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How much information is needed to solve a given
problem ?

How much information is (or will be) available ?

Conceptual limitations

Practical limitations



- Finding transcription factor binding sites based on primary
sequence information

- SNP < > disease association



What are the problems we want to solve ?

So far the “DNA chip” revolution has been mainly technological:

The principles of measurements (e.g. complementary hybridization) have
not changed.

It is not clear yet whether a conceptual revolution is approaching

as well ?
potential breakthrough questions:
- can we perform efficient, non-obvious reverse engineering ?
- can we identify non-dominant cooperating factors ?
- can we predict truly new subclasses of tumors based on
gene expression patterns ?
- can we perform meaningful (non-obvious & predictive)

forward modeling



1. Reverse engineering time series measurements

2. Identification of novel classes or separators in gene
expression matrices in a statistically significant manner

3. Potential use of artificial neural nets (machine learning)
in the analysis of gene expression matrices.



Biological research has been based on the discovery of strong
dominant factors.

More than methodological issue ?
Robust network based on stochastic processes

1

Strong dominant factors



The Principle of Reverse Engineering of Genetic Regulatory
Networks from time series data:

Determine a set of regulatory rules
that can produce the gene expression
pattern at T, given the gene expression
pattern at the previous time point T,
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Continuous modeling:

x;(ttl) =g (b; + zjwijxj(t))

(Mjolsness et al, 1991 - connectionist model;

Weaver et al., 1999, - weight matrix model;

D’Haeseleer et al., 1999, - linear model;

Wahde & Hertz, 1999 - coarse-grained reverse engineering)

at least as many time points as genes: T-1>N+2
(Independently regulated entities)




For differential equations with r parameters 2r+1 experiments are
enough for identification (E.D.Sontag, 2001)



How much information is needed for reverse engineering?

Boolean fully connected 2N
Boolean, connectivity K K 2K log(N)
Boolean, connectivity K, linearly separable rules K log(N/K)
Pairwise correlation log (N)

N = number of genes
K = average regulatory input/gene




Goal — = Biology

Measurements (Data)



Biological factors that will influence our ability to perform
successful reverse engineering.

(1) the stochastic nature of genetic networks ,
(2) the effective size of genetic networks ,

(3) the compartmentalization of genetic networks,
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1. The prevailing nature of the genetic network

The effects of stochasticity:

1. It can conceal information (How much ?)

2. The lack of sharp switch on/off Kinetics
can reduce useful information of gene

expression matrices.

(For practical purposes genetic networks might be considered as
deterministic systems ?)
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2. The effective size of the genetic network:

How large is our initial directed graph ?
(It is probably not that large.)

We might have a relatively well defined deterministic cellular
network with not more than 10 times the number of total genes.

N, .<10xN

gene

10,000-20,000 active genes per cell
Splice variants < > modules




3. The compartmentalization (modularity)
of the genetic network:

The connectivity of the initial directed gene network graph
Low connectivity - better chance for computation.




Genetic networks exhibit:
Scale-free properties (Barabasi et al.)

Modularity

Flatness



(Useful) Information content of measurements
is influenced by the inherent nature of living
systems

We can sample only a subspace of all gene
expression patterns (gene expression space),
because:

1. the system has to survive
(83% of the genes can be knocked out in S. cerevisiae)

2. Gene-expression matrices (i.e. experiments)
are coupled
Cell cycle of yeast under different conditions




Data:

A reliable detection of 2-fold differences seems to be the
practical limit of massively parallel quantitation.
(estimate: optimistic and not cross-platform)
Population averaged measurements
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The useful information content of time series
measurements depend on:

1. Measurement error (conceptual and technical
limitations, such as normalization)

2. Kinetics of gene expression level changes (lack of sharp
switch on/off kinetics - stochasticity ?)

3. Number of genes changing their expression level.

4. The time frame of the experiment.




Measurements with error bars
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Time
A rational experiment will sample gene-expression according to a time-series
in which each consecutive time point is expected to produce at least as large

expression level difference as the error of measurement: approximately
S min intervals in yeast, 15-30 min intervals in mammalian cells.




P = Klog(N/K) (John Hertz, Nordita)

P : gene expression states
N: size of network
K: average number of regulatory interactions

Applying all this to cell cycle dependent gene expression
measurements by cDNA microarray one can obtain 1-2
orders of magnitude less information than expected in an
ideal situation. (Szallasi, 1998)




Can we identify non-dominant cooperating factors ?
Can we predict truly new subclasses of tumors based on

gene expression patterns ?

How much data is needed ?

How much data will be available ?






Samples




Analysis of massively parallel data sets

Unsupervised - avoiding artifacts in random data sets

avoiding artifacts in data sets retaining
the internal data structure

Supervised

INFORMATION REQUIREMENT



Consistently mis-regulated genes in random matrices

“E” different samples
“N”-gene microarray
M. genes mis-regulated in the “i”-th sample,

K consistently mis-regulated across all E samples.

What is the probability that (at least) K genes were mis-
regulated by chance ?



K-1
i0

Where P(E,K) is the probability that exactly k genes are consistently mis-regulated

PEK) (;‘) ] (1:4_—%2 "P(E-1,]J)
ik (M)

P(2,k)
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If N>>M, then

or

N E\k E\N-k
P(E,kZK)z(kj*(q ) *(-q")



For a K gene separator:

me () @-a)

N M E K ny simulated ny calculated
S00 100 4 |3 1172455+123637 1174430

500 100 8 |3 69630 + 17487 66605

300 50 153 760 + 579 785

200 40 20| 4 2032 + 1639 1713




how many cell lines do we need in order to avoid accidental
separators ?

for N=10000 M=1000 for p<0.001
K=1 E=7

Higher order separator

K=2 E=15
K=3 E=25
K=4 E=38
K=5 E=54

K=6 E=73
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Genes are not independently regulated

A. Actual data
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Generative models (gene expression operator) will simulate
realistic looking gene expression matrices ?

- the number of genes that can be mis-regulated
- the independence of gene mis-regulation.

gene,
gene,
gene,
gene,

N, Ny Nyoeoo Ny [T, Ty Ty oeeeeeeenenns T,
0 0 1 0 | S T N 0
0 0 O 0 | T | I 1
0 0 O 0 | N | T RO 0
0 1 1 0 | | T R 1



Algorithm to extract Boolean separators from a gene expression
matrix.

U. Alon data set (colon tumors) : N=2000, M,,,,,.~180 K=2
E Alon data calc.  Num. sim.

10 708 131 130

11 120 ~1 1

12 45 8.6x103 8.6x103

13 3 7.0 x 105 -

14 3 5.6 x 10”7 -

15 1 4.6 x 107 -

16 1 3.7x 101 -

Generative model: 4+/-2 separators



[eamures, Wnie preserving Siep-lke cnanges in Inensiy. 1 ne
features were arranged in the order they appear in the EST
sequence, the PM-MM intensities in a moving window of five
features were sorted, and the filtered intensity was given by the
mean of the middle three sorted intensities. The total inte nsity
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Pearson-disproportion of an array:

ml.nj 5
ii(yij_ N)
PE(y)
il j1 minj
N

y;i — gene expression level i the ith row and jth column

C r
n; Zyij n; Zyﬁ
i1 i1

N Zmi an
i ]



Random matrices with the same intensity distribution and
same (or larger) disproportion measure as the original matrix
(Monte Carlo simulations)






Generative models (random matrices retaining internal
data structure) will help to determine the required sample
number for statistically meaningful identification of classes
and separators.



Machine learning — Artificial Neural Nets in the analysis
Cancer associated gene expression matrices
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shuffling was redone 200 tires, and for each shuffling we analyzed thres ANN  res
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1. Filter genes (58 x 3380)

2. Reduce dimensionality

PCA (58 x 10)
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3. Random partition 47 training I
experiments into 3 groups e
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6. Re-select (x 3) Model trained 7.Reparttion  f
{x 200) i
8. Rank genes s

(sensitivity measurement) v
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N 0. Minimize number of genes

Fig 1. Classification of EE+ and ER— tumors using ANMs and gene sxpression pattans. 4
expression and spot area reduced the number of gense to 3389 (1), PCA further reduced the dime
intothree groups (3). Two of these groups weres used for training and one for validation (4) using
oroosss was repeated =o that all thres eroune wers ussd for validation (6. The random partitior



ANN (artificial neural nets) work well when a large number
of samples is available relative to the number of variables

(e.g. for the pattern recognition of hand written digits
one can create a huge number of sufficiently different samples).

In biology there might be two limitations:

1. the number of samples might be quite limited, at least relative
to the complexity of the problems (The cell has to survive)

2. There might be a practical limit to collecting certain
types of samples




<100 samples

> 1000
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Reducing dimensionality
Principal component analysis
retain variance

v



The risk of reducing dimensionality by PCA
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Sporadic breast tumours
patents <55 years
tumour size <5 cm

lymph node negative (LNG)

(Rosetta)

83% accuracy

- Swy

Prognosis reporter genes

Carrelation to average
good prognasis profile
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