
6 Nonlinear Root-Finding, Optimization,

and Adjoint Differentiation
The next part is based on these slides. Today, we want to talk about why we are computing derivatives in the first
place. In particular, we will drill down on this a little bit and then talk about computation of derivatives.

6.1 Newton’s Method
One common application of derivatives is to solve nonlinear equations via linearization.

6.1.1 Scalar Functions

For instance, suppose we have a scalar function f : R → R and we wanted to solve f(x) = 0 for a root x. Of
course, we could solve such an equation explicitly in simple cases, such as when f is linear or quadratic, but if
the function is something more arbitrary like f(x) = x3 − sin(cosx) you might not be able to obtain closed-form
solutions. However, there is a nice way to obtain the solution approximately to any accuracy you want, as long if
you know approximately where the root is. The method we are talking about is known as Newton’s method, which
is really a linear-algebra technique. It takes in the function and a guess for the root, approximates it by a straight
line (whose root is easy to find), which is then an approximate root that we can use as a new guess. In particular,
the method (depicted in Fig. 5) is as follows:

• Linearize f(x) near some x using the approximation

f(x+ δx) ≈ f(x) + f ′(x)δx,

• solve the linear equation f(x) + f ′(x)δx = 0 =⇒ δx = − f(x)
f ′(x) ,

• and then use this to update the value of x we linearized near—i.e., letting the new x be

xnew = x− δx = x+
f(x)

f ′(x)
.

Once you are close to the root, Newton’s method converges amazingly quickly. As discussed below, it asymptotically
doubles the number of correct digits on every step!

One may ask what happens when f ′(x) is not invertible, for instance here if f ′(x) = 0. If this happens, then
Newton’s method may break down! See here for examples of when Newton’s method breaks down.

6.1.2 Multidimensional Functions

We can generalize Newton’s method to multidimensional functions! Let f : Rn → Rn be a function which takes in
a vector and spits out a vector of the same size n. We can then apply a Newton approach in higher dimensions:

• Linearize f(x) near some x using the first-derivative approximation

f(x+ δx) ≈ f(x) + f ′(x)︸ ︷︷ ︸
Jacobian

δx,

• solve the linear equation f(x) + f ′(x)δx = 0 =⇒ δx = − f ′(x)−1︸ ︷︷ ︸
inverse Jacobian

f(x),

39

https://docs.google.com/presentation/d/1U1lB5bhscjbxEuH5FcFwMl5xbHl0qIEkMf5rm0MO8uE/edit#slide=id.p
https://en.wikipedia.org/wiki/Newton%27s_method#Failure_analysis

4 2 0 2 4
x

5

4

3

2

1

0

1

2

3

4

f(x
)

initial x

xnew

f(xnew)
root

f(x)

one Newton step

Figure 5: Single step of the scalar Newton’s method to solve f(x) = 0 for an example nonlinear function f(x) =
2 cos(x) − x + x2/10. Given a starting guess (x = 2.3 in this example), we use f(x) and f ′(x) to form a linear
(affine) approximation of f , and then our next step xnew is the root of this approximation. As long as the initial
guess is not too far from the root, Newton’s method converges extremely rapidly to the exact root (black dot).

• and then use this to update the value of x we linearized near—i.e., letting the new x be

xnew = xold − f ′(x)−1f(x) .

That’s it! Once we have the Jacobian, we can just solve a linear system on each step. This again converges
amazingly fast, doubling the number of digits of accuracy in each step. (This is known as “quadratic convergence.”)
However, there is a caveat: we need some starting guess for x, and the guess needs to be sufficiently close to the
root for the algorithm to make reliable progress. (If you start with an initial x far from a root, Newton’s method
can fail to converge and/or it can jump around in intricate and surprising ways—google “Newton fractal” for some
fascinating examples.) This is a widely used and very practical application of Jacobians and derivatives!

6.2 Optimization

6.2.1 Nonlinear Optimization

A perhaps even more famous application of large-scale differentiation is to nonlinear optimization. Suppose we
have a scalar-valued function f : Rn → R, and suppose we want to minimize (or maximize) f . For instance, in
machine learning, we could have a big neural network (NN) with a vector x of a million parameters, and one tries to
minimize a “loss” function f that compares the NN output to the desired results on “training” data. The most basic
idea in optimization is to go “downhill” (see diagram) to make f as small as possible. If we can take the gradient
of this function f , to go “downhill” we consider −∇f , the direction of steepest descent, as depicted in Fig. 6.

Then, even if we have a million parameters, we can evolve all of them simultaneously in the downhill direc-
tion. It turns out that calculating all million derivatives costs about the same as evaluating the function at a

40

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

minimum

f(x) contours

 steepest-descent
 steps

steepest-descent minimization

Figure 6: A steepest-descent algorithm minimizes a function f(x) by taking successive “downhill” steps in the
direction −∇f . (In the example shown here, we are minimizing a quadratic function in two dimensions x ∈ R2,
performing an exact 1d minimization in the downhill direction for each step.) Steepest-descent algorithms can
sometimes “zig-zag” along narrow valleys, slowing convergence (which can be counteracted in more sophisticated
algorithms by “momentum” terms, second-derivative information, and so on).

point once (using reverse-mode/adjoint/left-to-right/backpropagation methods). Ultimately, this makes large-scale
optimization practical for training neural nets, optimizing shapes of airplane wings, optimizing portfolios, etc.

Of course, there are many practical complications that make nonlinear optimization tricky (far more than can
be covered in a single lecture, or even in a whole course!), but we give some examples here.

• For instance, even though we can compute the “downhill direction”, how far do we need to step in that
direction? (In machine learning, this is sometimes called the “learning rate.”) Often, you want to take “as big
of a step as you can” to speed convergence, but you don’t want the step to be too big because ∇f only tells
you a local approximation of f . There are many different ideas of how to determine this:

– Line search: using a 1D minimization to determine how far to step.

– A “trust region” bounding the step size (where we trust the derivative-based approximation of f). There
are many techniques to evolve the size of the trust region as optimization progresses.

• We may also need to consider constraints, for instance minimizing f(x) subject to gk(x) ≤ 0 or hk(x) =

0, known as inequality/equality constraints. Points x satisfying the constraints are called “feasible”. One
typically uses a combination of ∇f and ∇gk to approximate (e.g. linearize) the problem and make progress
towards the best feasible point.

• If you just go straight downhill, you might “zig-zag” along narrow valleys, making convergence very slow. There
are a few options to combat this, such as “momentum” terms and conjugate gradients. Even fancier than
these techniques, one might estimate second-derivative “Hessian matrices” from a sequence of ∇f values—a
famous version of this is known as the BFGS algorithm—and use the Hessian to take approximate Newton

41

steps (for the root ∇f = 0). (We’ll return to Hessians in a later lecture.)

• Ultimately, there are a lot of techniques and a zoo of competing algorithms that you might need to experiment
with to find the best approach for a given problem. (There are many books on optimization algorithms, and
even a whole book can only cover a small slice of what is out there!)

Some parting advice: Often the main trick is less about the choice of algorithms than it is about finding the
right mathematical formulation of your problem—e.g. what function, what constraints, and what parameters should
you be considering—to match your problem to a good algorithm. However, if you have many (≫ 10) parameters,
try hard to use an analytical gradient (not finite differences), computed efficiently in reverse mode.

6.2.2 Engineering/Physical Optimization

There are many, many applications of optimization besides machine learning (fitting models to data). It is inter-
esting to also consider engineering/physical optimization. (For instance, suppose you want to make an airplane
wing that is as strong as possible.) The general outline of such problems is typically:

1. You start with some design parameters p, e.g. describing the geometry, materials, forces, or other degrees of
freedom.

2. These p are then used in some physical model(s), such as solid mechanics, chemical reactions, heat transport,
electromagnetism, acoustics, etc. For example, you might have a linear model of the form A(p)x = b(p) for
some matrix A (typically very large and sparse).

3. The solution of the physical model is a solution x(p). For example, this could be the mechanical stresses,
chemical concentrations, temperatures, electromagnetic fields, etc.

4. The physical solution x(p) is the input into some design objective f(x(p)) that you want to improve/optimize.
For instance, strength, speed power, efficiency, etc.

5. To maximize/minimize f(x(p)), one uses the gradient ∇pf , computed using reverse-mode/“adjoint” methods,
to update the parameters p and improve the design.

As a fun example, researchers have even applied “topology optimization” to design a chair, optimizing every voxel
of the design—the parameters p represent the material present (or not) in every voxel, so that the optimization
discovers not just an optimal shape but an optimal topology (how materials are connected in space, how many
holes there are, and so forth)—to support a given weight with minimal material. To see it in action, watch this
chair-optimization video. (People have applied such techniques to much more practical problems as well, from
airplane wings to optical communications.)

6.3 Reverse-mode “Adjoint” Differentiation
But what is adjoint differentiation—the method of differentiating that makes these applications actually feasible to
solve? Ultimately, it is yet another example of left-to-right/reverse-mode differentiation, essentially applying the
chain rule from outputs to inputs. Consider, for example, trying to compute the gradient ∇g of the scalar-valued
function

g(p) = f(A(p)−1b︸ ︷︷ ︸
x

) .

where x solves A(p)x = b (e.g. a parameterized physical model as in the previous section) and f(x) is a scalar-valued
function of x (e.g. an optimization objective depending on our physics solution). For example, this could arise in

42

https://www.youtube.com/watch?v=bJ_nSSBl040&embeds_referring_euri=https%3A%2F%2Fdocs.google.com%2F&embeds_referring_origin=https%3A%2F%2Fdocs.google.com&source_ve_path=Mjg2NjY&feature=emb_logo

an optimization problem

min
p

g(p)⇐⇒
min
p

f(x)

subject to A(p)x=b
,

for which the gradient ∇g would be helpful to search for a local minimum. The chain rule for g corresponds to the
following conceptual chain of dependencies:

change dg in g ←− change dx in x = A−1b

←− change d(A−1) in A−1

←− change dA in A(p)

←− change dp in p

which is expressed by the equations:

dg = f ′(x)[dx] dg ←− dx

= f ′(x)[d(A−1)b] dx←− d(A−1)

= − f ′(x)A−1︸ ︷︷ ︸
vT

dAA−1b dA−1 ←− dA

= −vT A′(p)[dp]︸ ︷︷ ︸
dA

A−1b dA←− dp .

Here, we are defining the row vector vT = f ′(x)A−1, and we have used the differential of a matrix inverse d(A−1) =

−A−1 dAA−1 from Sec. 7.3.
Grouping the terms left-to-right, we first solve the “adjoint” (transposed) equation AT v = f ′(x)T = ∇xf for v,

and then we obtain dg = −vT dAx. Because the derivative A′(p) of a matrix with respect to a vector is awkward
to write explicitly, it is convenient to examine this object one parameter at a time. For any given parameter pk,
∂g/∂pk = −vT (∂A/∂pk)x (and in many applications ∂A/∂pk is very sparse); here, “dividing by” ∂pk works because
this is a scalar factor that commutes with the other linear operations. That is, it takes only two solves to get both
g and ∇g: one for solving Ax = b to find g(p) = f(x), and another with AT for v, after which all of the derivatives
∂g/∂pk are just some cheap dot products.

Note that you should not use right-to-left “forward-mode” derivatives with lots of parameters, because

∂g

∂pk
= −f ′(x)

(
A−1 ∂A

∂pk
x

)
represents one solve per parameter pk! As discussed in Sec. 8.4, right-to-left (a.k.a. forward mode) is better
when there is one (or few) input parameters pk and many outputs, while left-to-right “adjoint” differentiation
(a.k.a. reverse mode) is better when there is one (or few) output values and many input parameters. (In Sec. 8.1,
we will discuss using dual numbers for differentiation, and this also corresponds to forward mode.)

Another possibility that might come to mind is to use finite differences (as in Sec. 4), but you should not use
this if you have lots of parameters! Finite differences would involve a calculation of something like

∂g

∂pk
≈ [g(p+ ϵek)− g(p)]/ϵ,

where ek is a unit vector in the k-th direction and ϵ is a small number. This, however, requires one solve for
each parameter pk, just like forward-mode differentiation. (It becomes even more expensive if you use fancier
higher-order finite-difference approximations in order to obtain higher accuracy.)

43

https://en.wikipedia.org/wiki/Dual_number

6.3.1 Nonlinear equations

You can also apply adjoint/reverse differentiation to nonlinear equations. For instance, consider the gradient of the
scalar function g(p) = f(x(p)), where x(p) ∈ Rn solves some system of n equations h(p, x) = 0 ∈ Rn. By the chain
rule,

h(p, x) = 0 =⇒ ∂h

∂p
dp+

∂h

∂x
dx = 0 =⇒ dx = −

(
∂h

∂x

)−1
∂h

∂p
dp .

(This is an instance of the Implicit Function Theorem: as long as ∂h
∂x is nonsingular, we can locally define a function

x(p) from an implicit equation h = 0, here by linearization.) Hence,

dg = f ′(x)dx = − f ′(x)

(
∂h

∂x

)−1

︸ ︷︷ ︸
vT

∂h

∂p
dp .

Associating left-to-right again leads to a single “adjoint” equation: (∂h/∂x)T v = f ′(x)T = ∇xf . In other words,
it again only takes two solves to get both g and ∇g—one nonlinear “forward” solve for x and one linear “adjoint”
solve for v! Thereafter, all derivatives ∂g/∂pk are cheap dot products. (Note that the linear “adjoint” solve involves
the transposed Jacobian ∂h/∂x. Except for the transpose, this is very similar to the cost of a single Newton step
to solve h = 0 for x. So the adjoint problem should be cheaper than the forward problem.)

6.3.2 Adjoint methods and AD

If you use automatic differentiation (AD) systems, why do you need to learn this stuff? Doesn’t the AD do
everything for you? In practice, however, it is often helpful to understand adjoint methods even if you use automatic
differentiation. Firstly, it helps you understand when to use forward- vs. reverse-mode automatic differentiation.
Secondly, many physical models call large software packages written over the decades in various languages that
cannot be differentiated automatically by AD. You can typically correct this by just supplying a “vector–Jacobian
product” yT dx for this physics, or even just part of the physics, and then AD will differentiate the rest and apply
the chain rule for you. Lastly, often models involve approximate calculations (e.g. for the iterative solution of
linear or nonlinear equations, numerical integration, and so forth), but AD tools often don’t “know” this and spend
extra effort trying to differentiate the error in your approximation; in such cases, manually written derivative rules
can sometimes be much more efficient. (For example, suppose your model involves solving a nonlinear system
h(x, p) = 0 by an iterative approach like Newton’s method. Naive AD will be very inefficient because it will
attempt to differentiate through all your Newton steps. Assuming that you converge your Newton solver to enough
accuracy that the error is negligible, it is much more efficient to perform differentiation via the implicit-function
theorem as described above, leading to a single linear adjoint solve.)

6.3.3 Adjoint-method example

To finish off this section of the notes, we conclude with an example of how to use this “adjoint method” to compute
a derivative efficiently. Before working through the example, we first state the problem and highly recommend
trying it out before reading the solution.

44

https://en.wikipedia.org/wiki/Implicit_function_theorem

Problem 38
Suppose that A(p) takes a vector p ∈ Rn−1 and returns the n× n tridiagonal real-symmetric matrix

A(p) =

a1 p1

p1 a2 p2

p2
. . .

. . .

. . . an−1 pn−1

pn−1 an

,

where a ∈ Rn is some constant vector. Now, define a scalar-valued function f(p) by

g(p) =
(
cTA(p)−1b

)2
for some constant vectors b, c ∈ Rn (assuming we choose p and a so that A is invertible). Note that, in
practice, A(p)−1b is not computed by explicitly inverting the matrix A—instead, it can be computed in Θ(n)

(i.e., roughly proportional to n) arithmetic operations using Gaussian elimination that takes advantage of the
“sparsity” of A (the pattern of zero entries), a “tridiagonal solve.”

(a) Write down a formula for computing ∂g/∂p1 (in terms of matrix–vector products and matrix inverses).
(Hint: once you know dg in terms of dA, you can get ∂g/∂p1 by “dividing” both sides by ∂p1, so that dA
becomes ∂A/∂p1.)

(b) Outline a sequence of steps to compute both g and ∇g (with respect to p) using only two tridiagonal
solves x = A−1b and an “adjoint” solve v = A−1(something), plus Θ(n) (i.e., roughly proportional to n)
additional arithmetic operations.

(c) Write a program implementing your ∇g procedure (in Julia, Python, Matlab, or any language you want)
from the previous part. (You don’t need to use a fancy tridiagonal solve if you don’t know how to do this
in your language; you can solve A−1(vector) inefficiently if needed using your favorite matrix libraries.)
Implement a finite-difference test: Choose a, b, c, p at random, and check that ∇g · δp ≈ g(p+ δp)− g(p)

(to a few digits) for a randomly chosen small δp.

Problem 38(a) Solution: From the chain rule and the formula for the differential of a matrix inverse, we
have dg = −2(cTA−1b)cTA−1dAA−1b (noting that cTA−1b is a scalar so we can commute it as needed). Hence

∂g

∂p1
= −2(cTA−1b)cTA−1︸ ︷︷ ︸

vT

∂A

∂p1
A−1b︸ ︷︷ ︸

x

= vT

0 1

1 0 0

0
. . .

. . .

. . . 0 0

0 0

︸ ︷︷ ︸

∂A
∂p1

x = v1x2 + v2x1 ,

where we have simplified the result in terms of x and v for the next part.
Problem 38(b) Solution: Using the notation from the previous part, exploiting the fact that AT = A, we

45

can choose v = A−1[−2(cTx)c] , which is a single tridiagonal solve. Given x and v, the results of our two Θ(n)

tridiagonal solves, we can compute each component of the gradient similar to above by ∂g/∂pk = vkxk+1 + vk+1xk

for k = 1, . . . , n− 1, which costs Θ(1) arithmetic per k and hence Θ(n) arithmetic to obtain all of ∇g.
Problem 38(c) Solution: See the Julia solution notebook (Problem 1) from our IAP 2023 course (which calls

the function f rather than g).

46

https://nbviewer.org/github/mitmath/matrixcalc/blob/iap2023/psets/pset2sol.ipynb

MIT OpenCourseWare
https://ocw.mit.edu

18.S096 Matrix Calculus for Machine Learning and Beyond
Independent Activities Period (IAP) 2023��

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	cover.pdf
	Blank Page

