
2083 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 7, JULY 2000 

Inferring the Eigenvalues of Covariance Matrices 
from Limited, Noisy Data 

Richard Everson and Stephen Roberts 

Abstract—The eigenvalue spectrum of covariance matrices is 
of central importance to a number of data analysis techniques. 
Usually, the sample covariance matrix is constructed from a lim
ited number of noisy samples. We describe a method of inferring 
the true eigenvalue spectrum from the sample spectrum. Results 
of Silverstein, which characterize the eigenvalue spectrum of the 
noise covariance matrix, and inequalities between the eigenvalues 
of Hermitian matrices are used to infer probability densities for the 
eigenvalues of the noise-free covariance matrix, using Bayesian in
ference. Posterior densities for each eigenvalue are obtained, which 
yield error estimates. The evidence framework gives estimates of 
the noise variance and permits model order selection by estimating 
the rank of the covariance matrix. The method is illustrated with 
numerical examples. 

Index Terms—Bayesian evidence, eigenvalue spectrum, model 
order selection, sample covariance. 

I. INTRODUCTION 

THE COVARIANCE matrix and its spectrum of eigen
values are of great interest in the analysis and modeling 

of experimental data. Principal component analysis [1], [2], 
the Karhunen–Loève decomposition [3], [4], and related 
techniques such as independent components analysis (ICA) 
[5] model -dimensional data vectors as an admixture 
of ( ) decorrelated (or in the case of ICA, statisti
cally independent) sources , which are linearly mixed by 

; thus 

(1) 

Without loss of generality, we may assume that the sources each 
have mean zero and unit variance so that 

(2) 

where denotes the expectation. Before the data are exam
ined the number of sources is usually unknown, and deter
mination of is a model order selection problem [6], [7]. The 
number may, in principle at least, be deduced from the rank of 
the covariance matrix 

(3) 
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In the absence of noise 

(4) 

which clearly has rank equal to the number of sources. In this 
case, the eigenvalue spectrum of is comprised of posi
tive eigenvalues and zeros; thus 

.1 Methods such as ICA, which assume 
that the sources are statistically independent, use higher order 
(i.e., greater than second order) statistics to estimate [5],
[8], [9]. Note, however, that the number of sources is still de
termined by the rank of because statistical independence 
implies linear decorrelation (provided that the sources each have 
mean zero). 

Inevitably the data are contaminated by noise and (1) might 
be replaced by 

(5) 

denotes an -dimensional random noise vector 
whose elements are independently and identically distributed 
(i.i.d.) noise, with mean zero and unit variance. Consequently 

where 

(6) 

Since the noise and the signal are assumed to be uncorrelated, 
the data covariance is the sum of and the noise covariance 

(7) 

The effect of the noise, therefore, is merely to raise all the eigen
values of by so that now has full rank and

eigenvalues equal to
 . The noise variance is readily found 
from the smallest , and therefore, the rank of is easily 
determined. 

The subject of this paper is the determination of the eigen
value spectrum of when the number of observations 

is limited. In this case, the noise covariance matrix is not di
agonal, and the sample covariance matrix is 

(8) 

which converges to the true covariance matrix in the limit 
of infinite observations [4]. With limited data equation (7) is 
replaced by 

(9) 

where is the sample noise covariance matrix. 

1Throughout this paper, we adopt the convention of listing eigenvalues in 
order of decreasing magnitude. 
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(a) (b) 

Fig. 1. Eigenvalues of sample covariance matrices. (a) Eigenvalues � � of a sample covariance matrix constructed from � � ��� random vectors of dimension 
� � ��. The dashed line is � plotted versus � � � �� 0 � ����, which is the cumulative probability that there are � eigenvalues greater than �. (b) Ten nonzero 
eigenvalues of a sample covariance matrix constructed from � � ��  Gaussian-distributed random vectors, each of dimension � � ���. Here, the dashed line is 
� versus � � � �� 0 � ����� 

Results of Silverstein [10] characterize the eigenvalue spec
trum of the noise covariance matrix, and inequalities between 
the eigenvalues of Hermitian matrices are used to infer proba
bility densities for the eigenvalues of using Bayesian in
ference. Section II summarizes Silverstein’s work on the eigen
values of sample covariance matrices; these are incorporated in 
a Bayesian model in Section III. The use of the evidence to infer 
the number of nonzero eigenvalues and the noise variance is dis
cussed in Section IV. 

II. EIGENVALUES OF SAMPLE COVARIANCE MATRICES 

Silverstein [10] has proved a remarkable result characterizing 
the eigenvalue spectrum of a sample covariance matrices. For 
each , let be an matrix consisting of i.i.d., mean 
0, variance 1 random variables with distribution common 
for all . Let as , and denote the 
sample covariance matrix by . The result 
is stated in terms of the empirical distribution function of

the eigenvalues of , that is, for every ,

(number of eigenvalues of ).


With slight changes in notation (and correction of a typo), we 
quote his result. 

Theorem: (Silverstein): If there exists a such that 
, then for every , as 

, where for 

if 

otherwise 
(10) 

where , and for 

(11) 

where if and zero otherwise. 

The first term on the right-hand side of (11) represents the 
zero eigenvalues that must occur when there are fewer 

samples than the dimension of the sample vectors. This is com
monly the case in the analysis of ensembles of images, each of 
which has a great many pixels [11]. 

When the number of samples is very large so that , (10) 
reproduces the usual approximation that the eigenvalues of 
are all unity. However, as approaches 1, the smallest eigen
value decreases toward zero (being equal to ), and the largest 
eigenvalue (equal to ) increases. It is worthy of note that in 
this regime, both the mean and the mode of are greater than 
1 so that in addition to spreading the range of the eigenvalues, 
limited sampling inflates the effect of noise. For , there is 
a single zero eigenvalue (because the have zero mean), and 
as becomes large, all of the nonzero eigenvalues approach 

. Here again, a limited number of samples magnifies the ap
parent noise. 

Although Silverstein’s theorem is true in the limit , 
numerical experiments show that it is a good approximation 
even for as small as 10. As an illustration, we display 
in Fig. 1(a) the eigenvalues of a single sample covariance 
matrix constructed from random vectors of dimension 

so that . The elements of the random vectors 
are Gaussian distributed with zero mean and unit variance. 
The line versus is also shown, which is 
the cumulative probability that there are eigenvalues greater 
than . As the graph shows, there is fairly good agreement 
between Silverstein’s asymptotic result and the eigenvalues 
of this single, low-dimensional realization. The figure also 
illustrates that the largest eigenvalue is substantially larger than 
the noise variance ( ). Fig. 1(b) shows the ten nonzero 
eigenvalues from a covariance matrix with 
from 

, constructed 
random vectors ( ), each of dimension 

100. Again there is reasonable agreement with the asymptotic 
result, and the eigenvalues are located around , in this case, 
ten times the noise variance. 
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III. EIGENVALUES OF


Although the covariance matrices add


(12) 

the eigenvalues of are nonlinear functions of and , 
which are the eigenvalues of and , respectively. Since 
all the matrices involved are symmetric, bounds on the are 
given by inequalities attributed to Weyl, which are quoted in the 
Appendix (see also [12] and [13]). Listing the eigenvalues in 
decreasing order of magnitude, Weyl’s inequalities imply that 

(13) 

where 
When 

. 
so that is of full rank, Silverstein’s result 

shows that the are bounded by 

(14) 

Combining (13) and (14) gives bounds on 

(15) 

samples, has zero eigen
values, and the upper and lower bounds in (15) each become 
a pair of inequalities, either of which may provide the tightest 
bound. 

Although (15) provides rigorous bounds on 

If there are fewer than 

(and there
fore on , given  ), better, probabilistic, estimates may be 
obtained by considering the probability densities of the . 

A. Bayesian Inference 

In order to estimate probability density functions for the 
we will adopt a Bayesian point of view, using Bayes’ rule in the 
form 

(16) 

where denote -dimensional random vectors formed 
from the eigenvalues and . Prior belief about the den
sity of eigenvalues of , given a vector of parameters 

, is embodied in the prior density . The parameters 
in this problem are , which is the (usually 
unknown) noise variance and rank of . Having observed 
the data, namely, the eigenvalues of , the posterior 
density for may be calculated using the likelihood 

. The form of the likelihood is determined by the 
model (5) and is calculated below. The denominator , 
which may be determined by the requirement that the posterior 
density integrates to 1, is known as the evidence and is useful 
in determining the noise variance and the rank of ; this is 
the subject of Section IV, and for now we omit the dependence 
of these densities on for notational simplicity.


1) Likelihood: We model the
 as being conditionally in
dependent given so that the (pseudo) likelihood is expressed 
as the product 

(17) 

The likelihood is determined by model equation (5) and 
may be estimated from (13) as 

and 

(18) 

(19) 

The probabilities appearing in (19) are no more than the cu
mulative densities for the eigenvalues , which may be calcu
lated using elementary methods from order statistics in the fol
lowing way. The nonzero eigenvalues of may be regarded as 

realizations of the random variable , whose 
density function is , given by equations (10) and (11). The 
cumulative density function of the th largest eigenvalue 

is the probability that at least of the eigenvalues are 
less than or equal to . Thus 

(20) 

.which is readily calculated from 
Combining (19) and (20) gives 

(21) 

(22) 

where for notational brevity, we have written , 
, and . The likelihood is thus 

seen to be the product of factors estimating lower 
bounds on and factors estimating upper bounds. The lower 
bound factors are cumulative density functions and, there
fore, increase monotonically from zero at small (possibly nega
tive) to unity when is sufficiently large. Conversely, the 
upper bound factors decrease from unity to zero. Since there 
is always at least one and one , the likelihood 
is zero for sufficiently small , rises monotonically with in
creasing to a maximum, and then decreases monotonically 
to zero at large . 

The full likelihood equation (17) is therefore 

(23) 
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and identifying terms that depend on gives the likelihood of 
conditioned on 

(24) 

factorizes as ,Provided that the prior for 
the posterior densities for each may be calculated separately 
using (24) 

(25) 

(26) 

This factorization of the posterior density 
is a consequence of the form of the esti

mates for and the factorization of the prior. Note that 
unlike the likelihood (22), it is the factors that shape 
the lower bounds of the posterior density, whereas the cumula
tive densities determine the posterior probabilities for 
large .


Although there are
 of these factors, in practice, only a 
few of them are relevant because many of them are rendered im
potent by the fact that another factor is zero everywhere that they 
are nonzero. Utilization of this fact greatly speeds up computa
tion of the likelihood. Since for all , it is clear 
that for and for . Consider 
the factors associated with the lower bounds [i.e., the in 
(26)] and, in particular, the factor . This term is zero 
for . Any other term that is 1 for 
(and, therefore, for any ) cannot play a role in shaping 
the likelihood because , and therefore, is 
zero for , and when , the contribution of unity 
to the product (26) is irrelevant. The only potent contributions 
are, therefore, those for which . Similar 
considerations show that the only potent upper bound factors are 
those for which . If  is separated from 
its neighbors by at least , then only 

plays a role in determining . 
The most time-consuming part of the likelihood calculation 

is the numerical integration of to obtain . Each like
lihood estimate requires for different values of , but great 
economies may be made by tabulating (once) on a rela

2.
2) Prior: In order to complete the Bayesian scheme, a prior 

density 

tively fine mesh and then interpolating to the required 

must be chosen to reflect belief and prior knowl
edge about the eigenvalues of . Since is positive 
semi-definite, 
enforced by the inequalities (13), which are applicable to the 
wider class of Hermitian matrices. The prior should therefore 
encode this knowledge about 

. Non-negativity of the eigenvalues is not 

, and thus 

(27) 

2Matlab scripts implementing these calculations are available from 
http://www.dcs.ex.ac.uk/academics/reverson 
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In some instances, when is large, may be regarded as 
scale variables and may be expected to decay like 
for some constants and . In this case, a gamma distribution 
centered around is a reasonable model for . Note, 
however, that it may be important to allow for the possibility of 
zero eigenvalues by adopting a prior that is nonzero for . 

When is relatively small and the data are thought to have 
been generated by a small number of roughly equal-powered 
sources, the are all expected to be about the same size. In 
the absence of further information, a uniform prior between 0 
and some outer scale is most uninformative. Note that we have 
found a Jeffrey’s prior (which gives equal weight to on a log
arithmic scale; see, e.g., [14]) to be unsuitable for this situation 
because 1) it places too much weight at small scales, but 2) does 
not permit the possibility of an exactly zero eigenvalue. Since 

, a suitable outer scale for is , and we therefore 
choose 

if 
(28) 

otherwise 

In this context the are hyperparameters, and formally their 
values may be found through a hierarchical Bayesian method
ology. 

In any case, since the likelihood is compact ( 
for outside the interval ), the precise 
form of the prior is not crucial, provided that it is sufficiently 
broad that it does not unwarrantedly prejudice the posterior. 

Finally, we wish to examine the hypothesis that the number of 
sources is less than . To do this, we choose 

for . In summary, we have 

(29) 

B. Example 

As an illustration, we apply the method to covariance ma
trices corresponding to sources and observa
tions of an 
matrix was constructed from unit variance Gaussian noise vec
tors. The noise power is given by 

-dimensional vector. The noise covariance 

and the signal 
power by . The eigenvalues of (which would 
usually be unknown) are those shown in Fig. 1(b). 

Fig. 2 shows the posterior densities for some of the eigen
values. This calculation used the known noise variance and the 
flat prior (28). The modes of the posteriors for the nonzero 
are close to the real values, whereas the posterior densities for 

and correctly indicate the eigenvalues to be zero or very 
close to zero. 

Fig. 3 shows the modes and standard deviations of posteriors 
for all the eigenvalues. In all cases, the mode of the posterior is 
close to the true eigenvalue, and an advantage of the Bayesian 
method is that error estimates are placed on the eigenvalues. 

In Fig. 3, the bounds 
are also shown, which arise directly from the Weyl inequali
ties (13), Silverstein’s result (10), and the fact that eigenvalues 
of covariance matrices are non-negative. Although these bounds 
are much looser, their computation is extremely simple. Note in 
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Fig. 2. Posterior densities for eigenvalues 3, 4, 6, 7, and 8. 

Fig. 3. Modes of the posterior densities. The solid line joins the modes of 
��� �� � and error bars indicate the standard deviation of ��� �����. Circles 
show the true eigenvalues � , and squares mark the eigenvalues � of the 
noise-corrupted covariance matrix. The longer horizontal lines indicate the 
nonprobabilistic bounds arising from the Weyl inequalities and Silverstein’s 
result. 

particular that the bounds placed on , which is the first zero 
eigenvalue, are rather loose, whereas the probabilistic estimates 
indicate that it is very close to zero. 

IV. EVIDENCE AND MODEL ORDER SELECTION 

The noise variance and the rank of , which are 
usually unknown parameters, may be estimated from the evi
dence. This follows from the fact that posterior probability of 

given may be expressed as 

(30) 

Since is constant, the most probable and are those that 
maximize the numerator of (30). If the prior is unin
formative, this is equivalent to maximizing , which 
is, therefore, known as the evidence. 

Although is a continuous variable, may only assume 
integer values, and choosing the for which there is most ev
idence thus constitutes selecting a model order, i.e., the rank of 
the matrix . For predictive purposes, the Bayesian approach 
is to integrate (marginalize) over all , and one might also in
tegrate over the model order . In many cases, is 
sharply peaked in both and so that choosing the modal 
values forms a good approximation to the full integration. 

The minimum message length (MML) criterion [15] and the 
minimum description length (MDL) criterion [6] each seek to 
select the model order by determining the shortest string that 
describes the data in terms of the model and the data, given the 
model. This balances model complexity (measured as the length 

of an additional string required to describe the 
data once the model is known. Since the length of a message de
scribing the model is proportional to the model order, the MML 
criterion may be viewed as maximizing 

of a string describing the model), with the length 

with the prior 
. 

Since may be regarded as a scale variable, a Jeffrey’s prior 
for may be appropriate in some circumstances. For 
now, we choose the MML prior . Using (29), 
we have 

(31) 

As Fig. 4 shows for the example discussed in Section III-B, 
there is most evidence for and . The rank 
of has been correctly identified, and the noise variance 
is close to the true value of unity. Fig. 4 shows the eigenvalue 
spectrum at 

Particularly when the rank of is small, there is, however, 
a tendency for the evidence calculation to underestimate and 
overestimate the rank . The reason for this can be seen by 
examining (31). The terms in the second product are the likeli
hoods evaluated at 
the evidence that 

, each of which may be interpreted as 
is zero. As argued in Section III-A1 the sup

port for is no larger than , and 
the likelihood attains a maximum somewhere in this interval. 
When , there is zero evidence for being zero be
cause . As  becomes larger than , 
the likelihood (and, therefore, the evidence for 
creases, achieves a maximum for , and then decreases. 
When 

) in-

, the support for lies entirely in the 
negative half axis , and there is zero evidence for . 

Note that this gives an immediate estimate of the maximum 
noise variance, namely, ; if the noise were any 
larger, would be negative, which contradicts the positive 
definiteness of . This is, however, an overestimate of be
cause the nonzero eigenvalues of increase away from 

. 
The use of the Hermitian properties of the covariance ma

trices (without exploiting their positive definiteness) leads to 
the prediction of negative , which was eliminated above by 
a prior, which truncated the likelihood at zero. Here, it leads to 
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(a) (b) 

Fig. 4. Evidence for noise variance and rank. (a) Gray scale shows ��� ���� � �����; white indicates that ���� � ����� � �. The maximum at � � ����, 
� � � is indicated by the white circle. (b) Modes of posterior densities for � calculated with the � for which there is maximum evidence. Circles show the true 
eigenvalues � , and squares mark the eigenvalues � of the noise-corrupted covariance matrix. 

decreasing evidence for as exceeds . The rate 
of this decrease may be too rapid because the model fails to 
account for the increasing probability that is exactly zero 
but treats in exactly the same way as, for example, 

. It would be possible to choose priors that as
sign a proportion of the probability mass to 
in the absence of a priori information, it is difficult to choose 
the proportion to be assigned to the spike at zero, and we refrain 
introducing additional hyperparameters. 

; however, 

This point is illustrated in a second example, which was 
chosen to be difficult to the point of pathological. Two frag
ments ( samples, less than 1/50th of a second) of music 
were linearly mixed, and Gaussian observational noise ( ) 
was added to form an observation sequence in di
mensions. The noise power and the power of the 
noiseless signal was . In  
addition, the vast majority of the signal power is represented 
by 
below the noise power 

, whereas the other nonzero eigenvalue is well 
.


The eigenvalues
 and are shown in Fig. 5(a). Apart from 
the first eigenvalue, the spectrum is dominated by the noise. The 
abrupt drop in the true eigenvalues between and 
is obscured in the , and it is difficult to tell by eye that the 
underlying rank is 2. 

Näive application of the MDL criterion, based on a linear 
model with Gaussian distributed errors, suggests that the model 
order is 1. 

Rajan and Rayner’s scheme [7] suggests 
idence [Fig. 5(b)] is maximum when 

. The ev-
and 

The reason for this overestimate of 
. 

and concomitant under
estimate of is apparent from Fig. 5(c) and (d), which shows 

and as functions of 
and . The evidence for any and is obtained (30) by mul

tiplying together the values down the column corresponding to 
in Fig. 5(c) as far as and then continuing down the corre

sponding column in Fig. 5(d). As Fig. 5(d) illustrates, the ev
idence for is large when but is very small 

( ) when . In fact, when 
evidence that 

, for example, the 
is less than the evidence that 

even though we know that . 
Denoting the evidence that 

, 

by ( ), we 
might expect that when and 

if . That is, at any noise variance, we 
expect there to be at least as much evidence that as 
evidence that , unless , which is an 
infeasible value for . We might therefore model the evidence 
that as 

if 

if 
(32) 

Fig. 5(e) shows , and Fig. 5(f) shows the overall evi
dence, which is maximum at and , which is 
closer to the correct model order and variance. Here, the fact that 

does not decrease with increasing , until , 
when drops abruptly to zero, means that is selected at 
the largest feasible value of for , namely, 
Since this is an upper bound for , it is generally an overesti
mate of the actual variance and, consequently, often leads to an 
underestimate of the rank .


A better estimate of
 is obtained from a least squares fit of 
the tail of the observed spectrum to the Silverstein noise spec
trum , assuming that the effect of on the tail of the spec
trum is negligible. In this example, a least-squares fit yields 

. The evidence for different model orders at this 
is plotted in Fig. 6 and correctly suggests that the rank is 2. 

V. DISCUSSION 

We have presented a method for estimating the eigenvalues 
and, hence, the rank of a covariance matrix when the observed 
covariance matrix is heavily contaminated with noise and the 
number of data samples is limited. The Bayesian approach 
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 5. Evidence for noise variance and model order for a mixture of two fragments of music mixed into 20 dimensions. (a) True eigenvalues (� , circles), 
noise-corrupted eigenvalues (� , squares), and modes of posterior densities for � � �. The first eigenvalues (� � �����, � � �����) are not plotted. (b) 
Evidence ��� ���� � �����. The maximum at � � ����, � � �  is indicated by a white circle. (c) Evidence conditioned on � . (d) Evidence ������� � ��� 
that � � �. Crosses mark the locus � 0 � �� � that �� �. (e) Modified evidence � �� � �. (f) Overall evidence ��� ���� � �����. The white circle 
indicates the maximum at � � ����� �  � �� 
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Fig. 6. Evidence for model order ���� ������ evaluated at � � ������. 

yields error bounds for the eigenvalues and the model order, and 
noise variance may be estimated using the evidence. 

Silverstein’s expression for the eigenvalue density of sample 
covariance matrices is valid for all i.i.d. noise. Consequently, 
this method is applicable to all sorts of zero mean noise and not 
just Gaussian noise. 

We have concentrated on the regime . Apart 
from the zero eigenvalues in the covariance matrix, the 
theory is unchanged when , and we point out that the 

may be efficiently calculated from the matrix 
, which has the same eigenvalues as [16].

This method is also applicable to singular value decomposition 
(SVD) because the singular values of the data matrix are just the 
square roots of the . 

Many data analysis methods (PCA, SVD, ICA) do not ex
plicitly model the noise as in (5) but implicitly use the noiseless 
model (1). Exciting exceptions are Tipping and Bishop’s “prob
abilistic PCA” [17] and EM formulations of ICA [18], [19].

Model order estimation and the blind estimation of noise vari
ance are notoriously difficult problems, and many methods have 
been developed to attack them. A novel feature of our approach 
is the explicit incorporation in the model of the number of data 
samples and the expected statistics of the noise. Methods that 
fail to model the number of data samples (such as näive MDL 
based on a linear generative model with Gaussian latent vari
ables) perform poorly because the eigenvalues of the sample 
covariance matrix are not merely raised by , except in the 
limit of infinite data. Rajan and Rayner [7] also give a Bayesian 
scheme for SVD model order determination. They do not ex
plicitly model the noise but assume that the projections onto the 
singular vectors with small singular values are dominated by 
noise. Zarowski’s [20] approach is similar to ours in that he has 
modeled the singular values of noisy data by assuming that the 
singular values of the noise-free data are perturbed noise drawn 
from ad hoc distributions. He then uses the MDL criterion to 
decide the rank of the noiseless data. 

We have discussed a particular example in which this scheme 
has difficulty in correctly assessing the model order and noise 
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variance. In this context, model order estimation is equivalent 
to determining the number of eigenvalues that are exactly zero, 
and small changes in the estimated variance can lead to large 
changes in the model order. The principal obstacle here is the 
inadequacy of modeling the likelihood of a zero eigenvalue. 
Since the covariance matrices are positive semi-definite, zero 
is a distinguished value, but it is not treated specially by the 
inequality relations between eigenvalues of general Hermitian 
matrices. Note that brute-force sampling approaches are com
putationally completely infeasible, even for small problems. We 
have presented two methods (a modification of the evidence for 

and estimation of by least squares fitting) that im
prove the estimates. More robust results are obtained when the 
signal-to-noise ratio is larger or prior information exists about 
the variance or eigenvalue spectrum. 

Finally, it is important to recognize that we have assumed 
that the noise and signal are uncorrelated. This assumption was 
made so that the cross term could be discarded 
[cf. (6)]. Although this is certainly true with many data sam
ples, spurious correlations with few samples may affect . In
deed, since is indefinite, the may be de
creased. In addition, if the sources are not perfectly decorrelated, 

may have larger rank than the actual number 
of sources. 

APPENDIX 

WEYL INEQUALITIES 

Here, we quote Weyl’s theorem relating the eigenvalues of 
two Hermitian matrices to the eigenvalues of the sum of the 
matrices. Proofs are given in [12] and [13], for example. 

Theorem (Weyl): Let be by Hermitian matrices, 
and let the eigenvalues , , and be ar
ranged in decreasing order ( ). Then, for 
each , , and ( ) we  have  

(33) 

Note that the statement of the theorem is apparently different 
from the usual statement because the eigenvalues are listed in 
decreasing order. 
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