
7 Derivative of Matrix Determinant and Inverse

7.1 Two Derivations
This section of notes follows this Julia notebook. This notebook is a little bit short, but is an important and useful
calculation.

Theorem 39
Given A is a square matrix, we have

∇(detA) = cofactor(A) = (detA)A−T := adj(AT ) = adj(A)T

where adj is the “adjugate”. (You may not have heard of the matrix adjugate, but this formula tells us that it
is simply adj(A) = det(A)A−1, or cofactor(A) = adj(AT ).) Furthermore,

d(detA) = tr(det(A)A−1dA) = tr(adj(A)dA) = tr(cofactor(A)T dA).

You may remember that each entry (i, j) of the cofactor matrix is (−1)i+j times the determinant obtained
by deleting row i and column j from A. Here are some 2 × 2 calculuations to obtain some intuition about these
functions:

M =

(
a c

b d

)
(4)

=⇒ cofactor(M) =

(
d −c
−b a

)
(5)

adj(M) =

(
d −b
−c a

)
(6)

(M)−1 =
1

ad− bc

(
d −b
−c a

)
. (7)

Numerically, as is done in the notebook, you can construct a random n × n matrix A (say, 9 × 9), consider
e.g. dA = .00001A, and see numerically that

det(A+ dA)− det(A) ≈ tr(adj(A)dA),

which numerically supports our claim for the theorem.
We now prove the theorem in two ways. Firstly, there is a direct proof where you just differentiate the scalar

with respect to every input using the cofactor expansion of the determinant based on the i-th row. Recall that

det(A) = Ai1Ci1 +Ai2Ci2 + · · ·+AinCin.

Thus,
∂ detA

∂Aij
= Cij =⇒ ∇(detA) = C,

the cofactor matrix. (In computing these partial derivatives, it’s important to remember that the cofactor Cij

contains no elements of A from row i or column j. So, for example, Ai1 only appears explicitly in the first term,
and not hidden in any of the C terms in this expansion.)

47

https://rawcdn.githack.com/mitmath/matrixcalc/b08435612045b17745707f03900e4e4187a6f489/notes/determinant_and_inverse.html
https://en.wikipedia.org/wiki/Laplace_expansion


There is also a fancier proof of the theorem using linearization near the identity. Firstly, note that it is easy to
see from the properties of determinants that

det(I + dA)− 1 = tr(dA),

and thus

det(A+A(A−1dA))− det(A) = det(A)(det(I +A−1dA)− 1)

= det(A) tr(A−1dA) = tr(det(A)A−1dA)

= tr(adj(A)dA).

This also implies the theorem.

7.2 Applications

7.2.1 Characteristic Polynomial

We now use this as an application to find the derivative of a characteristic polynomial evaluated at x. Let p(x) =

det(xI −A), a scalar function of x. Recall that through factorization, p(x) may be written in terms of eigenvalues
λi. So we may ask: what is the derivative of p(x), the characteristic polynomial at x? Using freshman calculus, we
could simply compute

d

dx

∏
i

(x− λi) =
∑
i

∏
j ̸=i

(x− λj) =
∏

(x− λi){
∑
i

(x− λi)
−1},

as long as x ̸= λi.
This is a perfectly good simply proof, but with our new technology we have a new proof:

d(det(xI −A)) = det(xI −A) tr((xI −A)−1d(xI −A))

= det(xI −A) tr(xI −A)−1dx.

Note that here we used that d(xI −A) = dx I when A is constant and tr(Adx) = tr(A)dx since dx is a scalar.
We may again check this computationally as we do in the notebook.

7.2.2 The Logarithmic Derivative

We can similarly compute using the chain rule that

d(log(det(A))) =
d(detA)

detA
= det(A−1)d(det(A)) = tr(A−1dA).

The logarithmic derivative shows up a lot in applied mathematics. Note that here we use that 1
detA = det(A−1) as

1 = det(I) = det(AA−1) = det(A) det(A−1).

For instance, recall Newton’s method to find roots f(x) = 0 of single-variable real-valued functions f(x) by
taking a sequence of steps x → x + δx. The key formula in Newton’s method is δx = f ′(x)−1f(x), but this
is the same as 1

(log f(x))′ . So, derivatives of log determinants show up in finding roots of determinants, i.e. for
f(x) = detM(x). When M(x) = A−xI, roots of the determinant are eigenvalues of A. For more general functions
M(x), solving detM(x) = 0 is therefore called a nonlinear eigenproblem.

48



7.3 Jacobian of the Inverse
Lastly, we compute the derivative (as both a linear operator and an explicit Jacobian matrix) of the inverse of a
matrix. There is a neat trick to obtain this derivative, simply from the property A−1A = I of the inverse. By the
product rule, this implies that

d(A−1A) = d(I) = 0 = d(A−1)A+A−1dA

=⇒ d(A−1) = (A−1)′[dA] = −A−1 dAA−1 .

Here, the second line defines a perfectly good linear operator for the derivative (A−1)′, but if we want we can
rewrite this as an explicit Jacobian matrix by using Kronecker products acting on the “vectorized” matrices as we
did in Sec. 3:

vec
(
d(A−1)

)
= vec

(
−A−1(dA)A−1

)
= −(A−T ⊗A−1)︸ ︷︷ ︸

Jacobian

vec(dA) ,

where A−T denotes (A−1)T = (AT )−1. One can check this formula numerically, as is done in the notebook.
In practice, however, you will probably find that the operator expression −A−1 dAA−1 is more useful than

explicit Jacobian matrix for taking derivatives involving matrix inverses. For example, if you have a matrix-valued
function A(t) of a scalar parameter t ∈ R, you immediately obtain d(A−1)

dt = −A−1 dA
dt A

−1. A more sophisticated
application is discussed in Sec. 6.3.

49



MIT OpenCourseWare 
https://ocw.mit.edu 

18.S096 Matrix Calculus for Machine Learning and Beyond
Independent Activities Period (IAP) 2023�� 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 


	cover.pdf
	Blank Page




