
5 Derivatives in General Vector Spaces
Matrix calculus requires us to generalize concepts of derivative and gradient further, to functions whose inputs
and/or outputs are not simply scalars or column vectors. To achieve this, we extend the notion of the ordinary
vector dot product and ordinary Euclidean vector “length” to general inner products and norms on vector
spaces. Our first example will consider familiar matrices from this point of view.

Recall from linear algebra that we can call any set V a “vector space” if its elements can be added/subtracted
x±y and multiplied by scalars αx (subject to some basic arithmetic axioms, e.g. the distributive law). For example,
the set of m × n matrices themselves form a vector space, or even the set of continuous functions u(x) (mapping
R→ R)—the key fact is that we can add/subtract/scale them and get elements of the same set. It turns out to be
extraordinarily useful to extend differentiation to such spaces, e.g. for functions that map matrices to matrices or
functions to numbers. Doing so crucially relies on our input/output vector spaces V having a norm and, ideally,
an inner product.

5.1 A Simple Matrix Dot Product and Norm
Recall that for scalar-valued functions f(x) ∈ R with vector inputs x ∈ Rn (i.e. n-component “column vectors")
we have that

df = f(x+ dx)− f(x) = f ′(x)[dx] ∈ R.

Therefore, f ′(x) is a linear operator taking in the vector dx in and giving a scalar value out. Another way to view
this is that f ′(x) is the row vector3 (∇f)T . Under this viewpoint, it follows that df is the dot product (or “inner
product”):

df = ∇f · dx

We can generalize this to any vector space V with inner products! Given x ∈ V , and a scalar-valued function
f , we obtain the linear operator f ′(x)[dx] ∈ R, called a “linear form.” In order to define the gradient ∇f , we need
an inner product for V , the vector-space generalization of the familiar dot product!

Given x, y ∈ V , the inner product ⟨x, y⟩ is a map (·) such that ⟨x, y⟩ ∈ R. This is also commonly denoted x · y
or ⟨x | y⟩. More technically, an inner product is a map that is

1. Symmetric: i.e. ⟨x, y⟩ = ⟨y, x⟩ (or conjugate-symmetric,4 ⟨x, y⟩ = ⟨y, x⟩, if we were using complex numbers),

2. Linear: i.e. ⟨x, αy + βz⟩ = α⟨x, y⟩+ β⟨x, z⟩, and

3. Non-negative: i.e. ⟨x, x⟩ := ∥x∥2 ≥ 0, and = 0 if and only if x = 0.

Note that the combination of the first two properties means that it must also be linear in the left vector (or
conjugate-linear, if we were using complex numbers). Another useful consequence of these three properties, which
is a bit trickier to derive, is the Cauchy–Schwarz inequality |⟨x, y⟩| ≤ ∥x∥ ∥y∥.

3The concept of a “row vector” can be formalized as something called a “covector,” a “dual vector,” or an element of a “dual space,”
not to be confused with the dual numbers used in automatic differentiation (Sec. 8).

4Some authors distinguish the “dot product” from an “inner product” for complex vector spaces, saying that a dot product has no
complex conjugation x · y = y · x (in which case x · x need not be real and does not equal ∥x∥2), whereas the inner product must be
conjugate-symmetric, via ⟨x, y⟩ = x̄ · y. Another source of confusion for complex vector spaces is that some fields of mathematics define
⟨x, y⟩ = x · ȳ, i.e. they conjugate the right argument instead of the left (so that it is linear in the left argument and conjugate-linear in
the right argument). Aren’t you glad we’re sticking with real numbers?
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Definition 31 (Hilbert Space)

A (complete) vector space with an inner product is called a Hilbert space. (The technical requirement of
“completeness” essentially means that you can take limits in the space, and is important for rigorous proofs.a)

aCompleteness means that any Cauchy sequence of points in the vector space—any sequence of points that gets closer and
closer together—has a limit lying within the vector space. This criterion usually holds in practice for vector spaces over real or
complex scalars, but can get trickier when talking about vector spaces of functions, since e.g. the limit of a sequence of continuous
functions can be a discontinuous function.

Once we have a Hilbert space, we can define the gradient for scalar-valued functions. Given x ∈ V a Hilbert
space, and f(x) scalar, then we have the linear form f ′(x)[dx] ∈ R. Then, under these assumptions, there is a
theorem known as the “Riesz representation theorem” stating that any linear form (including f ′) must be an inner
product with something :

f ′(x)[dx] =
〈
(some vector)︸ ︷︷ ︸
gradient ∇f

∣∣
x

, dx
〉
= df.

That is, the gradient ∇f is defined as the thing you take the inner product of dx with to get df . Note that ∇f
always has the “same shape” as x.

The first few examples we look at involve the usual Hilbert space V = Rn with different inner products.

Example 32
Given V = Rn with n-column vectors, we have the familiar Euclidean dot product ⟨x, y⟩ = xT y. This leads to
the usual ∇f .

Example 33
We can have different inner products on Rn. For instance,

⟨x, y⟩W = w1x1y1 + w2x2y2 + . . . wnxnyn = xT


w1

. . .

wn


︸ ︷︷ ︸

W

y

for weights w1, . . . , wn > 0.
More generally we can define a weighted dot product ⟨x, y⟩W = xTWy for any symmetric-positive-definite

matrix W (W = WT and W is positive definite, which is sufficient for this to be a valid inner product).
If we change the definition of the inner product, then we change the definition of the gradient! For example,

with f(x) = xTAx we previously found that df = xT (A+AT )dx. With the ordinary Euclidean inner product,
this gave a gradient ∇f = (A + AT )x. However, if we use the weighted inner product xTWy, then we would
obtain a different “gradient” ∇(W )f = W−1(A+AT )x so that df = ⟨∇(W )f, dx⟩.

In these notes, we will employ the Euclidean inner product for x ∈ Rn, and hence the usual ∇f , unless
noted otherwise. However, weighted inner products are useful in lots of cases, especially when the components
of x have different scales/units.

We can also consider the space of m× n matrices V = Rm×n. There, is of course, a vector-space isomorphism
from V ∋ A → vec(A) ∈ Rmn. Thus, in this space we have the analogue of the familiar (“Frobenius") Euclidean
inner product, which is convenient to rewrite in terms of matrix operations via the trace:
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Definition 34 (Frobenius inner product)

The Frobenius inner product of two m× n matrices A and B is:

⟨A,B⟩F =
∑
ij

AijBij = vec(A)Tvec(B) = tr(ATB) .

Given this inner product, we also have the corresponding Frobenius norm:

∥A∥F =
√
⟨A,A⟩F =

√
tr(ATA) = ∥vecA∥ =

√∑
i,j

|Aij |2 .

Using this, we can now define the gradient of scalar functions with matrix inputs! This will be our default
matrix inner product (hence defining our default matrix gradient) in these notes (sometimes dropping the F

subscript).

Example 35
Consider the function

f(A) = ∥A∥F =
√

tr(ATA).

What is df?

Firstly, by the familiar scalar-differentiation chain and power rules we have that

df =
1

2
√
tr(ATA)

d(trATA).

Then, note that (by linearity of the trace)

d(trB) = tr(B + dB)− tr(B) = tr(B) + tr(dB)− tr(B) = tr(dB).

Hence,

df =
1

2∥A∥F
tr(d(ATA))

=
1

2∥A∥F
tr(dAT A+AT dA)

=
1

2∥A∥F
(tr(dAT A) + tr(AT dA))

=
1

∥A∥F
tr(AT dA) =

〈 A

∥A∥F
, dA

〉
.

Here, we used the fact that trB = trBT , and in the last step we connected df with a Frobenius inner product. In
other words,

∇f = ∇∥A∥F =
A

∥A∥F
.

Note that one obtains exactly the same result for column vectors x, i.e. ∇∥x∥ = x/∥x∥ (and in fact this is equivalent
via x = vecA).

Let’s consider another simple example:
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Example 36
Fix some constant x ∈ Rm, y ∈ Rn, and consider the function f : Rm×n → R given by

f(A) = xTAy.

What is ∇f?

We have that

df = xT dAy

= tr(xT dAy)

= tr(yxT dA)

=
〈
xyT︸︷︷︸
∇f

, dA
〉
.

More generally, for any scalar-valued function f(A), from the definition of Frobenius inner product it follows
that:

df = f(A+ dA)− f(A) = ⟨∇f, dA⟩ =
∑
i,j

(∇f)i,j dAi,j ,

and hence the components of the gradient are exactly the elementwise derivatives

(∇f)i,j =
∂f

∂Ai,j
,

similar to the component-wise definition of the gradient vector from multivariable calculus! But for non-trivial
matrix-input functions f(A) it can be extremely awkward to take the derivative with respect to each entry of
A individually. Using the “holistic” matrix inner-product definition, we will soon be able to compute even more
complicated matrix-valued gradients, including ∇(detA)!

5.2 Derivatives, Norms, and Banach spaces
We have been using the term “norm" throughout this class, but what technically is a norm? Of course, there are
familiar examples such as the Euclidean (“ℓ2”) norm ∥x∥ =

√∑
k x

2
k for x ∈ Rn, but it is useful to consider how

this concept generalizes to other vector spaces. It turns out, in fact, that norms are crucial to the definition of a
derivative!

Given a vector space V , a norm ∥·∥ on V is a map ∥·∥ : V → R satisfying the following three properties:

1. Non-negative: i.e. ∥v∥ ≥ 0 and ∥v∥ = 0 ⇐⇒ v = 0,

2. Homogeneity: ∥αv∥ = |α|∥v∥ for any α ∈ R, and

3. Triangle inequality: ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

A vector space that has a norm is called an normed vector space. Often, mathematicians technically want a
slightly more precise type of normed vector space with a less obvious name: a Banach space.

Definition 37 (Banach Space)

A (complete) vector space with a norm is called a Banach space. (As with Hilbert spaces, “completeness” is a
technical requirement for some types of rigorous analysis, essentially allowing you to take limits.)
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For example, given any inner product ⟨u, v⟩, there is a corresponding norm ∥u∥ =
√
⟨u, u⟩. (Thus, every Hilbert

space is also a Banach space.5)
To define derivatives, we technically need both the input and the output to be Banach spaces. To see this,

recall our formalism
f(x+ δx)− f(x) = f ′(x)[δx]︸ ︷︷ ︸

linear

+ o(δx)︸ ︷︷ ︸
smaller

.

To precisely define the sense in which the o(δx) terms are “smaller” or “higher-order,” we need norms. In particular,
the “little-o” notation o(δx) denotes any function such that

lim
δx→0

∥o(δx)∥
∥δx∥

= 0 ,

i.e. which goes to zero faster than linearly in δx. This requires both the input δx and the output (the function) to
have norms. This extension of differentiation to arbitrary normed/Banach spaces is sometimes called the Fréchet
derivative.

5Proving the triangle inequality for an arbitrary inner product is not so obvious; one uses a result called the Cauchy–Schwarz
inequality.

38



MIT OpenCourseWare 
https://ocw.mit.edu 

18.S096 Matrix Calculus for Machine Learning and Beyond
Independent Activities Period (IAP) 2023�� 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 


	cover.pdf
	Blank Page




