
MIT 18.996: Topic in TCS: Internet Research Problems Spring 2002

Lecture 1 | February 6, 2002

Lecturer: Tom Leighton Scribes: Omar Aftab, Eamon Walsh

1.1 Introduction

This class will discuss several research problems that are related to the Internet. Each lecture
will discuss

� How a particular Internet component or technology works today

� Issues and problems with the current technology

� Potential new lines of research

� Formulation of concrete problems and solutions

We start by discussing how the Web works today, what the issues are with its current
architecture, and how Akamai's services are changing it. We then discuss technological
challenges, and conclude with future lines of research in this area.

Most lectures will include an example of a theoretical problem that came out of research at
Akamai. Today's example, which we will see later, concerns cost optimization: the problem
of assigning each user to an optimal server, whilst minimizing total bandwidth costs.

1.2 How the Web Works Today

The Web, when viewed from the outside, simply connects content providers to end users.
The great thing about the Web is that a worldwide audience can be connected to content
without licensing fees of any sort. Anyone can put up a web-site, and hundreds of millions
of people can see it. This is unprecedented in human history.

While the Internet provides unprecedented connectivity, it also su�ers from instability
and unpredictable performance. And as the number of sites and users increase, these prob-
lems will grow dramatically.

1.2.1 Web Architecture: A Network of Networks

The Internet is a network of networks: today, it consists of over 9000 individual networks,
that communicate using the IP protocol. These networks include large, Tier I networks,
such as UUnet and PSINet, as well as numerous small ISPs. In order for the Internet to act
as a truly global network connecting everyone, these individual networks must be connected
together using links called 'peering' points.

1-1

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

A peering point is essentially a link between two routers located on di�erent networks.
For data to pass from one network to another, it must traverse through this link. In fact,
there are many thousands of such peering points on the Web and in order for data to reach
the end user, it must pass through many individual networks and peering points.

Two di�erent kinds of protocols help direct traÆc on the Web today. Interior Gateway
Protocols, such as RIP, route data within an individual network. Of more concern to us is
the Exterior Gateway Protocol, BGP, which is used to route data between networks. While
interior gateway protocols use a wide variety of sophisticated methods to determine the
optimal routing path { including topology, bandwidth, and congestion { BGP does not.
Instead, BGP determines routes by simply minimizing the number of individual networks
the data must traverse. This approach, while scalable, does not handle congestion well.

The current architecture of the Internet greatly enhances the Web's scalability and has
allowed it to expand rapidly. However, inherent within this architecture are four distinct
bottlenecks, that can severely degrade performance as the Web continues to grow. These
bottlenecks are represented in the �gure below (Figure 1.1), and we shall discuss each in
turn.

Figure 1.1. Problems with Internet architecture today

The First Mile Bottleneck

The �rst bottleneck is a direct consequence of the fact that with 400 million users, cen-
tralization simply doesn't work. Content connected to the web at one point can quickly
become swamped when demanded by a large worldwide audience. Traditionally, each con-
tent provider sets up a central web site at a single location, which provides data to the entire
world. This means that First Mile connectivity { the bandwidth capacity of the central site
{ will limit performance.

1-2

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

In order to accommodate an increasing number of users, the content provider must con-
tinually purchase more and more bandwidth from its ISP, but more importantly, the ISP
must also continually expand its own network capacity { and so must its peers! Thus, the
centralized solution is clearly not scalable.

Figure 1.2. The �rst mile bottleneck

An example of this problem is the Victoria's Secret Online Fashion Show, which was
heavily advertised at the 1999 Super Bowl. When more than a million subscribers attempted
to access the live webcast simultaneously, the central servers could not cope, swamping the
site and leaving nearly all viewers unable to view the webcast. Other examples include the
non-Akamai sites serving the Star Wars trailers, and the NASA site delivering content on
the Mars Rover. In each case, the demand for content was more than the �rst mile capacity
of the Web site, swamping performance.

The Peering Problem

The Internet today is a network of networks, with peering points between them. (Figure
1.2).

To traverse the Internet, traÆc must pass through many peering points between these
individual networks. Even if the bandwidth of the two networks is internally large, the
bottleneck is often the access point between the two.

There is a common misconception that \big players" control large chunks of Internet
traÆc. If one network were to account for most of Internet traÆc, most destinations could
be reached within that network and no peering points would need to be traversed. However
this is not the case. In reality, no single network controls more than 6% of Internet traÆc
1. Since traÆc is so evenly spread out over thousands of networks, most of it must travel

1By traÆc, we are referring to the number of bits transferred rather than the number of users. A large
number of subscribers may only produce a small amount of traÆc if their connections are slow, as is the case
with AOL. The broadband service, Excite@Home, for example, produces about the same Internet traÆc as
AOL, even though it has far fewer subscribers

1-3

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

Figure 1.3. Many networks within the Internet

through many di�erent networks, and consequently, numerous peering points { which are a
source of congestion.

There are three main issues with inter-network peering relationships:

Economics
Many ISP's deliberately restrict their peering points to keep out large amounts of
foreign traÆc. Arguments over payment frequently occur; big ISP's traditionally charge
smaller ISP's for using their backbones, but large \Tier 1" companies have traditionally
not charged one another. Since the smaller networks must pay the larger ones for using
their backbone, they tend to purchase only just enough capacity to handle current
traÆc. This means that the peering links operate at near-full capacity, resulting in
packet loss and delays. Larger networks, driver by similar economic reasons, tend not
to want to link with other large networks, since they aren't paid for it.

The forces of economics occasionally cause the system to break down. Cable & Wire-
less once denied service to several networks, demanding payment. Among them was
PSINet, another Tier 1 backbone, which refused to pay. This action fragmented the In-
ternet for three days; PSINet subscribers could not reach content hosted on C&W and
vice versa. Service was only restored when the C&W hosting division was swamped
with complaints from customers whose sites were inaccessible to PSINet customers.

Routing Protocols
As we discussed, Exterior Gateway protocols such as BGP use traditional shortest-path
algorithms to determine optimal routes, ignoring congestion { even though information
such as queue sizes is available to routers. As a result, when peering links get congested
BGP continues to send them traÆc, exacerbating the problem

Human Error
Routing protocols also receive instructions from human operators, which can lead to
accidental loss of routes or introduction of incorrect routes. For example, systems
operators are responsible for setting the number of hops to other networks. Games are
often played where hops are falsely advertised in order to divert traÆc onto competing
networks and the like. This can lead to disaster, as in the case where a Level 3 Engineer

1-4

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

accidentally advertised routes with a cost of �1 to all points. A tremendous amount
of traÆc was thus routed through Level 3, creating immense congestion. As mentioned,
BGP ignores congestion in determining optimal routes, and the problem soon a�ected
three fourths of all Internet traÆc. The outage lasted for 45 minutes.

Peering, thus, is an inherent problem with the architecture of the Web. While it has been
argued that peering problems should subside as telecom companies consolidate and networks
merge together, there are no signs of this happening. The number of distinct networks is
actually on the increase.

Internet Backbone

Another bottleneck is the capacity of the large, long distance networks that comprise the
Internet backbone. In the traditional centralized model of web page serving, almost all
requests end up traversing a backbone network from the end-user to the central server. This
means that core networks must handle all the Internet traÆc on the Web today. Currently,
this is only an issue for foreign countries and global access. As Internet traÆc grows, however,
it may become a more pressing issue.

The Last Mile

The last mile bottleneck is the one that most Internet users are familiar with: the limited
speed of the 56K modem link to their ISP. A common misconception, however is that the
introduction of broadband DSL or cable will solve all Internet performance issues. This is not
the case. Upstream issues will still cause performance problems: the connection is only as
good as its weakest link. In fact, the limited speed of modems is actually saving the Internet
from completely breaking down: if all users were able to demand content at broadband
rates they would create so much congestion on the other three kinds of bottlenecks that
Internet traÆc would come to a standstill. Indeed, the Internet today is being run at close
to capacity: the other issues must be dealt with before subjecting the architecture to millions
of additional broadband users.

1.2.2 Bottleneck Implications

The current architecture of the Internet requires all traÆc to pass through multiple networks
to central content providers. In doing so it must encounter all four types of bottlenecks before
reaching its destination. This has the following serious implications:

Slow Downloads
Content must traverse multiple backbones, oft-congested peering points, and long dis-
tances to reach the end user. Performance, thus is often slow.

Unreliable Performance
Content may often be blocked as a result of congestion or by peering problems. A site
which works perfectly one minute may be inaccessible the next.

1-5

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

Lack of Scalability
Since each user must retrieve data directly from a central server, there are serious
issues of scalability. Usage is limited by the bandwidth present at the central site.

Inferior Streaming Quality
Multimedia streaming, which is a major goal of content providers, is infeasible under
the central server model. Packet loss, congestion, and narrow pipes serve to degrade
stream quality, making hi-resolution video-on-demand a nearly impossible task.

Broadband No Silver Bullet
As we discussed, broadband is not a solution to the bottlenecks mentioned { in fact
it will only serve to exacerbate �rst mile congestion, peering issues and backbone
congestion as more and more people attempt larger downloads.

1.3 Akamai's Solution: Delivering On The Edge

Akamai's solution is to avoid the internet bottlenecks by providing content directly from
their servers to the end user over the last mile. This alternative to centralized distribution
is called edge delivery. In this model, the content of each web-site is available from servers
located at the edge of the Internet: ideally, a user will be able to �nd all requested content
on an Akamai server located on their home network. With nearly 15,000 servers distributed
in over 60 countries throughout the world, the chances are good that any Internet user has
an Akamai server close by.

Figure 1.4. Edge delivery

1-6

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

1.3.1 Advantages

Akamai's model has a number of distinct advantages over the status quo. Akamai's solution
avoids the �rst mile bottleneck by eliminating the central point from which all data was
accessed. Content is served from locations close to the end user rather than from a geo-
graphically distant and oft congested central server, as shown in Figure 1.4. Since each site's
content is now available at multiple servers, its capacity is no longer limited by the speed of
single network link. The system is also more reliable, as there is no single point of failure.
Should an Akamai server fail, its users are automatically directed to another.

Edge delivery also addresses the peering problem. Data no longer needs to pass through
multiple networks and congested peering points. It can be retrieved directly from the home
network, resulting in faster downloads. Of course, this means that each, or almost each,
network should have its local Akamai server. Additionally, since content is delivered from
the network edge, the demand for backbone capacity is also greatly reduced.

Edge delivery, of course, does not directly address the last mile problem. But by delivering
content closer to end users and addressing the three upstream issues, it enables the successful
introduction of broadband.

The performance improvement a�orded by Akamai can be seen in Figure 1.5. The graph
shows average global access times for a web-site with and without Akamai. First note that
access times are signi�cantly higher during business hours on weekdays, due to load from
high-bandwidth corporate LAN's. It is clear that hosting a site with Akamai has two distinct
advantages. First, the average overall access time is reduced: in some cases, up to 800%.
Second, web-site performance is much more consistent throughout the week.

Figure 1.5. Web Site Performance: Typical Improvements with Akamai

1-7

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

1.3.2 Akamai's Service O�erings

� FreeFlow was Akamai's original Content Delivery Service for static web objects, such
as banners and images. Like EdgeSuite, Akamai's current agship product, FreeFlow
serves content to the end user from Akamai's servers distributed at the network edge.
It works by modifying the site's original HTML code to redirect the end user to an
appropriate Akamai server, using sophisticated network algorithms that take into ac-
count congestion and network topology. The Akamai server then provides most of the
data required to download the page. This drastically reduces communication between
the end user and the content-provider's central server, thus ensuring fast downloads.

� FreeFlow Streaming uses the advantages of edge delivery to provide streaming con-
tent to viewers worldwide, with dramatic improvements in quality and reliability. For
on-demand streaming, Akamai stores copies of media broadcasts on its edge servers,
improving performance by ensuring that the streams are delivered to end-users from
servers close to them. To support live streaming, Akamai transmits multiple streams to
its network of media servers located on the edge of Web. The event is then reassembled
at the edge server, and rebroadcast directly to the end user { avoiding issues of trans-
mission quality and congestion. Akamai also uses this technology to o�er streaming
applications, such as Akamai Conference and Forum.

� Akamai Conference uses streaming media to extend the reach and functionality of
the standard conference call. It provides live audio and video streaming, and other
interactive features.

� Akamai Forum is a solution that handles the entire process of producing and broadcast-
ing streaming media events. It enables businesses to produce live, interactive webcasts.
The forum requires no special client-side software, allows live audience feedback and
participation, and provides synchronized presentation slides.

� FirstPoint is a global traÆc management service for content providers with multiple
mirror sites. FirstPoint monitors network traÆc and congestion, and connects end
users to the best mirror site using DNS. FirstPoint is designed to interoperate with
other Akamai services.

� EdgeScape allows content providers to customize their site content based on connection
bandwidth, the user's IP address, and his geographic location. For example, this
allows sites to automatically adjust their content to the bandwidth available to the
user, advertise local products and services, and eliminates the need for the user to
specify his location. The Edgescape system consists of local databases on servers
throughout the Akamai network. These servers customize the web-pages based on the
data collected about the user: again content delivery is on the edge { the servers handle
user requests directly, and only contact the content-provider's central server to update
their databases.

� Digital Parcel Service: Many providers today are concerned about putting content
online for fear of its being utilized without due payment. DPS allows only authorized

1-8

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

and paid users to access online material. It is a comprehensive digital distribution,
reporting, and rights management solution.

� Reporter & TraÆc Analyzer provide historical and real-time website usage data. These
powerful tools allow customized data mining and real-time viewing of customer traÆc.
This allows the customer to gauge the eÆcacy of their advertising and marketing
promotions, the popularity of their streaming events etc.

� Akamai Content Storage: is a service which allows customers to store �les on strategi-
cally located Akamai servers. These �les are then delivered to the end user using the
Digital Parcel Service, FreeFlow, FreeFlow Streaming etc.

� EdgeSuite is the next-generation of edge delivery service; most of Akamai's services
are packaged and incorporated into EdgeSuite. Launched in 2001, EdgeSuite provides
content assembly, delivery, and management services from the edge of the network.
It allows an edge server to assemble and serve pages from a set of variable elements,
uniquely targeting each page to the individual requesting the data. As sites become
increasingly customized and interactive, the ability to assemble webpages on the edge
of the network without having to continually refer to the central server becomes in-
creasingly important: it relieves load on the central content provider, and improves
performance for the end-user.

With earlier content delivery solutions, such as FreeFlow, all application processes took
place at the central server: the servers at the core executed applications and assembled
HTML for transmission to the end user. The speedup was gained by retrieving larger,
cumbersome objects, such as graphics and media from the edge servers.

Edge assembly content delivery solutions, in contrast, allow most of an Internet ap-
plication to be cached and served from the edge, allowing for dynamic customization,
personalization, and even faster performance. Using edge assembly, the server caches
the results of database queries, which greatly reduces load on the central servers. Con-
sider, for example, a site serving weather information. Such information can easily be
cached for up to 15 minutes without becoming obsolete. This time, after which cached
data becomes invalid and must be refreshed, is referred to as the "Time To Live".
When a user requests the weather in Boston, the content will be retrieved from the
central server and cached at the edge server that responded to his request. When an-
other user requests the weather in New York, that content will also be cached. Should
a third user now request the weather in either New York or Boston, the edge server
will not have to contact the central server, but can assemble an appropriate page and
respond directly. With many users, this technique can greatly reduce the load on the
central server. Only when the TTL has expired will the the edge server need to contact
the central database.

Like FreeFlow did, EdgeSuite improves web-site performance by serving content from
the edge of the network. Using EdgeSuite, however, far more content is assembled and
delivered from the edge, providing even better performance.

1-9

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

1.4 Technology Overview

We will provide a broad overview of how the Akamai system works. We will be considering
the details of the technology, and the issues associated with it in subsequent lectures

We begin by comparing how a site is accessed with, and without the bene�t of Akamai's
services.

1.4.1 Downloading a Website the Traditional Way

When a user requests a website such as web.mit.edu, a series of events take place behind
the browser screen. The browser must �rst resolve the IP address for web.mit.edu. This
resolution is accomplished via the Domain Name Service (DNS), which functions as the
\white pages" of the Internet. At a high level, DNS maps the familiar address web.mit.edu
to the IP address 18.7.21.77. After the DNS service returns the IP address, the browser
contacts the server at that address and requests the page. The web server returns HTML,
which itself includes embedded links to other objects such as images. The browser must then
repeat the lookup process for each embedded object, request it, and retrieve it. In practice,
browsers may open multiple simultaneous connections to retrieve entire pages { objects, such
as images, are often seen appearing on the page in the order they are retrieved.

Figure 1.6. Retrieving a web page the old way.

1. DNS lookup for www.xyz.com

2. IP address for www.xyz.com returned

3. Browser requests HTML from server at IP address 10.10.123.8

4. Server returns HTML, including embedded links

5. Browser performs DNS lookups for embedded objects

6. Browser requests embedded object from server

7. Server returns embedded object to browser

1-10

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

1.4.2 DNS Lookups the Traditional Way

The DNS lookup process itself consists of a number of steps. It is important to understand
this process because Akamai's EdgeSuite system works by modifying it.

When confronted with an address such as web.mit.edu, the browser �rst consults its
own cache to determine if it has previously resolved the name. If not, the OS, which also
maintains a cache, is consulted. If this too fails, the browser must make a connection to its
local name server and request an IP address for mit.edu.

The local nameserver maintains a record of addresses it has previously resolved. If
mit.edu is one of them (and the entry has not expired), it simply returns the local record.
Otherwise, the local name server must look to a higher authority by performing a recursive
lookup. The query may eventually reach the highest authority: a root DNS server main-
tained by InterNIC. The InterNIC server maintains a record for every registered domain
name on the web, consequently it resolves mit.edu. This resolution provides the IP address
for the DNS server for the mit.edu domain.

The local DNS server now contacts the mit.edu DNS server to obtain the resolution for
web.mit.edu. It receives an IP address, which it may store in its cache and return to the
operating system of the original machine, which passes it, �nally, back to the browser.

Figure 1.7. Doing a DNS lookup the old way.

1. Browser checks for www.xyz.com in its cache

2. Query goes to OS cache

3. Local name server is contacted

1-11

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

4. Local name server makes recursive call, eventually terminating at a root nameserver

5. Root nameserver returns IP address for xyz.com DNS server

6. Local name server contacts xyz.com DNS server

7. xyz.com DNS server returns IP address for www.xyz.com

8. IP address returned to operating system of user machine

9. IP address returned to browser, which updates its cache

10. HTML request begins

1.4.3 Downloading a Website the Akamai Way

When a user requests an Akamaized website such as www.yahoo.com, a slightly di�erent
series of events takes place. As before, the browser must �rst resolve the IP address using
DNS. In this case, however, the address DNS returns is that of an optimal Akamai server.
The browser now contacts the Akamai server to request HTML. The Akamai server assembles
the webpage, making connections to the central Yahoo! server for dynamic content such as
personalizations, if necessary. The HTML is then returned to the browser.

As before, this HTML may include links to embedded objects. The browser obtains the
IP addresses for these embedded objects: as before, the DNS service returns the addresses
for the optimal Akamai server which hosts each object. Finally, the browser retrieves the
embedded objects from the optimal servers.

Figure 1.8. Retrieving a web page the Akamai way.

1. DNS lookup for www.xyz.com

2. IP address for optimal Akamai server returned

3. Browser requests HTML from optimal Akamai server

4. Akamai server contacts central xyz.com server over the Internet if necessary

1-12

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

5. Akamai server assembles HTML and returns to browser

6. Browser resolves embedded links, obtaining IP addresses for optimal Akamai servers
hosting those objects

7. Browser retrieves objects

In the Akamai approach, there are three main issues. The DNS service must be modi�ed
to return the address of the optimal Akamai server for each particular user. Each Akamai
server must be able to connect to the central server of a given website for access to database
records and the like, but since this connection is made over the Internet in the traditional way,
the entire gamut of issues and problems discussed previously must be dealt with. Finally,
the Akamai server must assemble and deliver the page. These issues will be discussed in
turn.

1.4.4 DNS Lookups the Akamai Way

In Akamai's approach, the DNS service must return the address of the optimal Akamai server.
This requires changes to the existing DNS system. In particular, the address www.xyz.com
must not translate directly to 18.7.21.70, but rather must be aliased to an intermediate
Akamai address, for example a212.g.akamai.net, which will subsequently resolve to an
optimal server.

Let's examine the DNS lookup process under the Akamai system. The initial stages of
the lookup are exactly the same. As before, the local name server is eventually directed to
the xyz.com DNS server. This time, however, in response to its request for www.xyz.com, the
local nameserver receives an alias, which is known in DNS as a \CNAME." This alias is not
an IP address, but rather is an intermediate DNS name which will resolve to the IP address
of www.xyz.com. An example CNAME in the Akamai model would be a212.g.akamai.net.

The local nameserver is now confronted with the usual task of resolving a DNS address.
It performs its recursive DNS query on akamai.net, receiving the IP address of an Akamai
high-level DNS server. This server is contacted in order to resolve g.akamai.net. At this
point, the high-level DNS server makes basic geographic calculations to determine which IP
address should be resolved from g.akamai.net. This IP address is not the IP address of a
web server, but rather the address of a low-level Akamai DNS server. This low-level DNS
server will run a more sophisticated real-time algorithm taking into account net-congestion,
local network conditions, server load etc. and determine the optimal web server for the user.

The local name server now contacts this low-level DNS server to request the resolution of
a212.g.akamai.net and �nally receives the IP address of the optimal Akamai server hosting
the website content being requested.

1. Browser checks for www.xyz.com in its cache

2. Query goes to OS cache

3. Local name server is contacted

4. Local name server makes recursive call, eventually terminating at a root nameserver

1-13

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

Figure 1.9. Doing a DNS lookup the Akamai way

5. Root nameserver returns IP address for xyz.com DNS server

6. Local name server contacts xyz.com DNS server

7. xyz.com DNS server returns CNAME alias a212.g.akamai.net

8. Local name server make recursive call to look up akamai.net

9. Query resolves akamai.net to 15.15.125.6

10. Local name server contacts Akamai high-level DNS server at 15.15.125.6 to resolve
g.akamai.net

11. Akamai HLDNS performs geographic calculations and refers the local name server to
a geographically optimal low-level DNS server at 20.20.123.56

12. Local name server contacts Akamai low-level DNS server to request resolution of
a212.g.akamai.net

13. LLDNS returns IP address for the optimal hosting Akamai server

14. IP address returned to operating system of user machine

15. IP address returned to browser, which updates its cache

16. HTML request begins

1-14

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

1.4.5 Server Hierarchy & Time to Live

We mentioned earlier that cached DNS records expire after a certain \time to live" (TTL).
A longer TTL means fewer recursive DNS lookups, because the cache information will be
valid longer. The danger of a long TTL is that should a website's IP address change, it may
become inaccessible until the cached addresses expire.

In Akamai's system, it is only possible to have a few high level DNS (HLDNS) servers
because of InterNIC restrictions. Since all Akamai user requests must initially be handled by
these servers, they are under a lot of load. If these DNS servers had to determine the optimal
web-server for each user, taking into account real-time net conditions, they would become
swamped. Instead, the high level DNS server makes preliminary geographic calculations and
refers the user to a low level DNS (LLDNS) server, which then performs the computational
intensive tasks of determining the optimal web-server. With thousands of low level DNS
servers the load is thus well distributed.

A particular low level DNS server is likely to remain acceptable for a given user for at
least part of a day, since geographic and high-level network parameters do not vary rapidly.
Thus, when a user is directed to a particular LLDNS server, its IP address is cached for up
to an hour. This further reduces the load on the HLDNS servers.

The low level DNS servers, in contrast, must determine the optimal web-server for each
client, taking into account real-time conditions such as net congestion and server load within

a geographic region. Since these are rapidly varying, once an LLDNS server directs a client
to a particular web-server, the address is only cached for a few seconds. This ensures that
the system responds rapidly to changing conditions; every user will be mapped to his current
optimal server.

1.4.6 DNS Maps

The Akamai DNS servers are responsible for determining which server the user ends up
receiving content from. In making these decisions, the algorithms consider geographic loca-
tion, Internet congestion, system loads, server status, and user demands. The maps, created
by considering all these factors, are constantly re-calculated based on the TTL's discussed
above { every hour for the HLDNS servers and every few seconds for the LLDNS servers.

1.4.7 Edge Assembly of Dynamic Content

As discussed earlier, Akamai's EdgeSuite aims to generate dynamic content on the network

edge, instead of continually referring back to the central server. Today, Web designers con-
tinue to add dynamic content { such as news, quotes, weather, customizations etc. { to their
sites. In order to do so, they use Active Server Pages (ASP) or similar technologies that
allow rich, personalized web site content.

However, such dynamic content poses serious problems for content delivery: the strain
of delivering thousands of customized web-pages built on the y can seriously bog down the
central server { which must not only generate the content, it must also serve it. Delivering
customized webpages from the network edge is also challenging, since the database remains
at the central server. We have seen how Akamai's EdgeSuite deals with this issue by caching

1-15

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

discrete page elements called content fragments, and assembles them automatically based on
database information to form a personalized webpage for the end user.

Figure 1.10. Comparison of traditional server access versus edge assembly.

EdgeSuite accomplishes this by the use of \EdgeSide Includes" { an open markup lan-
guage pioneered by Oracle and Akamai. ESI breaks down web pages into discrete fragments,
each with its own cacheability pro�le. (In the context of our earlier example, the Boston
weather could be one such fragment, cached with a TTL of 15 minutes.) These fragments
reside on the edge servers on the Akamai networks, and are assembled into web pages at
the edge servers when requested by users. The capability to assemble dynamic pages from
individual fragments at the network edge means that only expired, or uncachable elements
need to be fetched from the central web server. In addition, the page assembly can be con-
ditional, based on end-user cookies or HTTP request headers. In essence, then, ESI avoids
having to retrieve complete pages from the central server, greatly reducing the load it must
handle.

1.4.8 Connections from Edge to Source

We discussed earlier that Akamai servers assemble pages for the end user. This process may
require information from the central server of the site being hosted: personalized information,
user preferences, etc. The Akamai server at the edge of the network thus needs to be in
contact with the site's central server. In doing so, it must deal with the entire gamut of
Internet connectivity issues we discussed earlier: net congestion, peering issues, etc.

1-16

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

How does Akamai deal with this problem? The answer lies in Routing Overlay Networks,
or \Akaroutes" as they are called within Akamai. The concept is simple: use the set of
nearly 15,000 geographically distributed Akamai servers to provide multiple alternate paths
by connecting them together.

Rather than sending data directly from the Akamai edge server to the site's central server
over the Internet, the system considers a set of multiple paths through various Akamai
servers, and choose the fastest one. For example, one way to get to site X from server
A, could be to go through servers C and D, instead of connecting directly from X to A.
Somewhat surprisingly, this indirect approach actually improves performance.

The reason for this is that the system maintains path performance data, and compares
many possible paths to �nd an optimal one. It considers congestion and traÆc, which the
Internet as a whole does not. Even though the packets from one Akamai server to the next
are sent over the Internet and are subject to the vagaries of BGP, Akamai's complex routing
algorithms ensure that the best possible hops are chosen { resulting in a fast, and reliable
connection between the edge server and its sites central server.

This overlay method serves to eliminate the peering problem caused by the refusal of a
given network to carry though traÆc on its backbone. Since all tunneling connections are
viewed as Akamai data and Akamai holds rights on all the networks it uses, those networks
cannot refuse the traÆc.

Finally, if a site's central server for some reason is completely unreachable, the Akamai
ACS service retrieves a default page from within the Akamai system. Thus, even if a site's
central server is down, users will still receive content at the web address.

1.4.9 A Note On Live Streaming

The streaming of live content such as video and audio presents its own set of challenges.
As we discussed earlier, the limitations imposed by the traditional Internet are such that
quality, reliable streaming is nearly impossible. Akamai's optimized and distributed routing
capabilities serve to improve conditions for live streaming by reducing the load on any given
server and improving the quality of the connections delivering the stream.

Akamai employs an additional mechanism to avoid problems caused by dropped packets.
Once a stream is encoded and directed into the Akamai network, it is immediately replicated
and split into a series of independent substreams. These substreams are then sent over a
number of di�erent paths to localized clusters of machines which serve the stream to their
local area. Only one copy of each substream is needed to reconstitute the entire stream, but
since multiple copies of each substream are sent to each cluster, some of them may be lost
or corrupted without preventing the local clusters from receiving the stream. This stream
distribution framework, combined with the mechanisms described earlier, makes Akamai
stream delivery signi�cantly more reliable and of a higher quality.

1.5 Technological Challenges

The construction of the Akamai system presented several distinct technological challenges to
their designers. Some of these were overcome, while others remain active areas of research.

1-17

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

We will now discuss some of these challenges.

1.5.1 Deployment & Management

For edge delivery to work, edge servers must be deployed in thousands of networks. Fur-
thermore, these servers must be geographically distributed for optimal performance and
reliability. Content must ow seamlessly from the content provider to each of these edge
servers, and the service must be capable of managing content as it traverses multiple net-
works { this requires complex algorithms, a detailed mapping of the topology of the Web
and raises complex tracking issues.

1.5.2 Mapping

When a user requests a webpage from the Akamai system, the system must decide which
server to use. This presents a number of diÆculties because of the complexity of the decision.

� One issue is simply that of scale: there are hundreds of millions of users, tens of
thousands of servers, thousands of geographic locations, and thousands of host websites,
thus algorithms must run in near linear time.

� Internet conditions must be constantly monitored and any changes must be instantly

addressed to maintain optimal performance. The problem is exacerbated because In-
ternet congestion and failures are widespread and unpredictable.

� The system must balance a load of widely varying traÆc and optimize many di�erent
resources while minimizing cost.

� The system must be resilient and capable of tolerating large numbers of competent
failures (as many as 1000 downed servers at once) while maintaining constant, reliable
service.

� Control algorithms must be distributed throughout the network and work with imper-
fect information.

� DNS responses must be given within milliseconds. This is especially important because
the Akamai system introduces a second level of DNS queries.

1.5.3 Logging, Reporting, and Billing

Another complex challenge is business-related: the logging, reporting, and billing of the more
than ten billion hits per day that the Akamai system receives. The problem is especially
complex because the data is distributed over 15,000 servers in 60 countries and must be re-
trievable in real-time for use by customers. Real-time reporting of data, real-time monitoring
of performance, and real-time SQL queries must all be supported.

Akamai maintains a Network Operating Control Center (NOCC) at its headquarters
to constantly monitor system-wide status. The original fault-reporting mechanisms were

1-18

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

relatively simple, but with the increasing number of servers on the system, more and more
complex reporting systems must be designed.

1.5.4 Operations

Yet another issue is that the huge, distributed Akamai system must always be up and
running. It cannot be taken o�ine even for maintenance, and indeed must be capable of
taking software upgrades \on the y." Furthermore, the system must be secure against
malicious attacks as well as buggy third-party software.

The diÆculty of doing this is illustrated by the example of a Malaysian router which
exercised an obscure bug in the Linux operating system, causing several Akamai servers to
crash.

1.5.5 Content Freshness and Accuracy

Akamai commits to providing up-to-date content at all times. Stale content must never be
served. The system must provide a way to quickly undo customer errors and refresh content.
Finally, the system must provide for exibility and relative ease of customer control over
content. This is a double-edged sword, because at the same time Akamai must protect itself
from customer errors, not allowing them to propagate through the system.

1.5.6 Management of Live Streaming and Webcasting

As webcasting and live streaming become increasingly important, the system should provide
specialized options to manage them. It should be capable of utilizing and spreading infor-
mation to intelligently handle packet loss. The system should optimize connection speed
by constantly choosing the best path from a set of possibilities. Communication must be
two-way, as interactive messaging and Q & A sessions are often desired by the customer.
Data aggregation and polling are also necessary, as is the correctly synchronized delivery of
audio, video, and slides together.

1.6 The Internet is a Triumph of Theory

We have seen an Akamai Forum presentation streamed through a Virtual Private Network
(VPN) to a laptop in the classroom. Behind this technology lie a number of important
algorithms. It is instructive to enumerate some of them: by doing so we realize how much
impact theoretical research has had on the Web today.

1. Network Algorithms

Ethernet: Carrier-sense multiple access

TCP: Exponential backo�

IP: Address hierarchy

1-19

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

Minimum Spanning Tree: Used by switches to prevent cycles in LAN's

BGP: Used for routing on the Internet

2. VPN Point-to-Point Tunneling Protocol (PPTP)

Encryption and Password Hashing: Provides privacy

Authentication: Con�rms identity

3. Encoding & Decoding

Codec: Encodes video and audio streams

Compression: Reduces bandwidth consumption

Error Correcting Codes: Improves reliability

Rendering: Displays the content on screen

4. Akamai

Selection of Best Server: Requires complex optimization

Billing & Reporting: Requires real-time access to distributed data

Et Cetera

1.7 Problem of the Day { Cost Optimization

An important research issue for Akamai in terms of pro�tability is cost optimization. The
task is to connect each user to an appropriate server, while minimizing overall costs. Each
user has a set of acceptable servers that he can be directed to, and each server has a cost
associated with utilizing it.

Consider the following stylized problem: there are about a million sources of load and
thousands of sinks. Each source has a set of acceptable sinks. There is also a cost per unit
load associated with each sink. The problem is to sink all the loads while minimizing cost.

The simple solution is a greedy algorithm. For each source, choose the cheapest acceptable
sink. This guarantees that all loads will be satis�ed with minimum total cost. In our example
above, the cheapest sinks for both colored sources have cost $1. Thus the total cost is
20 � $1 + 10 � $1 = $30.

But now consider a more complex variant of the problem. Suppose that there are
economies of scale: the cost of using a sink decreases per unit of load. Since the load
here, in reality, is bandwidth, this is a more realistic assumption. The greedy algorithm we
discussed before no longer works in this case, as illustrated by the following example.

1-20

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

10 units

20 units

$1/unit load

$1/unit load

$2/unit load

SinksSources of Load
(~ 1M)

$2/unit load

$5/unit load

Figure 1.11. Simple Example

SinksSources of Load

1 unit

$1, $1

$1.01, $0

$1, $1
1 unit

Figure 1.12. Greedy Algorithm Fails

1-21

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

The cost here is two stage. The central sink has a cost of $1.01 for the �rst unit, and is
free for every unit thereafter. The other sinks cost $1 for all units. We see that the greedy
algorithm selects the sinks having cost $1 for both sources, as before. This results in a total
cost of $2. However, a cost of only $1.01 can be achieved by assigning both sources to the
center sink.

Can a feasible optimal algorithm be found to solve this cost minimization? The answer,
unfortunately, is no. This problem is NP-hard, and is reducible to a k-vertex cover problem.
A conceptual outline of the reduction is presented below.

1.7.1 The Vertex Cover Problem

Consider the graph in Figure 1.13 below. The vertices marked B and D in the �gure have
the property that they together touch all the edges in the graph. From these two vertices
any other node in the graph can be reached directly. This graph is said to have a 2�vertex
covering. The k�vertex cover problem is that of determining whether a given graph has a
set of at most k vertices such that all edges in the graph touch a vertex in the set. This
problem is known to be NP-complete.

1

2
3

4

B
D

A
C

E

Figure 1.13. Example Graph

1.7.2 Reduction Outline

The cost minimization problem can be reduced to the k�vertex cover problem in the fol-
lowing manner. Assume we have an algorithm A which, when given an instance of the cost
optimization problem, returns the optimal solution in polynomial time. We will show that
if this were true, then we could also solve the k�vertex covering problem - which is NP hard
- in polynomial time.

We reduce the k�vertex cover problem for a graph G to the cost optimization problem
as follows:

1. Create a set of sources corresponding to each edge in G.

2. Create a set of sinks corresponding to each vertex in G.

1-22

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

3. For every sink x, add an edge to source y if and only if the vertex corresponding to x
in G touches the edge corresponding to y in G.2

4. Set the amount of load produced by each source to 1 unit.

5. Set the cost of each sink to be $1 for the �rst unit of load, and $0 thereafter.

Call this new graph H. H is clearly an example of the cost optimization problem as we have
described it.

An example of this transformation is diagrammed in Figure 1.14 below for the example
graph shown earlier.

D

E

1

2

3

4

C

B

A

Sources
of Load Sinks

($1, $0, $0...)

1

2
3

4

B
D

A
C

E

(1 unit)

Figure 1.14. Example Reduction

Recall that the cost of using a sink in H is $1 for the �rst unit, and $0 thereafter. Thus
it is locally optimal to direct all the load from a source to a single sink, without loss of
generality. Suppose a source has its �rst unit of load directed to sink A. Then all other
load coming from that source can be directed to A with total additional cost 0, preserving
a locally optimal solution.

Observe that if H can be solved with cost $k, then all the sources of H must be assigned
to exactly k sinks. To see this, note that each sink used costs $1 { regardless of how much
load is assigned to it. Therefore, if H can be solved using $k, then k sinks must have been
used.

By de�nition of the cost optimization problem, all sources of load must be assigned a
sink in order to form a solution. We have found that k sinks are suÆcient to handle all the
load in H. Thus, these k sinks must be connected to every source in H.

2The \acceptable set" of sinks for a source is represented here by the sinks connected to that source by
edges.

1-23

MIT 18.996 Lecture 1 | February 6, 2002 Spring 2002

Recall that each sink in H corresponds to a vertex in G while each source corresponds
to an edge. But, if k sinks are connected to every source in H, this means that k vertices in
G are connected to every edge in G { which means that G has a k�vertex cover!.

Thus, we can de�ne an algorithm B, which when given an instance G of the k�vertex
cover problem, constructs the corresponding cost-optimization problem using steps 1 � 5
above, applies A to obtain a solution, and checks to see if k or less sinks are used. If so, B
knows that G has a k�vertex cover. But if A runs in polynomial time, then so does B. Since
the vertex cover problem is NP-hard, no such (known) algorithm A exists. This completes
the reduction3.

3The reverse reduction is relatively obvious. If G has a k-vertex cover, this means that there is a set of k
vertices connected to every edge in G. Correspondingly, this means that there is a set of k sinks connected
to every source in H . Since each sink costs $1 to use regardless of the load it handles, there is a solution to
H with cost $k.

1-24

Bibliography

[1] Akamai Whitepaper: \Internet Bottlenecks: the Case for Edge Delivery Services."
2000, Cambridge, MA. Available URL: http://www.akamai.com/en/html/services/
white paper library.html

[2] Janiga, M; Dibner, G. & Governali. F. \Akamai & Internet Infrastructure: Content
Delivery. " 2001, Goldman Sachs Equity Research.

[3] Leighton, Tom. Presentation: \The Challenges of Delivering Content on the Internet."
2002, Cambridge, MA.

25

