
𝑓 𝑥

𝑥 𝑥 + 𝛿𝑥

𝑓 𝑥 + 𝛿𝑥

𝛿𝑥

𝛿𝑓 slope 𝑓! 𝑥small change
in “output”

small change
in “input”

linear	term higher-order
terms

δ𝑓 = 𝑓 𝑥 + 𝛿𝑥 − 𝑓 𝑥 = 𝑓! 𝑥 𝛿𝑥	 + 	 𝑜(𝛿𝑥)

Figure 1: The essence of a derivative is linearization: predicting a small change δf in the output f(x) from a small
change δx in the input x, to first order in δx.

2 Derivatives as Linear Operators
We are now going to revisit the notion of a derivative in a way that we can generalize to higher-order arrays and
other vector spaces. We will get into more detail on differentiation as a linear operator, and in particular, will dive
deeper into some of the facts we have stated thus far.

2.1 Revisiting single-variable calculus
In a first-semester single-variable calculus course (like 18.01 at MIT), the derivative f ′(x) is introduced as the slope
of the tangent line at the point (x, f(x)), which can also be viewed as a linear approximation of f near x. In
particular, as depicted in Fig. 1, this is equivalent to a prediction of the change δf in the “output” of f(x) from a
small change δx in the “input” to first order (linear) in δx:

δf = f(x+ δx)− f(x) = f ′(x) δx+ (higher-order terms)︸ ︷︷ ︸
o(δx)

.

We can more precisely express these higher-order terms using asymptotic “little-o” notation “o(δx)”, which denotes
any function whose magnitude shrinks much faster than |δx| as δx → 0, so that for sufficiently small δx it is
negligible compared to the linear f ′(x) δx term. (Variants of this notation are commonly used in computer science,
and there is a formal definition that we omit here.1) Examples of such higher-order terms include (δx)2, (δx)3,
(δx)1.001, and (δx)/ log(δx).

Remark 6. Here, δx is not an infinitesimal but rather a small number. Note that our symbol “δ” (a Greek
lowercase “delta”) is not the same as the symbol “∂” commonly used to denote partial derivatives.

This notion of a derivative may remind you of the first two terms in a Taylor series f(x+δx) = f(x)+f ′(x) δx+· · ·
(though in fact it is much more basic than Taylor series!), and the notation will generalize nicely to higher dimensions

1Briefly, a function g(δx) is o(δx) if limδx→0
∥g(δx)∥
∥δx∥ = 0. We will return to this subject in Section 5.2.

9

and other vector spaces. In differential notation, we can express the same idea as:

df = f(x+ dx)− f(x) = f ′(x) dx.

In this notation we implicitly drop the o(δx) term that vanishes in the limit as δx becomes infinitesimally small.
We will use this as the more generalized definition of a derivative. In this formulation, we avoid dividing by dx,

because soon we will allow x (and hence dx) to be something other than a number—if dx is a vector, we won’t be
able to divide by it!

2.2 Linear operators
From the perspective of linear algebra, given a function f , we consider the derivative of f , to be the linear operator
f ′(x) such that

df = f(x+ dx)− f(x) = f ′(x)[dx].

As above, you should think of the differential notation dx as representing an arbitrary small change in x, where
we are implicitly dropping any o(dx) terms, i.e. terms that decay faster than linearly as dx → 0. Often, we will
omit the square brackets and write simply f ′(x)dx instead of f ′(x)[dx], but this should be understood as the linear
operator f ′(x) acting on dx—don’t write dx f ′(x), which will generally be nonsense!

This definition will allow us to extend differentiation to arbitrary vector spaces of inputs x and outputs f(x).
(More technically, we will require vector spaces with a norm ∥x∥, called “Banach spaces,” in order to precisely
define the o(δx) terms that are dropped. We will come back to the subject of Banach spaces later.)

Recall 7 (Vector Space)

Loosely, a vector space (over R) is a set of elements in which addition and subtraction between elements is
defined, along with multiplication by real scalars. For instance, while it does not make sense to multiply
arbitrary vectors in Rn, we can certainly add them together, and we can certainly scale the vectors by a
constant factor.

Some examples of vector spaces include:

• Rn, as described in the above. More generally, Rn×m, the space of n×m matrices with real entries. Notice
again that, if n ̸= m, then multiplication between elements is not defined.

• C0(Rn), the set of continuous functions over Rn, with addition defined pointwise.

Recall 8 (Linear Operator)

Recall that a linear operator is a map L from a vector v in vector space V to a vector L[v] (sometimes denoted
simply Lv) in some other vector space. Specifically, L is linear if

L[v1 + v2] = Lv1 + Lv2 and L[αv] = αL[v]

for scalars α ∈ R.
Remark : In this course, f ′ is a map that takes in an x and spits out a linear operator f ′(x) (the derivative

of f at x). Furthermore, f ′(x) is a linear map that takes in an input direction v and gives an output vector
f ′(x)[v] (which we will later interpret as a directional derivative, see Sec. 2.2.1). When the direction v is an
infinitesimal dx, the output f ′(x)[dx] = df is the differential of f (the corresponding infinitesimal change in
f).

10

Notation 9 (Derivative operators and notations)

There are multiple notations for derivatives in common use, along with multiple related concepts of derivative,
differentiation, and differentials. In the table below, we summarize several of these notations, and put boxes

around the notations adopted for this course:

name notations remark

derivative f ′ , also df
dx , Df , fx, ∂xf , . . .

linear operator f ′(x) that maps a small
change dx in the input to a small change
df = f ′(x)[dx] in the output

In single-variable calculus, this linear operator
can be represented by a single number, the
“slope,” e.g. if f(x) = sin(x) then f ′(x) =

cos(x) is the number that we multiply by dx to
get dy = cos(x)dx. In multi-variable calculus,
the linear operator f ′(x) can be represented
by a matrix, the Jacobian J (see Sec. 3), so
that df = f ′(x)[dx] = J dx. But we will see
that it is not always convenient to express f ′

as a matrix, even if we can.

differentiation ′ , d
dx , D, . . .

linear operator that maps a function f to its
derivative f ′

difference δx and δf = f(x+ δx)− f(x)

small (but not infinitesimal) change in the in-
put x and output f (depending implicitly on x

and δx), respectively: an element of a vector
space, not a linear operator

differential dx and df = f(x+ dx)− f(x)

arbitrarily small (“infinitesimal”a — we drop
higher-order terms) change in the input x and
output f , respectively: an element of a vector
space, not a linear operator

gradient ∇f

the vector whose inner product df = ⟨∇f, dx⟩
with a small change dx in the input gives the
small change df in the output. The “transpose
of the derivative.” (See Sec. 2.3.)

partial
derivative

∂f

∂x
, fx, ∂xf

linear operator that maps a small change dx in
a single argument of a multi-argument func-
tion to the corresponding change in output,
e.g. for f(x, y) we have df = ∂f

∂x [dx] +
∂f
∂y [dy].

aInformally, one can think of the vector space of infinitesimals dx as living in the same space as x (understood as a small change
in a vector, but still a vector nonetheless). Formally, one can define a distinct “vector space of infinitesimals” in various ways,
e.g. as a cotangent space in differential geometry, though we won’t go into more detail here.

11

Some examples of linear operators include

• Multiplication by scalars α, i.e. Lv = αv. Also multiplication of column vectors v by matrices A, i.e. Lv = Av.

• Some functions like f(x) = x2 are obviously nonlinear. But what about f(x) = x+ 1? This may look linear
if you plot it, but it is not a linear operation, because f(2x) = 2x + 1 ̸= 2f(x)—such functions, which are
linear plus a nonzero constant, are known as affine.

• There are also many other examples of linear operations that are not so convenient or easy to write down as
matrix–vector products. For example, if A is a 3× 3 matrix, then L[A] = AB+CA is a linear operator given
3× 3 matrices B,C. The transpose f(x) = xT of a column vector x is linear, but is not given by any matrix
multiplied by x. Or, if we consider vector spaces of functions, then the calculus operations of differentiation
and integration are linear operators too!

2.2.1 Directional derivatives

There is an equivalent way to interpret this linear-operator viewpoint of a derivative, which you may have seen
before in multivariable calculus: as a directional derivative.

If we have a function f(x) of arbitrary vectors x, then the directional derivative at x in a direction (vector) v

is defined as:
∂

∂α
f(x+ αv)

∣∣∣∣
α=0

= lim
δα→0

f(x+ δα v)− f(x)

δα
(1)

where α is a scalar. This transforms derivatives back into single-variable calculus from arbitrary vector spaces. It
measures the rate of change of f in the direction v from x. But it turns out that this has a very simple relationship
to our linear operator f ′(x) from above, because (dropping higher-order terms due to the limit δα→ 0):

f(x+ dα v︸︷︷︸
dx

)− f(x) = f ′(x)[dx] = dα f ′(x)[v] ,

where we have factored out the scalar dα in the last step thanks to f ′(x) being a linear operator. Comparing with
above, we immediately find that the directional derivative is:

∂

∂α
f(x+ αv)

∣∣∣∣
α=0

= f ′(x)[v] . (2)

It is exactly equivalent to our f ′(x) from before! (We can also see this as an instance of the chain rule from Sec. 2.5.)
One lesson from this viewpoint is that it is perfectly reasonable to input an arbitrary non-infinitesimal vector v

into f ′(x)[v]: the result is not a df , but is simply a directional derivative.

2.3 Revisiting multivariable calculus, Part 1: Scalar-valued functions
Let f be a scalar-valued function, which takes in “column” vectors x ∈ Rn and produces a scalar (in R). Then,

df = f(x+ dx)− f(x) = f ′(x)[dx] = scalar.

Therefore, since dx is a column vector (in an arbitrary direction, representing an arbitrary small change in x),
the linear operator f ′(x) that produces a scalar df must be a row vector (a “1-row matrix”, or more formally
something called a covector or “dual” vector or “linear form”)! We call this row vector the transpose of the gradient

12

x1

x2

contours of f(x)

maximum

x

f

Figure 2: For a real-valued f(x), the gradient ∇f is defined so that it corresponds to the “uphill” direction at a
point x, which is perpendicular to the contours of f . Although this may not point exactly towards the nearest
local maximum of f (unless the contours are circular), “going uphill” is nevertheless the starting point for many
computational-optimization algorithms to search for a maximum.

(∇f)T , so that df is the dot (“inner”) product of dx with the gradient. So we have that

df = ∇f · dx = (∇f)T︸ ︷︷ ︸
f ′(x)

dx where dx =

dx1

dx2

...

dxn.

 .

Some authors view the gradient as a row vector (equating it with f ′ or the Jacobian), but treating it as a “column
vector” (the transpose of f ′), as we do in this course, is a common and useful choice. As a column vector, the
gradient can be viewed as the “uphill” (steepest-ascent) direction in the x space, as depicted in Fig. 2. Furthermore,
it is also easier to generalize to scalar functions of other vector spaces. In any case, for this class, we will always
define ∇f to have the same “shape” as x, so that df is a dot product (“inner product”) of dx with the gradient.

This is perfectly consistent with the viewpoint of the gradient that you may remember from multivariable
calculus, in which the gradient was a vector of components

∇f =

∂f
∂x1
∂f
∂x2

...
∂f
∂xn

 ;

or, equivalently,

df = f(x+ dx)− f(x) = ∇f · dx =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+

∂f

∂xn
dxn .

While a component-wise viewpoint may sometimes be convenient, we want to encourage you to view the vector x as a
whole, not simply a collection of components, and to learn that it is often more convenient and elegant to differentiate
expressions without taking the derivative component-by-component, a new approach that will generalize better to
more complicated inputs/output vector spaces.

Let’s look at an example to see how we compute this differential.

13

Example 10
Consider f(x) = xTAx where x ∈ Rn and A is a square n× n matrix, and thus f(x) ∈ R. Compute df , f ′(x),
and ∇f .

We can do this directly from the definition.

df = f(x+ dx)− f(x)

= (x+ dx)TA(x+ dx)− xTAx

=���xTAx+ dxT Ax+ xTAdx+�����:higher order
dxT Adx−���xTAx

= xT (A+AT)︸ ︷︷ ︸
f ′(x)=(∇f)T

dx =⇒ ∇f = (A+AT)x .

Here, we dropped terms with more than one dx factor as these are asymptotically negligible. Another trick
was to combine dxTAx and xTAdx by realizing that these are scalars and hence equal to their own transpose:
dxTAx = (dxTAx)T = xTAT dx. Hence, we have found that f ′(x) = xT (A + AT) = (∇f)T , or equivalently
∇f = [xT (A+AT)]T = (A+AT)x.

It is, of course, also possible to compute the same gradient component-by-component, the way you probably
learned to do in multivariable calculus. First, you would need to write f(x) explicitly in terms of the components
of x, as f(x) = xTAx =

∑
i,j xiAi,jxj . Then, you would compute ∂f/∂xk for each k, taking care that x appears

twice in the f summation. However, this approach is awkward, error-prone, labor-intensive, and quickly becomes
worse as we move on to more complicated functions. It is much better, we feel, to get used to treating vectors and
matrices as a whole, not as mere collections of numbers.

2.4 Revisiting multivariable calculus, Part 2: Vector-valued functions
Next time, we will revisit multi-variable calculus (18.02 at MIT) again in a Part 2, where now f will be a vector-
valued function, taking in vectors x ∈ Rn and giving vector outputs f(x) ∈ Rm. Then, df will be a m-component
column vector, dx will be an n-component column vector, and we must get a linear operator f ′(x) satisfying

df︸︷︷︸
m components

= f ′(x)︸ ︷︷ ︸
m×n

dx︸︷︷︸
n components

,

so f ′(x) must be an m× n matrix called the Jacobian of f !
The Jacobian matrix J represents the linear operator that takes dx to df :

df = Jdx .

The matrix J has entries Jij =
∂fi
∂xj

(corresponding to the i-th row and the j-th column of J).
So now, suppose that f : R2 → R2. Let’s understand how we would compute the differential of f :

df =

(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)(
dx1

dx2

)
=

(
∂f1
∂x1

dx1 +
∂f1
∂x2

dx2

∂f2
∂x1

dx1 +
∂f2
∂x2

dx2

)
.

Let’s compute an example.

14

Example 11
Consider the function f(x) = Ax where A is a constant m× n matrix. Then, by applying the distributive law
for matrix–vector products, we have

df = f(x+ dx)− f(x) = A(x+ dx)−Ax

=��Ax+Adx−��Ax = Adx = f ′(x)dx.

Therefore, f ′(x) = A.

Notice then that the linear operator A is its own Jacobian matrix!
Let’s now consider some derivative rules.

• Sum Rule: Given f(x) = g(x) + h(x), we get that

df = dg + dh =⇒ f ′(x)dx = g′(x)dx+ h′(x)dx.

Hence, f ′ = g′ + h′ as we should expect. This is the linear operator f ′(x)[v] = g′(x)[v] + h′(x)[v], and note
that we can sum linear operators (like g′ and h′) just like we can sum matrices! In this way, linear operators
form a vector space.

• Product Rule: Suppose f(x) = g(x)h(x). Then,

df = f(x+ dx)− f(x)

= g(x+ dx)h(x+ dx)− g(x)h(x)

= (g(x) + g′(x)dx︸ ︷︷ ︸
dg

)(h(x) + h′(x)dx︸ ︷︷ ︸
dh

)− g(x)h(x)

= gh+ dg h+ g dh+���:0
dg dh− gh

= dg h+ g dh ,

where the dg dh term is higher-order and hence dropped in infinitesimal notation. Note, as usual, that dg

and h may not commute now as they may no longer be scalars!

Let’s look at some short examples of how we can apply the product rule nicely.

Example 12
Let f(x) = Ax (mapping Rn → Rm) where A is a constant m× n matrix. Then,

df = d(Ax) =��*0
dAx+Adx = Adx =⇒ f ′(x) = A.

We have dA = 0 here because A does not change when we change x.

15

Example 13
Let f(x) = xTAx (mapping Rn → R). Then,

df = dxT (Ax) + xT d(Ax) = dxT Ax︸ ︷︷ ︸
= xTAT dx

+xTAdx = xT (A+AT)dx = (∇f)T dx ,

and hence f ′(x) = xT (A+AT). (In the common case where A is symmetric, this simplifies to f ′(x) = 2xTA.)
Note that here we have applied Example 12 in computing d(Ax) = Adx. Furthermore, f is a scalar valued
function, so we may also obtain the gradient ∇f = (A + AT)x as before (which simplifies to 2Ax if A is
symmetric).

Example 14 (Elementwise Products)

Given x, y ∈ Rm, define

x .∗ y =

x1y1
...

xmym

 =

x1

x2

. . .

xm

︸ ︷︷ ︸

diag(x)

y1
...

ym

 ,

the element-wise product of vectors (also called the Hadamard product), where for convenience below we also
define diag(x) as the m×m diagonal matrix with x on the diagonal. Then, given A ∈ Rm,n, define f : Rn → Rm

via
f(x) = A(x .∗ x).

As an exercise, one can verify the following:

(a) x .∗ y = y .∗ x,

(b) A(x .∗ y) = Adiag(x) y.

(c) d(x .∗ y) = (dx) .∗ y + x .∗ (dy). So if we take y to be a constant and define g(x) = y .∗ x, its Jacobian
matrix is diag(y).

(d) df = A(2x .∗ dx) = 2A diag(x) dx = f ′(x)[dx], so the Jacobian matrix is J = 2Adiag(x).

(e) Notice that the directional derivative (Sec. 2.2.1) of f at x in the direction v is simply given by f ′(x)[v] =

2A(x .∗ v). One could also check numerically for some arbitrary A, x, v that f(x + 10−8v) − f(x) ≈
10−8(2A(x .∗ v)).

2.5 The Chain Rule
One of the most important rules from differential calculus is the chain rule, because it allows us to differentiate
complicated functions built out of compositions of simpler functions. This chain rule can also be generalized to our
differential notation in order to work for functions on arbitrary vector spaces:

16

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

• Chain Rule: Let f(x) = g(h(x)). Then,

df = f(x+ dx)− f(x) = g(h(x+ dx))− g(h(x))

= g′(h(x))[h(x+ dx)− h(x)]

= g′(h(x))[h′(x)[dx]]

= g′(h(x))h′(x)[dx]

where g′(h(x))h′(x) is a composition of g′ and h′ as matrices.

In other words, f ′(x) = g′(h(x))h′(x): the Jacobian (linear operator) f ′ is simply the product (composition)
of the Jacobians, g′h′. Ordering matters because linear operators do not generally commute: left-to-right =
outputs-to-inputs.

Let’s look more carefully at the shapes of these Jacobian matrices in an example where each function maps a
column vector to a column vector:

Example 15
Let x ∈ Rn, h(x) ∈ Rp, and g(h(x)) ∈ Rm. Then, let f(x) = g(h(x)) mapping from Rn to Rm. The chain rule
then states that

f ′(x) = g′(h(x))h′(x),

which makes sense as g′ is an m× p matrix and h′ is a p×n matrix, so that the product gives an m×n matrix
f ′! However, notice that this is not the same as h′(x)g′(h(x)) as you cannot (if n ̸= m) multiply a p×n and an
m× p matrix together, and even if n = m you will get the wrong answer since they probably won’t commute.

Not only does the order of the multiplication matter, but the associativity of matrix multiplication matters
practically. Let’s consider a function

f(x) = a(b(c(x)))

where c : Rn → Rp, b : Rp → Rq, and a : Rq → Rm. Then, we have that, by the chain rule,

f ′(x) = a′(b(c(x)))b′(c(x))c′(x).

Notice that this is the same as
f ′ = (a′b′)c′ = a′(b′c′)

by associativity (omitting the function arguments for brevity). The left-hand side is multiplication from left to
right, and the right-hand side is multiplication from right to left.

But who cares? Well it turns out that associativity is deeply important. So important that the two orderings
have names: multiplying left-to-right is called “reverse mode” and multiplying right-to-left is called “forward mode”
in the field of automatic differentiation (AD). Reverse-mode differentation is also known as an “adjoint method” or
“backpropagation” in some contexts, which we will explore in more detail later. Why does this matter? Let’s think
about the computational cost of matrix multiplication.

2.5.1 Cost of Matrix Multiplication

If you multiply a m× q matrix by a q× p matrix, you normally do it by computing mp dot products of length q (or
some equivalent re-ordering of these operations). To do a dot product of length q requires q multiplications and
q− 1 additions of scalars. Overall, this is approximately 2mpq scalar operations in total. In computer science, you
would write that this is “Θ(mpq)”: the computational effort is asymptotically proportional to mpq for large m, p, q.

17

matrix matrix×row matrix ×

matrix matrix×row matrix ×=

fast!

slow!

Figure 3: Matrix multiplication is associative—that is, (AB)C = A(BC) for all A,B,C—but multiplying left-to-
right can be much more efficient than right-to-left if the leftmost matrix has only one (or few) rows, as shown here.
Correspondingly, the order in which you carry out the chain rule has dramatic consequences for the computational
effort required. Left-to-right is known as “reverse mode” or “backpropagation”, and is best suited to situations
where there are many fewer outputs than inputs.

So why does the order of the chain rule matter? Consider the following two examples.

Example 16
Suppose you have a lot of inputs n ≫ 1, and only one output m = 1, with lots of intermediate values, i.e.
q = p = n. Then reverse mode (left-to-right) will cost Θ(n2) scalar operations while forward mode (right-to-left)
would cost Θ(n3)! This is a huge cost difference, depicted schematically in Fig. 3.

Conversely, suppose you have a lot of outputs m ≫ 1 and only one input n = 1, with lots of intermediate
values q = p = m. Then reverse mode would cost Θ(m3) operations but forward mode would be only Θ(m2)!

Moral: If you have a lot of inputs and few outputs (the usual case in machine learning and optimization),
compute the chain rule left-to-right (reverse mode). If you have a lot of outputs and few inputs, compute the
chain rule right-to-left (forward mode). We return to this in Sec. 8.4.

2.6 Beyond Multi-Variable Derivatives
Now let’s compute some derivatives that go beyond first-year calculus, where the inputs and outputs are in more
general vector spaces. For instance, consider the following examples:

18

Example 17
Let A be an n× n matrix. You could have the following matrix-valued functions. For example:

• f(A) = A3,

• f(A) = A−1 if A is invertible,

• or U , where U is the resulting matrix after applying Gaussian elimination to A!

You could also have scalar outputs. For example:

• f(A) = detA,

• f(A) = trace A,

• or f(A) = σ1(A), the largest singular value of A.

Let’s focus on two simpler examples for this lecture.

Example 18
Let f(A) = A3 where A is a square matrix. Compute df .

Here, we apply the chain rule one step at a time:

df = dAA2 +AdAA+A2 dA = f ′(A)[dA].

Notice that this is not equal to 3A2 (unless dA and A commute, which won’t generally be true since dA represents
an arbitrary small change in A). The right-hand side is a linear operator f ′(A) acting on dA, but it is not so easy
to interpret it as simply a single “Jacobian” matrix multiplying dA!

Example 19
Let f(A) = A−1 where A is a square invertible matrix. Compute df = d(A−1).

Here, we use a slight trick. Notice that AA−1 = I, the identity matrix. Thus, we can compute the differential
using the product rule (noting that d I = 0, since changing A does not change I) so

d(AA−1) = dAA−1 +Ad(A−1) = d(I) = 0 =⇒ d(A−1) = −A−1 dAA−1.

19

MIT OpenCourseWare
https://ocw.mit.edu

18.S096 Matrix Calculus for Machine Learning and Beyond
Independent Activities Period (IAP) 2023��

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	cover.pdf
	Blank Page

