p, hj ] � ([Pk0 (e
−j2πhj /K ), . . . , PkL (e

−j2πhj /K )] ⊗ I), (55) 
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we have 

˜p( ˜ ¯ ˜ H [hj ] − P [p, hj ]H [p]
� 

(56)H [p] | H [p]) = 
� 

δ
� 

˜

phj ∈¯

p ˜ H [p]) = W L+1(p) −NRNT pH ((W L+1(p) ⊗ I)−1 ˜
H ( ˜ H [p]). (57)| |

Gathering these results we can state the following lemma (valid for any γ): 

Lemma 4: Under a1, for an FIR NT input NR output MIMO frequency selective 

channel having probability density function of the MIMO impulse response pH(H(d)), 

d = (0, . . . , L), H(d) = (H H (0), . . . , HH (L))H , the characteristic function of the mutual 

information is equal to: 

K−1
s 

Φc(s) = χ2 H [p]P H [p, h]P [p, h]H [p]
��� pH ((W −1 H [p])(d ˜˜ H [p])

� � ���I + γ ˜
H

L+1(p) ⊗ I) ˜

h=0 

(58) 

˜
L+1(p) can be expressed inwhere W L+1(p) is defined in (51), H [p] is defined in (52), W −1 

terms of the coefficients of the Lagrange polynomials in (53) and χ2 = W L+1(p) −NRNT .| |
Lemma 4, unfortunately, is preserving all the challenge of the calculation of the Capacity 

H
���I + γ ˜ ˜characteristic function, since H [p]P H [p, h]P [p, h]H [p]

��� is the determinant of a 

linear combination of matrices (c.f. (54)) and thus, it is not explicitly related to the 

˜eigenvalues of the blocks H [ki], ki p.∈ 

To reach a simpler expression for Φc(s) and provide also approximate formulas that 

facilitate the interpretation of the structure of the Capacity p.d.f., we can restrict our 

attention to the cases where the following assumption is valid, interpolating Φc(s) for the 

intermediate values of K: 

a3. The number of frequency bins is an integer multiple of the channel duration, i.e. 

K = Q(L + 1). 

= e−j 2π ldChoosing p = (0, Q, . . . , QL), since e−j 2π 
Q(L+1) lQd 

(L+1) , W L+1(p) is unitary and 

qL l−n sin 
� 

q 
� 

Q ej2π( Q(L+1) − 
L+1 ) Q 

PnQ(e−j2π(lQ+q)/K ) = 
1 e−j2π q − 1

= 
L + 1 sin 

� 
π(l−n+q/Q) 

(59) 
+ qL + 1 e−j2π[ (l−n) 

K ] 
� . 

L+1 − 1 
L+1 

As can be noted from Fig.2 under (a3.), with the choice of p = (0, Q, . . . , QL) the coef-

˜ficients of the linear combination in (54) that corresponds to H [lQ + q] are for the most 
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part highly concentrated around l − n = 0, which suggest the approximation: 

˜ H [lQ] = α(q) ˜H [lQ + q] ≈ PlQ(e−j2π(lQ+q)/K ) ˜ H [lQ]. (60) 

where 
j2π( qL sin 

� 
q 
� 

Q(L+1) ) Qe
α(q) � (61)

L + 1 sin 
� 

πq 
� 

Q(L+1) 

In addition, let us assume that: 

a4. In assumption a2. RH (l1, l2) = RH (l2 − l1). 

In general, this condition rarely applies because, for example, the paths are likely not to 

have the same average power. However, this assumption describes a worse case scenario 

in terms of the frequency selectivity of the channel and helps simplifying the derivations 

considerably. In fact, if p is selected to have uniformly spaced frequency indices, in 

˜force of Szëgo theorem for L � 1 the elements of H [p] will be approximately uncorre

lated not only in space, but also across the frequency bins. Since the correlation matrix 

˜of H(d) is (I ⊗ RH ), using the central limit theorem the p.d.f. of H [p] is approxi

mately5 � N (0 ,(W H 
L+1(p)RH W L+1(p) ⊗ I)) where (W H RH W L+1) ≈ diag(σ2 [p])L+1 h

e−j2πnl/(L+1)
h[0], .., σ2 [LQ]) and σ2where σ2 [p] = (σ2 

h[lQ] = 
�

n RH [n] . This leads to theh h

following: 

Proposition 2: Under a1, a3, a4 for L � 1 and assuming E{ ˜ ˜ H 
H [p]} = 0 the H [lQ] 

are approximately Gaussian and independent and 

tr( ˜ H[lQ])L � Q−1 H
H

[lQ] ˜
H s 

σ2
Φc(s) ≈ χ3

� � ���I + γα(q) ˜ ˜ H [lQ]), (62)H [lQ]H [lQ]
��� e

− 
h
[l] (d ˜

l=0 q=0 

where χ3 = 
�

l
L 
=0(πσ2 [l])NT NR = πNT NR(L+1)|RH

NT NR . The closed form expression of theh |
integral on the right side of (62) is analogous to (44) [18], [19]. 

Because (44) is not intelligible anyways, we prefer to proceed in our approximation and 

exploit the fact that γ � 1. In this case is also easier to consider spatial correlation when 

it is reasonable to assume that the correlation does not change with the path and the 

following separable model applies: 

[l] r1,t1 
{H [l]}r2,t2 } = {Rr }r1 ,r2 {Rt}t1,t2 . (63)E{{H }∗

5Under (a2) this is obviously exactly true. 
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Overall this means that the covariance matrix of H [d] is Rr ⊗Rt ⊗RH .	 Since the DFT 

˜operates in time, the spatial correlation of the MIMO frequency response H [p] for L � 1 

tend to be Rr ⊗Rt ⊗ diag(σ2 [p]), or in other words h

H [lQ])vec( ˜E[vec( ˜ H [lQ])H ] = σ2[lQ](Rt ⊗Rr ).	 (64) 

With this in mind we can state the following 

Proposition 3: Under the same assumptions and using the same approximations that 

lead to Proposition 2, if γ � 1: 

� 
α(q) 

�s(L+1)n � 
n

1 

ΦC (s) ≈ Rt
sK sK 

�
γ

�sKn 
�

Q−1	 � Γ(Qs + m − n + i) 
�L+1 

L+1| | |Rr | |RH | 
q=0	

Γ(m − n + i)
i=1 

(65) 

Proof: When γ � 1 the contribution of the identity matrix to the determinant in 

(62) can be neglected leading to: 

L
�

Q−1

H
 ˜ΦC (s) ≈ 

� 
E 

� 
|γα(q) ˜

� 

H [lQ]H [lQ] s |
l=0 q=0 

L � 
|γα(q)R

1/2
R
−1/2 ˜ H 

R
−1/2 1/2 s 

� 

˜H [lQ]R−1/2Rr R
−1/2H [lQ] t Rt = 

� 
E 

�
Q−1

t t r r |
l=0 q=0 

|Rt| Ks |Rr | 
l=0 

� �sn(L+1)� 
L

= γKsn Ks 
� 

σ2[lQ] 

�Qsn �Q−1

α(q) 
q=0 

˜E 
�
|R−1/2H [lQ]R

−1/2
/σ[lQ] 2Qs

� 
· r t |

�
Q−1

= γKsn Ks Qsn 
� 

αsn(L+1)(q) 

� 

E 
�

W 2Qs
� 

(66)|Rt| Ks |Rr | |RH |
q=0	

| | 

where E 
�|W 2Qs

� 
is the expectation of the random determinant of a complex Gaussian |

zero mean matrix with independent entries having unit variance. The expression of the 

expectation is: 

n n


E 
�|W 2Qs

� 
= E 

�� 
λQs

� 

= 
� �� 

λQs

� 

λn)(dΛ)
i	 i pΛ(λ1 · · · | 
i=1 λ≥0 i=1 

n
�m−nn

� 

λQs	 λi= 
� �� 

χ 
� 

(λk − λi)
2 e− 

�
i 

�� 
λi (dΛ)i 

λ≥0 i=1 1≤i<k≤n i=1 
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where χ is given by (c.f. (17), (18) for V ol(Qm,n) V ol(U n,n)) 

χ = 2−nπ−mn V ol(Qm,n) V ol(U n,n) = 
1 �n 

i=1 Γ(i)Γ(m − n + i) 
. (67) 

Because:

n�

Γ(i)Γ(α + i) =

n� �α 

λie− 
�

iλi (λk − λi)
2

1≤i<k≤n 

n�
(dΛ), (68) 

i=1 λi≥0 i=1 

from (68) we have 

n�
λQs 

i = χ

n�

E Γ(i)Γ(Qs + m − n + i), (69) 
i=1 i=1 

and this leads to (65). 

A. The Gaussian approximation 

As pointed out earlier in this section, the Capacity for the case of γ � 1 takes the 

following form 

C ≈ γKtr(HH [d]H [d]) (70) 

This is a χ − square distribution which, under the limit of large number of antennas and 

paths, will closely approximate the Gaussian density. However, even for the reasonable 

values of NR and NT , we show that the Gaussian fit is accurate even when γ is really 

small. To do so, we first find parameters of the corresponding Gaussian random variable 

using (49). First and second order derivatives of ΦC (s) evaluated at s = 0 yield the mean 

and variance 6 : 

µ = γKtr(Rr )tr(Rt)tr(RH ), σ2 = (γK)2tr(R2 
H ) (71)r )tr(R

2 
t )tr(R

2 

Hence, we have, in this case, the following 

(C−γKtr(R))2 

e
− 

2(γK)2tr(R
2
) 

pC (C) ≈ . (72) 
2 

2π(γK)2tr(R ) 

It is interesting to note that mean and variance are proportional to the signal to noise


ratio (γ). Also, while there is no explicit dependence on m and n, the dependence on the


6We use the identity ∂ 
∂α {ln |A|} = tr 

�
A−1 ∂A 

∂α 

� 

November 2002 DRAFT 



21 DRAFT SUBMITTED NOVEMBER 2002 - SCAGLIONE, SALHOTRA 

correlation matrices of paths and the array elements is through their trace. The Gaussian 

approximation is compared with the Capacity histogram in Fig.6 (See section VIII for 

details). It is interesting to observe that the mean normalized by the standard deviation 

is 1. As we shall see later, the dependence of γ, RH , Rt, Rr , m and n on the mean and 

variance is entirely different when we consider γ to be high. 

In fact, for high γ, (65) shows that the channel gain takes the form of the geometric 

mean of the eigenvalues of the channel covariance matrix. The form of the characteristic 

function in (65) motivates the idea of approximating the p.d.f. of Capacity with a Gaussian 

p.d.f. whose parameters can be easily computed. From (65), 

nQ−1
1 

ΦC (s) = 
� 

(α(q)γ|RH L+1 |Rt| 1/n|Rr | 1/n)sn(L+1) 

�� Γ(Qs + m − n + i) 
�L+1 

Γ(m − n + i)
q=0 

| 
i=1 

1 n
��Q−1 

�

= e 
sn(L+1) log q=0 α(q)γ|RH | L+1 |Rt|1/n|Rr |1/n

�� �� Γ(Qs + m − n + i) 
�L+1 

(73)
Γ(m − n + i)

i=1 

The first factor in (73) implies that the Capacity p.d.f. pC (C) is a shifted version of the 

inverse Laplace transform of the term 

�L+1n
�� Γ(Qs + m − n + i) 

. (74)
Γ(m − n + i)

i=1 

The factor (74) is the Lth power of a product of functions. Since in our approximations 

L � 1, we can infer that the inverse Laplace transform of (74) will be very close to a 

Gaussian p.d.f., using the same arguments used in the proof of the central limit theorem. 

Even when L is moderately large, the product inside indicates that several convolutions 

take place in the inverse domain, so that the same conclusion holds approximately true. 

From the first and second order derivatives of Γ(Qs+m−n+i) in s = 0, one can easily obtain 
Γ(m−n+i) 

the first order moment µ(1) 
and the variance σ2 of its inverse Laplace transform, which i i 

are: 

µi = Qψ(0)(m − n + i) , σ2 = Q2ψ(2)(m − n + i), (75)i 

where ψn(x) is the nth derivative of the Polygamma function also known as Digamma 
1 1 1 

nfunction [20]. Therefore, shifting by 
��Q−1 α(q)γ|RH L+1 Rt n Rr 

� 
the inverse Laplace q=0 | | | | | 
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�� 
Γ(Qs+m−n+i) 

�L+1
�

transform of 
Γ(m−n+i) , we have that approximately: 

� �
1 �2 

C− 
�Q−1 

α(q)γ RH | L+1 1/n Rr 
1/n

� 

−K 
�n ψ(0)(m−n+i)i=1q=0 | |Rt| | | 

− 
2KQ 

�n ψ(2)(m−n+i)
i=1e

. (76)pC (C) ≈ �
2πKQ 

�n
i=1 ψ

(2)(m − n + i) 

It should be noted that the variance of the Capacity (75) obtained in the high SNR regime 

is independent of γ and the same conclusion was reached in [21]. This is in direct contrast 

to the low γ scenario. Here we also notice that, even if under many approximations, the 

effect of correlation and SNR is only to shift the mean of the distribution but the same 

parameters have no impact on the Capacity variance, which is only a function of m, n. The 

peculiar dependence on the correlation of paths and array elements through the geometric 

mean of the eigenvalues is also quite interesting and provides further confirmation of 

the fact that antenna elements and multi-path have similar effects on the Capacity in 

broadband channels. 

In the section (VIII), we present the plots of characteristic function given by (65) for a 

frequency selective channel for different values of Q . We also provide the corresponding 

plots, using Monte Carlo simulation, of (39) and show that both the expressions for char

acteristic function are same when number of frequency bins equals the channel duration, 

i.e. when Q = 1 . 

VII. Outage Capacity and Chernoff Bound 

We consider the case of γ � 1 only. The case of low γ requires calculating the cumula

tive distribution function of a χ − square density and the comparison with its Gaussian 

approximation is available in literature [22] and will not be considered here for brevity. 

With the characteristic function and the Gaussian approximation (76) of the p.d.f for high 

γ case at hand, it is possible to derive curves that come close to the Outage Capacity. 

Using the Chernoff bound: 

P r(C > V ) ≤ mins≥0e
−sV +log E{esC } (77) 
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To find the tightest bound we equate to zero the derivative of −sV + log E{esC } with 

respect to s and obtain the following equivalent equation: 
�

Q−1
1 ⇒ V = n(L + 1) log 

� 
α(q)γ|RH | L+1 |Rt| 1/n|Rr | 1/n 

� 

+ 
q=0 

n
d 

(L + 1) 
� 

ds 
{log(Γ(Qs + m − n + i))} (78) 

i=1 

1 

Let ρ � V − n(L + 1) log 
��Q−1 α(q)γ RH L+1 Rt

1/n Rr 
1/n

� 
, then from (78) q=0 | | | | | |

n n
d 

ρ = (L + 1) 
� 

ds 
{log(Γ(Qs + m − n + i))} = K 

� 
ψ(0)(Qs + m − n + i). (79) 

i=1 i=1 

The expression on the right hand side of (79), say f (s), is a monotonic function of Qs (see 

Fig.3) 

The intersection of this monotonic function f (s) with horizontal family of curves for 

different values of V gives the optimum value of s that minimizes (77) [c.f. Section VIII]. 

With the Gaussian approximation derived in Section VI-A, the Outage Capacity is 

simply 

1
⎛ 

V − 
��Q−1 α(q)γ RH L+1 Rt

1/n Rr 
1/n

� 
− K 

�n
i=1 ψ

(0)(m − n + i) 
⎞ 

P r(C > V ) = Q ⎝ q=0 | | | |
ψ

|
(2)(

|
m − n + i)

�
KQ 

�n
i=1 

⎠ 

(80) 

where Q(x) is the Q-function and ψ(n)(x) is, as mentioned before, the nth derivative of 

the Polygamma function also known as Digamma function. 

VIII. Numerical Examples 

In this section we conclude our work by presenting some numerical examples supporting 

the theoretical results obtained in the paper. We first present plots of the characteristic 

function for different channel parameters. The characteristic function given by (65) is 

plotted and compared with the the characteristic function obtained by Monte Carlo sim

ulations (39). In all examples, the number of frequency bins is K = 8 and the signal to 

noise ratio (γ) of the channel is assumed to be 20dB. In (Fig.4), the characteristic func

tions from (65) and (39) for various values of L are plotted together. We obtained these 
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curves for NR = 3, NT = 4 for the case where the paths and array elements correlations 

are homogeneous and decay exponentially, i.e. RH (l2, l1) = ρ|l2−l1|, Rt(t2, t1) = ρ|t2−t1| 

and Rr (r2, r1) = ρ|r2−r1| respectively, with ρ = 0.5. We can see that as L increases, the 

approximate expression (the solid curve) closes towards the exact one, and the approxi

mation becomes exact when the number of frequency bins equals the channel duration, 

i.e. when Q = 1 . This is shown by the pair of curves for K = 8, L = 7. 

Fig.5 shows the effect of the signal to noise ratio (γ) on the accuracy of the approximate 

expression in (65). In this example K = 8, L = 7, NR = 3, NT = 4 and the correlations 

in time and space are identical to the ones used in the previous example. Since we arrived 

at (65) under high SNR assumption, we can expect intuitively the approximation to be 

better at high γ. This is evident from the (Fig.5), where we observe that the plots merge 

as γ is increased from 5dB to 20dB. 

The probability density function of the Capacity is plotted (see Fig.6) using Monte Carlo 

simulations and compared with the one obtained by Gaussian density (72) when γ is very 

small. The Gaussian approximation is really good and supports the claim made in the 

section VI-A. Here, we have used K = 4, L = 3, ρ = 0.1, NR = 6, NT = 6 and γ = -35 

dB. The normalized histogram of Capacity for high γ is also shown in (Fig.7) and it is 

in a very good agreement with (73), which appears to be accurate even for low values of 

the Outage Capacity. K = 8, L = 7, ρ = 0.3, NR = 3, NT = 3 and γ = 35 dB are used. 

Hence, the Gaussian approximation works fine for low as well as high signal to noise ratio 

even for moderate values of NR and NT , as observed by other authors [21], [23]. 

In Fig.8 we show the Chernoff bound for the Capacity, the complementary cumu

lative distribution function (ccdf) of Capacity using (80) and compare them with the 

corresponding values obtained by Monte Carlo simulations. The parameters used are 

K = 8, L = 7, ρ = 0.3, NR = 2, NT = 2 and γ = 20 dB. The effect of correlated fading 

is illustrated in (Fig.9) using the same exponential model for path and array correlation 

described above and changing the value of ρ. We consider ρ = 0 (uncorrelated case), 

ρ = 0.2 and ρ = 0.4. and, as before, the parameters are K = 8, L = 7, NR = 3, NT = 3 

and γ = 20dB. It is interesting to observe that the outage Capacity increases as ρ in

creases. In fact, the correlation between the antenna elements reduces the diversity and 
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hence increases the outage. 

Appendix 

A. The computation of (dB) where B = QR and the volume element of a unitary group 

Since we could not find the derivation of (16) anywhere, we thought of adding this 

appendix. The Householder reflections can be used to decompose any matrix, A ∈ Cm,n 

(m ≥ n) as a product of a unitary and an upper triangular matrix. The complex House

holder reflection is given by 
2vvH 

H = I − 
vH v 

, (81) 

and it is easy to verify that H is Hermitian and unitary. Similar to the what is done for 

the real case in [13], we can write: 

Hn H 1A =Hn−1 · · · 
⎛
⎝


⎞
⎠
 ⇒
 HnA = H1H2 · · · 

⎛
⎝


⎞
⎠
, (82)


Rn Rn×n ×n 

0 0 

¯where Q = Hn is the product of the Householder reflections. From (82), we H1H 2 · · · 
can write A = QR, where Q includes only the first n columns of H1H2 · · · Hn (i.e. 

Q = [q1 · · · qn]). 

A has 2mn real parameters and, therefore, the total number of independent parameters 

of R and Q needs to be 2mn for A = QR to be a unique transformation. Q satisfies 
2n(n−1)QH Q = I, which corresponds to n + 

2 = n2 equations. Hence, the Stiefel manifold 

has 2mn − n2 real independent parameters. R has n(n + 1)/2 complex parameters and 

twice as many real, which is n too many. Hence in order to have unique factorization in 

(82), we can constrain the diagonal elements of R to be real so that R has n2 independent 

¯ H
parameters only. Now, we can proceed to calculate (dA) = ( Q dA). 

¯ H ¯ H ¯ H
(Q dA) = (Q QdR + Q dQR) 

¯ H 
= (Im,ndR + Q dQR). (83) 

¯ H
The first term is an m × n upper triangular matrix while Q dQ is antisymmetric with 

Hpurely imaginary diagonal elements7 . In fact, qH qi = 1 implies qH dqi = −dqi qi = i i


H H H
−(qi dqi)
∗ and then �(qH dqi) = 0. Also, q dqj = −(qj dqi)

∗.i i 

7The presence of these imaginary diagonal entries makes the case of unitary and orthogonal case different. 
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In matrix form, 

⎛
⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

dr11 dr12 dr1n· · · 
dr22 dr2n· · · 

⎛
⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞
⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎞
⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

H H H 
1 dq1 −(q2 dq1)

∗ −(qn dq1)
∗ · · ·q

H H Hq2 dq1 2 dq2 −(qn dq2)
∗ · · ·q

. . .. . . 
¯ H . . . 
Q dA = + R,(84) 

H Hdrnn qH qn dq1 n dq2 n dqn· · · q

⎝⎠⎝ · · · · · · · · · · · · 
H H Hq qmdq1 mdq1 mdqn· · · q

⎠


¯ H
where (dR) is 

�
i≤j drij . Since Q dQ is antisymmetric, we can take the exterior product 

¯ H
of all entries below the diagonal. The next step in calculating (Q dA) is to compute the 

exterior product of the elements in the above matrix equation. Since the entries below the 

main diagonal in the first part of (84) are zero, only second part should be considered for 

the position below the main diagonal. We consider one column at a time starting from 

¯ H
the left one. Because every entry in the first column of Q dQ get to be multiplied by r11 

and because of the fact that (αdz) = α 2(dz), for all α ∈ C, the first column below the| |
2 Hmain diagonal becomes (r11)

m−1 
�

j
m 
=2 qj dq1. The second column is multiplied by r22 and 

then r12 times the first column is added to it. However, the addition of the first column 

in this case does not contribute to the wedge product because wedge product of a vector 

with itself is zero and the first column was already in the first term of the wedge product. 

This implies that combining the independent entries of the first and the second column 
2 2gives (r11)

m−1(r22)
m−2 

�m
j=2 qj

H dq2. Continuing in a similar fashion for all theH dq1 

�
j
m 
=3 qj 

columns we have that only rii keep appearing in the product (note that the rii’s are all 

real), thus obtaining 

n�
2 
ii)

m−i 
m�n�

q
H 
j dqi. (85)(r 

i=1 i=1 j=i+1 

Next, we incorporate the diagonal elements of both the parts of (84) in the wedge product 

and then finally consider the contribution of entries above the main diagonal to complete 

¯ H
the process of calculating (dQ). The contributing diagonal entries in Q dA are of the 

form (drii + riiq
H dqi) and we can note that the first term is real while the second onei 

is imaginary, so that the contributions from the diagonal entries to the wedge product 
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appear as 

n� 

i=1 

nn)(q H dqn). (86)1 n(rii)(dr11 ∧ dr22 · · · ∧ dr dq1 ∧ · · · ∧ q H 

For the entries above the main diagonal, only the first part in (84) contributes to the 

wedge product (because of the fact that dz ∧ dz∗ = 0) taking the form 

drij . (87) 
i<j 

¯ H
Equations (85), (86) and (87) can now be combined to produce ( Q dA) = (dA) as 

n�
(rii)

2(m−i)+1 
m�n�

H qj dqi 
¯ H
Q dA)( drij = 

i=1 i=1 j=i i≤j 

n�
(rii)

2(m−i)+1 
m�n�

q
H (88)j dqi(dR).= 
i=1 i=1 j=i 

HWriting 
�n �

j
m 
=i qj dqi in the above equation as (dQ), (dA) can finally be written as i=1 

(dA) =

n�

(rii)
2(m−i)+1(dQ)(dR) (89) 

i=1 

The element of volume of Stiefel manifold is thus simply 

(dQ) = 
m�n�

q
H 
j dqi, (90) 

i=1 j=i 

where, noticeably the elements for j = i have to be included, contrary to the case of 

orthogonal matrices Q ∈ Rm,n , QT Q = I for which: 

(dQ) =

m�n�

T qj dqi. (91) 
i=1 j=i+1 

As an example, we give the volume element of a 2 × 2 unitary group for the following 

parametrization [24] 

Q(ξ1, ξ2, ξ3, ξ4) = 

⎛
⎝


cos ξ1e
−j ξ2 sin ξ1e

−j ξ3 

− sin ξ1e
j ξ3 cos ξ1e

j ξ2 

⎞
⎠
e
j ξ4 (92) 

The element of volume for such a group can be calculated(using (90))to be 

(dQ) = 2 sin ξ1 cos ξ1 d(ξ1, ξ2, ξ3, ξ4), 0 ≤ ξ1, ξ2, ξ3, ξ4 < 2π (93)| | 
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Fig. 2. The coefficients nQ
lQ ) in (59). 

Fig. 3. The function f (s) on the right hand side of (79) 
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Characteristic functions for = 8 = 20dB, = 0 = 3, = 4 and varying Fig. 4. 

Fig. 5. Characteristic functions for K = 8, L = 7, ρ = 0.5, NR = 3, NT = 4 and varying γ. 
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The density of Capacity obtained by Monte Carlo simulations compared with the Gaussian 

= 3 = 0 = 6 = 6 and 

Fig. 6.


approximation for K = 4,


Fig. 7. The normalized histogram of Capacity superimposed by its density function approximated by 

Gaussian for K = 8, L = 7, ρ = 0.3, NR = 3, NT = 3 and γ = 35dB. 
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The plots of ccdf for = 8 = 7 = 0 = 2 = 2 and = 20Fig. 8. 

Fig. 9. The plots of Outage Capacity calculated theoretically for K = 8, L = 7, NR = 3, NT = 3, γ = 

20dB and varying ρ. 

November 2002 DRAFT 


