
4 Finite-Difference Approximations
In this section, we will be referring to this Julia notebook for calculations that are not included here.

4.1 Why compute derivatives approximately instead of exactly?
Working out derivatives by hand is a notoriously error-prone procedure for complicated functions. Even if every
individual step is straightforward, there are so many opportunities to make a mistake, either in the derivation
or in its implementation on a computer. Whenever you implement a derivatives, you should always double-
check for mistakes by comparing it to an independent calculation. The simplest such check is a finite-difference
approximation, in which we estimate the derivative(s) by comparing f(x) and f(x + δx) for one or more “finite”
(non-infinitesimal) perturbations δx.

There are many finite-difference techniques at varying levels of sophistication, as we will discuss below. They
all incur an intrinsic truncation error due to the fact that δx is not infinitesimal. (And we will also see that you
can’t make δx too small, either, or roundoff errors start exploding!) Moreover, finite differences become expensive
for higher-dimensional x (in which you need a separate finite difference for each input dimension to compute the full
Jacobian). This makes them an approach of last resort for computing derivatives accurately. On the other hand,
they are the first method you generally employ in order to check derivatives: if you have a bug in your analytical
derivative calculation, usually the answer is completely wrong, so even a crude finite-difference approximation for
a single small δx (chosen at random in higher dimensions) will typically reveal the problem.

Another alternative is automatic differentiation (AD), software/compilers perform analytical derivatives for
you. This is extremely reliable and, with modern AD software, can be very efficient. Unfortunately, there is still
lots of code, e.g. code calling external libraries in other languages, that AD tools can’t comprehend. And there are
other cases where AD is inefficient, typically because it misses some mathematical structure of the problem. Even
in such cases, you can often fix AD by defining the derivative of one small piece of your program by hand,2 which
is much easier than differentiating the whole thing. In such cases, you still will typically want a finite-difference
check to ensure that you have not made a mistake.

It turns out that finite-difference approximations are a surprisingly complicated subject, with rich connections
to many areas of numerical analysis; in this lecture we will just scratch the surface.

4.2 Finite-Difference Approximations: Easy Version
The simplest way to check a derivative is to recall that the definition of a differential:

df = f(x+ dx)− f(x) = f ′(x)dx

came from dropping higher-order terms from a small but finite difference:

δf = f(x+ δx)− f(x) = f ′(x)δx+ o(∥δx∥) .

So, we can just compare the finite difference f(x+ δx)− f(x) to our (directional) derivative operator
f ′(x)δx (i.e. the derivative in the direction δx). f(x+δx)−f(x) is also called a forward difference approximation.
The antonym of a forward difference is a backward difference approximation f(x)− f(x− δx) ≈ f ′(x)δx. If you
just want to compute a derivative, there is not much practical distinction between forward and backward differences.

2In some Julia AD software, this is done with by defining a “ChainRule”, and in Python autograd/JAX it is done by defining a
custom “vJp” (row-vector—Jacobian product) and/or “Jvp” (Jacobian–vector product).

29

https://github.com/mitmath/matrixcalc/blob/main/notes/Finite%20difference%20checks.ipynb
https://github.com/JuliaDiff/ChainRulesCore.jl

The distinction becomes more important when discretizing (approximating) differential equations. We’ll look at
other possibilities below.

Remark 29. Note that this definition of forward and backward difference is not the same as forward- and backward-
mode differentiation—these are unrelated concepts.

If x is a scalar, we can also divide both sides by δx to get an approximation for f ′(x) instead of for df :

f ′(x) ≈ f(x+ δx)− f(x)

δx
+ (higher-order corrections) .

This is a more common way to write the forward-difference approximation, but it only works for scalar x, whereas
in this class we want to think of x as perhaps belonging to some other vector space.

Finite-difference approximations come in many forms, but they are generally a last resort in cases where it’s
too much effort to work out an analytical derivative and AD fails. But they are also useful to check your analytical
derivatives and to quickly explore.

4.3 Example: Matrix squaring
Let’s try the finite-difference approximation for the square function f(A) = A2, where here A is a square matrix in
Rm,m. By hand, we obtain the product rule

df = AdA+ dAA,

i.e. f ′(A) is the linear operator f ′(A)[δA] = AδA+ δAA. This is not equal to 2AδA because in general A and
δA do not commute. So let’s check this difference against a finite difference. We’ll try it for a random input A and
a random small perturbation δA.

Using a random matrix A, let dA = A · 10−8. Then, you can compare f(A + dA) − f(A) to AdA + dAA. If
the matrix you chose was really random, you would get that the approximation minus the exact equality from the
product rule has entries with order of magnitude around 10−16! However, compared to 2AdA, you’d obtain entries
of order 10−8.

To be more quantitative, we might compute that "norm" ∥approx − exact∥ which we want to be small. But
small compared to what? The natural answer is small compared to the correct answer. This is called the
relative error (or "fractional error") and is computed via

relative error =
∥approx− exact∥

∥exact∥
.

Here, ∥·∥ is a norm, like the length of a vector. This allows us to understand the size of the error in the finite
difference approximation, i.e. it allows us to answer how accurate this approximation is (recall Sec. 4.1).

So, as above, you can compute that the relative error between the approximation and the exact answer is about
10−8, where as the relative error between 2AdA and the exact answer is about 100. This shows that our exact
answer is likely correct! Getting a good match up between a random input and small displacement isn’t a proof of
correctness of course, but it is always a good thing to check. This kind of randomized comparison will almost always
catch major bugs where you have calculated the symbolic derivative incorrectly, like in our 2AdA example.

30

https://en.wikipedia.org/wiki/Approximation_error
https://en.wikipedia.org/wiki/Norm_(mathematics)

Figure 4: Forward-difference accuracy for f(A) = A2, showing the relative error in δf = f(A+ δA)− f(A) versus
the linearization f ′(A)δA, as a function of the magnitude ∥δA∥. A is a 4 × 4 matrix with unit-variance Gaussian
random entries, and δA is similarly a unit-variance Gaussian random perturbation scaled by a factor s ranging
from 1 to 10−16.

Definition 30
Note that the norm of a matrix that we are using, computed by norm(A) in Julia, is just the direct analogue
of the familiar Euclidean norm for the case of vectors. It is simply the square root of the sum of the matrix
entries squared:

∥A∥ :=
√∑

i,j

|Aij |2 =
√
tr(ATA) .

This is called the Frobenius norm.

4.4 Accuracy of Finite Differences
Now how accurate is our finite-difference approximation above? How should we choose the size of δx?

Let’s again consider the example f(A) = A2, and plot the relative error as a function of ∥δA∥. This plot will
be done logarithmically (on a log–log scale) so that we can see power-law relationships as straight lines.

We notice two main features as we decrease δA:

1. The relative error at first decreases linearly with ∥δA∥. This is called first-order accuracy. Why?

2. When δA gets too small, the error increases. Why?

31

https://mathworld.wolfram.com/FrobeniusNorm.html

4.5 Order of accuracy
The truncation error is the inaccuracy arising from the fact that the input perturbation δx is not infinitesimal:
we are computing a difference, not a derivative. If the truncation error in the derivative scales proportional ∥δx∥n,
we call the approximation n-th order accurate. For forward differences, here, the order is n=1. Why?

For any f(x) with a nonzero second derivative (think of the Taylor series), we have

f(x+ δx) = f(x) + f ′(x)δx+ (terms proportional to ∥δx∥2) + o(∥δx∥2)︸ ︷︷ ︸
i.e. higher-order terms

That is, the terms we dropped in our forward-difference approximations are proportional to ∥δx∥2. But that means
that the relative error is linear:

relative error =
∥f(x+ δx)− f(x)− f ′(x)δx∥

∥f ′(x)δx∥

=
(terms proportional to ∥δx∥2) + o(∥δx∥2)

proportional to ∥δx∥
= (terms proportional to ∥δx∥) + o(∥δx∥)

This is first-order accuracy. Truncation error in a finite-difference approximation is the inherent error in the
formula for non-infinitesimal δx. Does that mean we should just make δx as small as we possibly can?

4.6 Roundoff error
The reason why the error increased for very small δA was due to roundoff errors. The computer only stores a
finite number of significant digits (about 15 decimal digits) for each real number and rounds off the rest on
each operation — this is called floating-point arithmetic. If δx is too small, then the difference f(x + δx) − f(x)

gets rounded off to zero (some or all of the significant digits cancel). This is called catastrophic cancellation.
Floating-point arithmetic is much like scientific notation ∗.∗∗∗∗∗ × 10e: a finite-precision coefficient ∗.∗∗∗∗∗

scaled by a power of 10 (or, on a computer, a power of 2). The number of digits in the coefficient (the “significant
digits”) is the “precision,” which in the usual 64-bit floating-point arithmetic is charactized by a quantity ϵ =

2−52 ≈ 2.22 × 10−16, called the machine epsilon. When an arbitrary real number y ∈ R is rounded to the closest
floating-point value ỹ, the roundoff error is bounded by |ỹ− y| ≤ ϵ|y|. Equivalently, the computer keeps only about
15–16 ≈ − log10 ϵ decimal digits, or really 53 = 1− log2 ϵ binary digits, for each number.

In our finite-difference example, for ∥δA∥/∥A∥ of roughly 10−8 ≈
√
ϵ∥A∥ or larger, the approximation for f ′(A)

is dominated by the truncation error, but if we go smaller than that the relative error starts increasing due to
roundoff. Experience has shown that ∥δx∥ ≈

√
ϵ∥x∥ is often a good rule of thumb—about half the significant digits

is the most that is reasonably safe to rely on—but the precise crossover point of minimum error depends on the
function f and the finite-difference method. But, like all rules of thumb, this may not always be completely reliable.

4.7 Other finite-difference methods
There are more sophisticated finite-difference methods, such as Richardson extrapolation, which consider a sequence
of progressively smaller δx values in order to adaptively determine the best possible estimate for f ′ (extrapolating
to δx → 0 using progressively higher degree polynomials). One can also use higher-order difference formulas than
the simple forward-difference method here, so that the truncation error decreases faster than than linearly with δx.
The most famous higher-order formula is the “centered difference” f ′(x)δx ≈ [f(x+ δx)− f(x− δx)]/2, which has
second -order accuracy (relative truncation error proportional to ∥δx∥2).

32

https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Catastrophic_cancellation
https://en.wikipedia.org/wiki/Machine_epsilon

Higher-dimensional inputs x pose a fundamental computational challenge for finite-difference techniques, be-
cause if you want to know what happens for every possible direction δx then you need many finite differences: one
for each dimension of δx. For example, suppose x ∈ Rn and f(x) ∈ R, so that you are computing ∇f ∈ Rn; if you
want to know the whole gradient, you need n separate finite differences. The net result is that finite differences
in higher dimensions are expensive, quickly becoming impractical for high-dimensional optimization (e.g. neural
networks) where n might be huge. On the other hand, if you are just using finite differences as a check for bugs in
your code, it is usually sufficient to compare f(x+ δx)− f(x) to f ′(x)[δx] in a few random directions, i.e. for a few
random small δx.

33

MIT OpenCourseWare
https://ocw.mit.edu

18.S096 Matrix Calculus for Machine Learning and Beyond
Independent Activities Period (IAP) 2023��

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	cover.pdf
	Blank Page

