7 Derivative of Matrix Determinant and Inverse

7.1 Two Derivations

This section of notes follows this Julia notebook. This notebook is a little bit short, but is an important and useful calculation.

Theorem 39

Given A is a square matrix, we have

$$\nabla(\det A) = \operatorname{cofactor}(A) = (\det A)A^{-T} := \operatorname{adj}(A^T) = \operatorname{adj}(A)^T$$

where adj is the "adjugate". (You may not have heard of the matrix adjugate, but this formula tells us that it is simply $adj(A) = det(A)A^{-1}$, or $cofactor(A) = adj(A^T)$.) Furthermore,

$$d(\det A) = \operatorname{tr}(\det(A)A^{-1}dA) = \operatorname{tr}(\operatorname{adj}(A)dA) = \operatorname{tr}(\operatorname{cofactor}(A)^T dA).$$

You may remember that each entry (i, j) of the cofactor matrix is $(-1)^{i+j}$ times the determinant obtained by deleting row *i* and column *j* from *A*. Here are some 2×2 calculations to obtain some intuition about these functions:

$$M = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \tag{4}$$

$$\implies \operatorname{cofactor}(M) = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$$
(5)

$$\operatorname{adj}(M) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
(6)

$$(M)^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$
(7)

Numerically, as is done in the notebook, you can construct a random $n \times n$ matrix A (say, 9×9), consider e.g. dA = .00001A, and see numerically that

$$\det(A + dA) - \det(A) \approx \operatorname{tr}(\operatorname{adj}(A)dA),$$

which numerically supports our claim for the theorem.

We now prove the theorem in two ways. Firstly, there is a direct proof where you just differentiate the scalar with respect to every input using the cofactor expansion of the determinant based on the i-th row. Recall that

$$\det(A) = A_{i1}C_{i1} + A_{i2}C_{i2} + \dots + A_{in}C_{in}.$$

Thus,

$$\frac{\partial \det A}{\partial A_{ij}} = C_{ij} \implies \nabla(\det A) = C,$$

the cofactor matrix. (In computing these partial derivatives, it's important to remember that the cofactor C_{ij} contains no elements of A from row i or column j. So, for example, A_{i1} only appears explicitly in the first term, and not hidden in any of the C terms in this expansion.)

There is also a fancier proof of the theorem using linearization near the identity. Firstly, note that it is easy to see from the properties of determinants that

$$\det(I + dA) - 1 = \operatorname{tr}(dA),$$

and thus

$$det(A + A(A^{-1}dA)) - det(A) = det(A)(det(I + A^{-1}dA) - 1)$$

= det(A) tr(A^{-1}dA) = tr(det(A)A^{-1}dA)
= tr(adj(A)dA).

This also implies the theorem.

7.2 Applications

7.2.1 Characteristic Polynomial

We now use this as an application to find the derivative of a characteristic polynomial evaluated at x. Let p(x) = det(xI - A), a scalar function of x. Recall that through factorization, p(x) may be written in terms of eigenvalues λ_i . So we may ask: what is the derivative of p(x), the characteristic polynomial at x? Using freshman calculus, we could simply compute

$$\frac{d}{dx}\prod_{i}(x-\lambda_{i})=\sum_{i}\prod_{j\neq i}(x-\lambda_{j})=\prod(x-\lambda_{i})\{\sum_{i}(x-\lambda_{i})^{-1}\},\$$

as long as $x \neq \lambda_i$.

This is a perfectly good simply proof, but with our new technology we have a new proof:

$$d(\det(xI - A)) = \det(xI - A) \operatorname{tr}((xI - A)^{-1}d(xI - A))$$

= $\det(xI - A) \operatorname{tr}(xI - A)^{-1}dx.$

Note that here we used that d(xI - A) = dx I when A is constant and tr(Adx) = tr(A)dx since dx is a scalar.

We may again check this computationally as we do in the notebook.

7.2.2 The Logarithmic Derivative

We can similarly compute using the chain rule that

$$d(\log(\det(A))) = \frac{d(\det A)}{\det A} = \det(A^{-1})d(\det(A)) = \operatorname{tr}(A^{-1}dA).$$

The logarithmic derivative shows up a lot in applied mathematics. Note that here we use that $\frac{1}{\det A} = \det(A^{-1})$ as $1 = \det(I) = \det(AA^{-1}) = \det(A) \det(A^{-1})$.

For instance, recall Newton's method to find roots f(x) = 0 of single-variable real-valued functions f(x) by taking a sequence of steps $x \to x + \delta x$. The key formula in Newton's method is $\delta x = f'(x)^{-1}f(x)$, but this is the same as $\frac{1}{(\log f(x))'}$. So, derivatives of log determinants show up in finding roots of determinants, i.e. for $f(x) = \det M(x)$. When M(x) = A - xI, roots of the determinant are eigenvalues of A. For more general functions M(x), solving det M(x) = 0 is therefore called a nonlinear eigenproblem.

7.3 Jacobian of the Inverse

Lastly, we compute the derivative (as both a linear operator and an explicit Jacobian matrix) of the inverse of a matrix. There is a neat trick to obtain this derivative, simply from the property $A^{-1}A = I$ of the inverse. By the product rule, this implies that

$$d(A^{-1}A) = d(I) = 0 = d(A^{-1})A + A^{-1}dA$$
$$\implies \boxed{d(A^{-1}) = (A^{-1})'[dA] = -A^{-1}dAA^{-1}}.$$

Here, the second line defines a perfectly good linear operator for the derivative $(A^{-1})'$, but if we want we can rewrite this as an explicit Jacobian matrix by using Kronecker products acting on the "vectorized" matrices as we did in Sec. 3:

$$\operatorname{vec}\left(d(A^{-1})\right) = \operatorname{vec}\left(-A^{-1}(dA)A^{-1}\right) = \underbrace{-(A^{-T}\otimes A^{-1})}_{\operatorname{Jacobian}}\operatorname{vec}(dA),$$

where A^{-T} denotes $(A^{-1})^T = (A^T)^{-1}$. One can check this formula numerically, as is done in the notebook.

In practice, however, you will probably find that the operator expression $-A^{-1} dA A^{-1}$ is more useful than explicit Jacobian matrix for taking derivatives involving matrix inverses. For example, if you have a matrix-valued function A(t) of a scalar parameter $t \in \mathbb{R}$, you immediately obtain $\frac{d(A^{-1})}{dt} = -A^{-1}\frac{dA}{dt}A^{-1}$. A more sophisticated application is discussed in Sec. 6.3.

18.S096 Matrix Calculus for Machine Learning and Beyond Independent Activities Period (IAP) 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.