
8 Forward and Reverse-Mode Automatic Differentiation

The first time that Professor Edelman had heard about automatic differentiation (AD), it was easy for him to
imagine what it was . . . but what he imagined was wrong! In his head, he thought it was straightforward symbolic
differentiation applied to code—sort of like executing Mathematica or Maple, or even just automatically doing what
he learned to do in his calculus class. For instance, just plugging in functions and their domains from something
like the following first-year calculus table:

Derivative Domain
(sinx)′ = cosx −∞ < x <∞
(cosx)′ = − sinx −∞ < x <∞
(tanx)′ = sec2 x x ̸= π

2 + πn, n ∈ Z
(cotx)′ = − csc2 x x ̸= πn, n ∈ Z
(secx)′ = tanx secx x ̸= π

2 + πn, n ∈ Z
(cscx)′ = − cotx cscx x ̸= πn, n ∈ Z

And in any case, if it wasn’t just like executing Mathematica or Maple, then it must be finite differences, like one
learns in a numerical computing class (or as we did in Sec. 4).

It turns out that it is definitely not finite differences—AD algorithms are generally exact (in exact arithmetic,
neglecting roundoff errors), not approximate. But it also doesn’t look much like conventional symbolic algebra:
the computer doesn’t really construct a big “unrolled” symbolic expression and then differentiate it, the way you
might imagine doing by hand or via computer-algebra software. For example, imagine a computer program that
computes detA for an n×n matrix—writing down the “whole” symbolic expression isn’t possible until the program
runs and n is known (e.g. input by the user), and in any case a naive symbolic expression would require n! terms.
Thus, AD systems have to deal with computer-programming constructs like loops, recursion, and problem sizes n

that are unknown until the program runs, while at the same time avoiding constructing symbolic expressions whose
size becomes prohibitively large. (See Sec. 8.1.1 for an example that looks very different from the formulas you
differentiate in first-year calculus.) Design of AD systems often ends up being more about compilers than about
calculus!

8.1 Automatic Differentiation via Dual Numbers
(This lecture is accompanied by a Julia “notebook” showing the results of various computational experiments, which
can be found on the course web page. Excerpts from those experiments are included below.)

One AD approach that can be explained relatively simply is “forward-mode” AD, which is implemented by
carrying out the computation of f ′ in tandem with the computation of f . One augments every intermediate
value a in the computer program with another value b that represents its derivative, along with chain rules to
propagate these derivatives through computations on values in the program. It turns out that this can be thought
of as replacing real numbers (values a) with a new kind of “dual number” D(a, b) (values & derivatives) and
corresponding arithmetic rules, as explained below.

8.1.1 Example: Babylonian square root

We start with a simple example, an algorithm for the square-root function, where a practical method of automatic
differentiation came as both a mathematical surprise and a computing wonder for Professor Edelman. In particular,
we consider the “Babylonian” algorithm to compute

√
x, known for millennia (and later revealed as a special case

50

of Newton’s method applied to t2 − x = 0): simply repeat t ← (t + x/t)/2 until t converges to
√
x to any desired

accuracy. Each iteration has one addition and two divisions. For illustration purposes, 10 iterations suffice. Here
is a short program in Julia that implements this algorithm, starting with a guess of 1 and then performing N steps
(defaulting to N = 10):

julia> function Babylonian(x; N = 10)

t = (1+x)/2 # one step from t=1

for i = 2:N # remaining N-1 steps

t = (t + x/t) / 2

end

return t

end

If we run this function to compute the square root of x = 4, we will see that it converges very quickly: for only
N = 3 steps, it obtains the correct answer (2) to nearly 3 decimal places, and well before N = 10 steps it has
converged to 2 within the limits of the accuracy of computer arithmetic (about 16 digits). In fact, it roughly
doubles the number of correct digits on every step:

julia> Babylonian(4, N=1)

2.5

julia> Babylonian(4, N=2)

2.05

julia> Babylonian(4, N=3)

2.000609756097561

julia> Babylonian(4, N=4)

2.0000000929222947

julia> Babylonian(4, N=10)

2.0

Of course, any first-year calculus student knows the derivative of the square root, (
√
x)′ = 0.5/

√
x, which we

could compute here via 0.5 / Babylonian(x), but we want to know how we can obtain this derivative automati-
cally, directly from the Babylonian algorithm itself. If we can figure out how to easily and efficiently pass the chain
rule through this algorithm, then we will begin to understand how AD can also differentiate much more complicated
computer programs for which no simple derivative formula is known.

8.1.2 Easy forward-mode AD

The basic idea of carrying the chain rule through a computer program is very simple: replace every number with
two numbers, one which keeps track of the value and one which tracks the derivative of that value. The values are
computed the same way as before, and the derivatives are computed by carrying out the chain rule for elementary
operations like + and /.

In Julia, we can implement this idea by defining a new type of number, which we’ll call D, that encapsulates a
value val and a derivative deriv.

51

julia> struct D <: Number

val::Float64

deriv::Float64

end

(A detailed explanation of Julia syntax can be found elsewhere, but hopefully you can follow the basic ideas even
if you don’t understand every punctuation mark.) A quantity x = D(a,b) of this new type has two components
x.val = a and x.deriv = b, which we will use to represent values and derivatives, respectively. The Babylonian

code only uses two arithmetic operations, + and /, so we just need to overload the built-in (“Base”) definitions of
these in Julia to include new rules for our D type:

julia> Base.:+(x::D, y::D) = D(x.val+y.val, x.deriv+y.deriv)

Base.:/(x::D, y::D) = D(x.val/y.val, (y.val*x.deriv - x.val*y.deriv)/y.val^2)

If you look closely, you’ll see that the values are just added and divided in the ordinary way, while the derivatives
are computed using the sum rule (adding the derivatives of the inputs) and the quotient rule, respectively. We also
need one other technical trick: we need to define “conversion” and “promotion” rules that tell Julia how to combine
D values with ordinary real numbers, as in expressions like x+ 1 or x/2:

julia> Base.convert(::Type{D}, r::Real) = D(r,0)

Base.promote_rule(::Type{D}, ::Type{<:Real}) = D

This just says that an ordinary real number r is combined with a D value by first converting r to D(r,0): the value
is r and the derivative is 0 (the derivative of any constant is zero).

Given these definitions, we can now plug a D value into our unmodified Babylonian function, and it will
“magically” compute the derivative of the square root. Let’s try it for x = 49 = 72:

julia> x = 49

49

julia> Babylonian(D(x,1))

D(7.0, 0.07142857142857142)

We can see that it correctly returned a value of 7.0 and a derivative of 0.07142857142857142, which indeed
matches the square root

√
49 and its derivative 0.5/

√
49:

julia> (
√
x, 0.5/

√
x)

(7.0, 0.07142857142857142)

Why did we input D(x,1)? Where did the 1 come from? That’s simply the fact that the derivative of the input x

with respect to itself is (x)′ = 1, so this is the starting point for the chain rule.
In practice, all this (and more) has already been implemented in the ForwardDiff.jl package in Julia (and in

many similar software packages in a variety of languages). That package hides the implementation details under
the hood and explicitly provides a function to compute the derivative. For example:

julia> using ForwardDiff

julia> ForwardDiff.derivative(Babylonian, 49)

0.07142857142857142

52

https://julialang.org/learning/
https://docs.julialang.org/en/v1/manual/conversion-and-promotion/
https://github.com/JuliaDiff/ForwardDiff.jl

Essentially, however, this is the same as our little D implementation, but implemented with greater generality and
sophistication (e.g. chain rules for more operations, support for more numeric types, partial derivatives with respect
to multiple variables, etc.): just as we did, ForwardDiff augments every value with a second number that tracks
the derivative, and propagates both quantities through the calculation.

We could have also implemented the same idea specifically for the Bablylonian algorithm, by writing a new
function dBabylonian that tracks both the variable t and its derivative t′ = dt/dx through the course of the
calculation:

julia> function dBabylonian(x; N = 10)

t = (1+x)/2

t′ = 1/2

for i = 1:N

t = (t+x/t)/2

t′= (t′+(t-x*t′)/t^2)/2

end

return t′

end

julia> dBabylonian(49)

0.07142857142857142

This is doing exactly the same calculations as calling Babylonian(D(x,1)) or ForwardDiff.derivative(Babylonian,
49), but needs a lot more human effort—we’d have to do this for every computer program we write, rather than
implementing a new number type once.

8.1.3 Dual numbers

There is a pleasing algebraic way to think about our new number type D(a, b) instead of the “value & derivative”
viewpoint above. Remember how a complex number a + bi is formed from two real numbers (a, b) by defining a
special new quantity i (the imaginary unit) that satisfies i2 = −1, and all the other complex-arithmetic rules follow
from this? Similarly, we can think of D(a, b) as a+ bϵ, where ϵ is a new “infinitesimal unit” quantity that satisfies
ϵ2 = 0. This viewpoint is called a dual number.

Given the elementary rule ϵ2 = 0, the other algebraic rules for dual numbers immediately follow:

(a+ bϵ)± (c+ dϵ) = (a± c) + (b± d)ϵ

(a+ bϵ) · (c+ dϵ) = (ac) + (bc+ ad)ϵ

a+ bϵ

c+ dϵ
=

a+ bϵ

c+ dϵ
· c− dϵ

c− dϵ
=

(a+ bϵ)(c− dϵ)

c2
=

a

c
+

bc− ad

c2
ϵ.

The ϵ coefficients of these rules correspond to the sum/difference, product, and quotient rules of differential calculus!
In fact, these are exactly the rules we implemented above for our D type. We were only missing the rules for

subtraction and multiplication, which we can now include:

julia> Base.:-(x::D, y::D) = D(x.val - y.val, x.deriv - y.deriv)

Base.:*(x::D, y::D) = D(x.val*y.val, x.deriv*y.val + x.val*y.deriv)

It’s also nice to add a “pretty printing” rule to make Julia display dual numbers as a + bϵ rather than as D(a,b):

julia> Base.show(io::IO, x::D) = print(io, x.val, " + ", x.deriv, "ϵ")

53

https://docs.julialang.org/en/v1/manual/types/#man-custom-pretty-printing

Once we implement the multiplication rule for dual numbers in Julia, then ϵ2 = 0 follows from the special case
a = c = 0 and b = d = 1:

julia> ϵ = D(0,1)

0.0 + 1.0ϵ

julia> ϵ * ϵ

0.0 + 0.0ϵ

julia> ϵ^2

0.0 + 0.0ϵ

(We didn’t define a rule for powers D(a, b)n, so how did it compute ϵ2? The answer is that Julia implements xn

via repeated multiplication by default, so it sufficed to define the ∗ rule.) Now, we can compute the derivative of
the Babylonian algorithm at x = 49 as above by:

julia> Babylonian(x + ϵ)

7.0 + 0.07142857142857142ϵ

with the “infinitesimal part” being the derivative 0.5/
√
49 = 0.0714 · · · .

A nice thing about this dual-number viewpoint is that it corresponds directly to our notion of a derivative as
linearization:

f(x+ ϵ) = f(x) + f ′(x)ϵ+ (higher-order terms) ,

with the dual-number rule ϵ2 = 0 corresponding to dropping the higher-order terms.

8.2 Naive symbolic differentiation
Forward-mode AD implements the exact analytical derivative by propagating chain rules, but it is completely
different from what many people imagine AD might be: evaluating a program symbolically to obtain a giant
symbolic expression, and then differentiating this giant expression to obtain the derivative. A basic issue with this
approach is that the size of these symbolic expressions can quickly explode as the program runs. Let’s see what it
would look like for the Babylonian algorithm.

Imagine inputting a “symbolic variable” x into our Babylonian code, running the algorithm, and writing a big
algebraic expression for the result. After only one step, for example, we would get (x+ 1)/2. After two steps, we
would get ((x+ 1)/2 + 2x/(x+ 1))/2, which simplifies to a ratio of two polynomials (a “rational function”):

x2 + 6x+ 1

4(x+ 1)
.

Continuing this process by hand is quite tedious, but fortunately the computer can do it for us (as shown in the
accompanying Julia notebook). Three Babylonian iterations yields:

x4 + 28x3 + 70x2 + 28x+ 1

8 (x3 + 7x2 + 7x+ 1)
,

four iterations gives

x8 + 120x7 + 1820x6 + 8008x5 + 12870x4 + 8008x3 + 1820x2 + 120x+ 1

16 (x7 + 35x6 + 273x5 + 715x4 + 715x3 + 273x2 + 35x+ 1)
,

54

and five iterations produces the enormous expression:

x16+496x15+35960x14+906192x13+10518300x12+64512240x11+225792840x10+471435600x9+601080390x8+471435600x7+225792840x6+64512240x5+10518300x4+906192x3+35960x2+496x+1
32(x15+155x14+6293x13+105183x12+876525x11+4032015x10+10855425x9+17678835x8+17678835x7+10855425x6+4032015x5+876525x4+105183x3+6293x2+155x+1) .

Notice how quickly these grow—in fact, the degree of the polynomials doubles on every iteration! Now, if we take
the symbolic derivatives of these functions using our ordinary calculus rules, and simplify (with the help of the
computer), the derivative of one iteration is 1

2 , of two iterations is

x2 + 2x+ 5

4 (x2 + 2x+ 1)
,

of three iterations is
x6 + 14x5 + 147x4 + 340x3 + 375x2 + 126x+ 21

8 (x6 + 14x5 + 63x4 + 100x3 + 63x2 + 14x+ 1)
,

of four iterations is

x14+70x13+3199x12+52364x11+438945x10+2014506x9+5430215x8+8836200x7+8842635x6+5425210x5+2017509x4+437580x3+52819x2+3094x+85
16(x14+70x13+1771x12+20540x11+126009x10+440986x9+920795x8+1173960x7+920795x6+440986x5+126009x4+20540x3+1771x2+70x+1) ,

and of five iterations is a monstrosity you can only read by zooming in:

x30+310x29+59799x28+4851004x27+215176549x26+5809257090x25+102632077611x24+1246240871640x23+10776333438765x22+68124037776390x21+321156247784955x20+1146261110726340x19+3133113888931089x18+6614351291211874x17+10850143060249839x16+13883516068991952x15+13883516369532147x14+10850142795067314x13+6614351497464949x12+3133113747810564x11+1146261195398655x10+321156203432790x9+68124057936465x8+10776325550040x7+1246243501215x6+102631341330x5+5809427001x4+215145084x3+4855499x2+59334x+341
32(x30+310x29+36611x28+2161196x27+73961629x26+1603620018x25+23367042639x24+238538538360x23+1758637118685x22+9579944198310x21+39232152623175x20+122387258419860x19+293729420641881x18+546274556891506x17+791156255418003x16+894836006026128x15+791156255418003x14+546274556891506x13+293729420641881x12+122387258419860x11+39232152623175x10+9579944198310x9+1758637118685x8+238538538360x7+23367042639x6+1603620018x5+73961629x4+2161196x3+36611x2+310x+1) .

This is a terrible way to compute derivatives! (However, more sophisticated approaches to efficient symbolic differen-
tiation exist, such as the “D∗” algorithm, that avoid explicit giant formulas by exploiting repeated subexpressions.)

To be clear, the dual number approach (absent rounding errors) computes an answer exactly as if it evaluated
these crazy expressions at some particular x, but the words “as if” are very important here. As you can see, we do
not form these expressions, let alone evaluate them. We merely compute results that are equal to the values we
would have gotten if we had.

55

https://www.microsoft.com/en-us/research/publication/the-d-symbolic-differentiation-algorithm/

8.3 Automatic Differentiation via Computational Graphs
Let’s now get into automatic differentiation via computational graphs. For this section, we consider the following
simple motivating example.

Example 40
Define the following functions:

a(x, y) = sinx

b(x, y) = 1
y · a(x, y)

z(x, y) = b(x, y) + x.

Compute ∂z
∂x and ∂z

∂y .

There are a few ways to solve this problem. Firstly, of course, one can compute this symbolically, noting that

z(x, y) = b(x, y) + x =
1

y
a(x, y) + x =

sinx

y
+ x,

which implies
∂z

∂x
=

cosx

y
+ 1 and

∂z

∂y
= − sinx

y2
.

However, one can also use a Computational Graph (see Figure of Computational Graph below) where the edge
from node A to node B is labelled with ∂B

∂A .

a(x, y)x b(x, y) z(x, y)

y

cosx
1
y 1

1

−a(x,y)
y2

Figure 7: A computational graph corresponding to example 40, representing the computation of an output z(x, y)
from two inputs x, y, with intermediate quantities a(x, y) and b(x, y). The nodes are labelled by values, and edges
are labelled with the derivatives of the values with respect to the preceding values.

Now how do we use this directed acyclic graph (DAG) to find the derivatives? Well one view (called the
“forward view”) is given by following the paths from the inputs to the outputs and (left) multiplying as you go,
adding together multiple paths. For instance, following this procedure for paths from x to z(x, y), we have

∂z

∂x
= 1 · 1

y
· cosx+ 1 =

cosx

y
+ 1.

56

Similarly, for paths from y to z(x, y), we have

∂z

∂y
= 1 · −a(x, y)

y2
=
− sinx

y2
,

and if you have numerical derivatives on the edges, this algorithm works. Alternatively, you could follow a reverse
view and follow the paths backwards (multiplying right to left), and obtain the same result. Note that there is
nothing magic about these being scalar here– you could imagine these functions are the type that we are seeing
in this class and do the same computations! The only thing that matters here fundamentally is the associativity.
However, when considering vector-valued functions, the order in which you multiply the edge weights is vitally
important (as vector/matrix valued functions are not generally commutative).

The graph-theoretic way of thinking about this is to consider “path products”. A path product is the product
of edge weights as you traverse a path. In this way, we are interested in the sum of path products from inputs
to outputs to compute derivatives using computational graphs. Clearly, we don’t particularly care which order we
traverse the paths as long as the order we take the product in is correct. In this way, forward and reverse-mode
automatic differentiation is not so mysterious.

Let’s take a closer view of the implementation of forward-mode automatic differentiation. Suppose we are at a
node A during the process of computing the derivative of a computational graph, as shown in the figure below:

A f(A)

B1

B2

B3

∂f(A)
∂A

Suppose we know the path product P of all the edges up to and including the one from B2? to A. Then what
is the new path product as we move to the right from A? It is f ′(A) · P ! So we need a data structure that maps
in the following way:

(value, path product) 7→ (f(value), f ′ · path product).

In some sense, this is another way to look at the Dual Numbers– taking in our path products and spitting out
values. In any case, we overload our program which can easily calculate f(value) and tack-on f ′ · (path product).

One might ask how our program starts– this is how the program works in the “middle”, but what should our
starting value be? Well the only thing it can be for this method to work is (x, 1). Then, at every step you do the
following map listed above:

(value, path product) 7→ (f(value), f ′ · path product),

and at the end we obtain our derivatives.
Now how do we combine arrows? In other words, suppose at the two notes on the LHS we have the values (a, p)

and (b, q), as seen in the diagram below: So here, we aren’t thinking of a, b as numbers, but as variables. What

57

z = f(a, b)

(a, p)

(b, q)

∂z
∂a

∂z
∂b

should the new output value be? We want to add the two path products together, obtaining(
f(a, b),

∂z

∂a
p+

∂z

∂b
q

)
.

So really, our overloaded data structure looks like this:

(
f(a, b), ∂z

∂ap+
∂z
∂b q
)

(a, p)

(b, q)

This diagram of course generalizes if we may many different nodes on the left side of the graph.
If we come up with such a data structure for all of the simple computations (addition/subtraction, multiplication,

and division), and if this is all we need for our computer program, then we are set! Here is how we define the
structure for addition/subtraction, multiplication, and division.

58

Addition/Subtraction: See figure.

(
z = a1 ± a2,

∂z
∂a1
· 1 + ∂z

∂a2
· (±1)

)

(a1, p = 1)

(a2, q = ±1)

Figure 8: Figure of Addition/Subtraction Computational Graph

Multiplication: See figure.

(
z = a1a2,

∂z
∂a1
· a2 + ∂z

∂a2
· a1
)

(a1, p = a2)

(a2, q = a1)

Figure 9: Figure of Multiplication Computational Graph

Division: See figure.
In theory, these three graphs are all we need, and we can use Taylor series expansions for more complicated

functions. But in practice, we throw in what the derivatives of more complicated functions are so that we don’t
waste our time trying to compute something we already know, like the derivative of sine or of a logarithm.

59

(
z = a1/a2,

∂z
∂a1
· 1
a2
− ∂z

∂a2
· a1

a2
2

)

(a1, p = a2/a
2
2)

(a2, q = −a1/a22)

Figure 10: Figure of Division Computational Graph

8.3.1 Reverse Mode Automatic Differentiation on Graphs

When we do reverse mode, we have arrows going the other direction, which we will understand in this section of
the notes. In forward mode it was all about “what do we depend on,” i.e. computing the derivative on the right
hand side of the above diagram using the functions in the nodes on the left. In reverse mode, the question is really
“what are we influenced by?” or “what do we influence later?”

When going “backwards,” we need know what nodes a given node influences. For instance, given a node A, we
want to know the nodes Bi that is influenced by, or depends on, node A. So now our diagram looks like this:

(
a, ∂z

∂a

)
(x, ∂z/∂x)

(
b1,

∂z
∂b1

)

(
b2,

∂z
∂b2

)

(
b3,

∂z
∂b3

)

(z, 1)

So now, we eventually have a final node (z, 1) (far on the right hand side) where everything starts. This time,
all of our multiplications take place from right to left as we are in reverse mode. Our goal is to be able to calculate
the node (x, ∂z/∂x). So if we know how to fill in the ∂z

∂a term, we will be able to go from right to left in these
computational graphs (i.e., in reverse mode). In fact, the formula for getting ∂z

∂a is given by

∂z

∂a
=

s∑
i=1

∂bi
∂a

∂z

∂bi

where the bis come from the nodes that are influenced by the node A. This is again just another chain rule like
from calculus, but you can also view this as multiplying the sums of all the weights in the graph influenced by A.

Why can reverse mode be more efficient than forward mode? One reason it because it can save data and use it

60

p

x

q z

y

a

c d

b

later. Take, for instance, the following sink/source computational graph.
If x, y here are our sources, and z is our sink, we want to compute the sum of products of weights on paths from

sources to sinks. If we were using forward mode, we would need to compute the paths dca and dcb, which requires
four multiplications (and then you would add them together). If we were using reverse mode, we would only need
compute acd and bcd and sum them; notice reverse mode (since we need only compute cd once), only takes 3
multiplications. In general, this can more efficiently resolve certain types of problems, such as the source/sink one.

8.4 Forward- vs. Reverse-mode Differentiation
In this section, we briefly summarize the relative benefits and drawbacks of these two approaches to computation
of derivatives (whether worked out by hand or using AD software). From a mathematical point of view, the two
approaches are mirror images, but from a computational point of view they are quite different, because computer
programs normally proceed “forwards” in time from inputs to outputs.

Suppose we are differentiating a function f : Rn 7→ Rm, mapping n scalar inputs (an n-dimensional input) to
m scalar outputs (an m-dimensional output). The first key distinction of forward- vs. reverse-mode is how the
computational cost scales with the number/dimension of inputs and outputs:

• The cost of forward-mode differentiation (inputs-to-outputs) scales proportional to n, the number of inputs.
This is ideal for functions where n≪ m (few inputs, many outputs).

• The cost of reverse-mode differentiation (outputs-to-inputs) scales proportional to m, the number of outputs.
This is ideal for functions where m≪ n (few outputs, many inputs).

Before this chapter, we first saw these scalings in Sec. 2.5.1, and again in Sec. 6.3; in a future lecture, we’ll see it yet
again in Sec. 9.2. The case of few outputs is extremely common in large-scale optimization (whether for machine
learning, engineering design, or other applications), because then one has many optimization parameters (n ≫ 1)
but only a single output (m = 1) corresponding to the objective (or “loss”) function, or sometimes a few outputs
corresponding to objective and constraint functions. Hence, reverse-mode differentiation (“backpropagation”) is the
dominant approach for large-scale optimization and applications such as training neural networks.

There are other practical issues worth considering, however:

• Forward-mode differentiation proceeds in the same order as the computation of the function itself, from inputs
to outputs. This seems to make forward-mode AD easier to implement (e.g. our sample implementation in
Sec. 8.1) and efficient.

61

• Reverse-mode differentiation proceeds in the opposite direction to ordinary computation. This makes reverse-
mode AD much more complicated to implement, and adds a lot of storage overhead to the function compu-
tation. First you evaluate the function from inputs to outputs, but you (or the AD system) keep a record (a
“tape”) of all the intermediate steps of the computation; then, you run the computation in reverse (“play the
tape backwards”) to backpropagate the derivatives.

As a result of these practical advantages, even for the case of many (n > 1) inputs and a single (m = 1) output,
practitioners tell us that they’ve found forward mode to be more efficient until n becomes sufficiently large (perhaps
even until n > 100, depending on the function being differentiated and the AD implementation). (You may also be
interested in the blog post Engineering Trade-offs in AD by Chris Rackauckas, which is mainly about reverse-mode
implementations.)

If n = m, where neither approach has a scaling advantage, one typically prefers the lower overhead and simplicity
of forward-mode differentiation. This case arises in computing explicit Jacobian matrices for nonlinear root-finding
(Sec. 6.1), or Hessian matrices of second derivatives (Sec. 12), for which one often uses forward mode. . . or even a
combination of forward and reverse modes, as discussed below.

Of course, forward and reverse are not the only options. The chain rule is associative, so there are many possible
orderings (e.g. starting from both ends and meeting in the middle, or vice versa). A difficult6 problem that may
often require hybrid schemes is to compute Jacobians (or Hessians) in a minimal number of operations, exploiting
any problem-specific structure (e.g. sparsity: many entries may be zero). Discussion of this and other AD topics
can be found, in vastly greater detail than in these notes, in the book Evaluating Derivatives (2nd ed.) by Griewank
and Walther (2008).

8.4.1 Forward-over-reverse mode: Second derivatives

Often, a combination of forward- and reverse-mode differentiation is advantageous when computing second deriva-
tives, which arise in many practical applications.

Hessian computation: For example, let us consider a function f(x) : Rn → R mapping n inputs x to a
single scalar. The first derivative f ′(x) = (∇f)T is best computed by reverse mode if n≫ 1 (many inputs). Now,
however, consider the second derivative, which is the derivative of g(x) = ∇f , mapping n inputs x to n outputs
∇f . It should be clear that g′(x) is therefore an n × n Jacobian matrix, called the Hessian of f , which we will
discuss much more generally in Sec. 12. Since g(x) has the same number of inputs and outputs, neither forward nor
reverse mode has an inherent scaling advantage, so typically forward mode is chosen for g′ thanks to its practical
simplicity, while still computing ∇f in reverse-mode. That is, we compute ∇f by reverse mode, but then compute
g′ = (∇f)′ by applying forward-mode differentiation to the ∇f algorithm. This is called a forward-over-reverse
algorithm.

An even more clear-cut application of forward-over-reverse differentiation is to Hessian–vector products. In
many applications, it turns out that what is required is only the product (∇f)′v of the Hessian (∇f)′ with an
arbitrary vector v. In this case, one can completely avoid computing (or storing) the Hessian matrix explicitly,
and incur computational cost proportional only to that of a single function evaluation f(x). The trick is to recall
(from Sec. 2.2.1) that, for any function g, the linear operation g′(x)[v] is a directional derivative, equivalent to
a single-variable derivative ∂

∂αg(x + αv) evaluated at α = 0. Here, we simply apply that rule to the function
g(x) = ∇f , and obtain the following formula for a Hessian–vector product:

(∇f)′v =
∂

∂α

(
∇f |x+αv

)∣∣∣∣
α=0

.

6In fact, extraordinarily difficult: “NP-complete” (Naumann, 2006).

62

https://www.stochasticlifestyle.com/engineering-trade-offs-in-automatic-differentiation-from-tensorflow-and-pytorch-to-jax-and-julia/
https://dl.acm.org/doi/abs/10.5555/3114201.3114717

Computationally, the inner evaluation of the gradient∇f at an arbitrary point x+αv can be accomplished efficiently
by a reverse/adjoint/backpropagation algorithm. In contrast, the outer derivative with respect to a single input α
is best performed by forward-mode differentiation.7 Since the Hessian matrix is symmetric (as discussed in great
generality by Sec. 12), the same algorithm works for vector–Hessian products vT (∇f)′ = [(∇f)′v]T , a fact that
we employ in the next example.

Scalar-valued functions of gradients: There is another common circumstance in which one often combines
forward and reverse differentiation, but which can appear somewhat more subtle, and that is in differentiating a
scalar-valued function of a gradient of another scalar-valued function. Consider the following example:

Example 41
Let f(x) : Rn 7→ R be a scalar-valued function of n ≫ 1 inputs with gradient ∇f |x = f ′(x)T , and let
g(z) : Rn 7→ R be another such function with gradient ∇g|z = g′(z)T . Now, consider the scalar-valued
function h(x) = g(∇f |x) : Rn 7→ R and compute ∇h|x = h′(x)T .

Denote z = ∇f |x. By the chain rule, h′(x) = g′(z)(∇f)′(x), but we want to avoid explicitly computing
the large n× n Hessian matrix (∇f)′. Instead, as discussed above, we use the fact that such a vector–Hessian
product is equivalent (by symmetry of the Hessian) to the transpose of a Hessian–vector product multiplying
the Hessian (∇f)′ with the vector ∇g = g′(z)T , which is equivalent to a directional derivative:

∇h|x = h′(x)T =
∂

∂α

(
∇f |x+α∇g|z

)∣∣∣∣
α=0

,

involving differentiation with respect to a single scalar α ∈ R. As for any Hessian–vector product, therefore,
we can evaluate h and ∇h by:

1. Evaluate h(x): evaluate z = ∇f |x by reverse mode, and plug it into g(z).

2. Evaluate ∇h:

(a) Evaluate ∇g|z by reverse mode.

(b) Implement ∇f |x+α∇g|z
by reverse mode, and then differentiate with respect to α by forward mode,

evaluated at α = 0.

This is a “forward-over-reverse” algorithm, where forward mode is used efficiently for the single-input derivative
with respect to α ∈ R, combined with reverse mode to differentate with respect to x, z ∈ Rn.

Example Julia code implementing the above “forward-over-reverse” process for just such a h(x) = g(∇f) function
is given below. Here, the forward-mode differentiation with respect to α is implemented by the ForwardDiff.jl
package discussed in Sec. 8.1, while the reverse-mode differentiation with respect to x or z is performed by the
Zygote.jl package. First, let’s import the packages and define simple example functions f(x) = 1/∥x∥ and g(z) =

(
∑

k zk)
3, along with the computation of h via Zygote:

julia> using ForwardDiff, Zygote, LinearAlgebra

julia> f(x) = 1/norm(x)

julia> g(z) = sum(z)^3

julia> h(x) = g(Zygote.gradient(f, x)[1])
7The Autodiff Cookbook, part of the JAX documentation, discusses this algorithm in a section on Hessian–vector products. It

notes that one could also interchange the ∂/∂α and ∇x derivatives and employ reverse-over-forward mode, but suggests that this is
less efficient in practice: “because forward-mode has less overhead than reverse-mode, and since the outer differentiation operator here
has to differentiate a larger computation than the inner one, keeping forward-mode on the outside works best.” It also presents another
alternative: using the identity (∇f)′v = ∇(vT∇f), one can apply reverse-over-reverse mode to take the gradient of vT∇f , but this has
even more computational overhead.

63

https://fluxml.ai/Zygote.jl/stable/
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

Now, we’ll compute ∇h by forward-over-reverse:

julia> function ∇h(x)
∇f(y) = Zygote.gradient(f, y)[1]

∇g = Zygote.gradient(g, ∇f(x))[1]
return ForwardDiff.derivative(α -> ∇f(x + α*∇g), 0)

end

We can now plug in some random numbers and compare to a finite-difference check:

julia> x = randn(5); δx = randn(5) * 1e-8;

julia> h(x)

-0.005284687528953334

julia> ∇h(x)
5-element Vector{Float64}:

-0.006779692698531759

0.007176439898271982

-0.006610264199241697

-0.0012162087082746558

0.007663756720005014

julia> ∇h(x)' * δx # directional derivative

-3.0273434457397667e-10

julia> h(x+δx) - h(x) # finite-difference check

-3.0273433933303284e-10

The finite-difference check matches to about 7 significant digits, which is as much as we can hope for—the forward-
over-reverse code works!

Problem 42
A common variation on the above procedure, which often appears in machine learning, involves a function
f(x, p) ∈ R that maps input “data” x ∈ Rn and “parameters” p ∈ RN to a scalar. Let ∇xf and ∇pf denote
the gradients with respect to x and p.

Now, suppose we have a function g(z) : Rn 7→ R as before, and define h(x, p) = g(∇xf |x,p). We want to
compute ∇ph = (∂h/∂p)T , which will involve “mixed” derivatives of f with respect to both x and p.

Show that you can compute ∇ph by:

∇ph|x,p =
∂

∂α

(
∇pf |x+α∇g|z,p

)∣∣∣∣
α=0

,

where z = ∇xf |x,p. (Crucially, this avoids ever computing an n×N mixed-derivative matrix of f .)
Try coming up with simple example functions f and g, implementing the above formula by forward-over-

reverse in Julia similar to above (forward mode for ∂/∂α and reverse mode for the ∇’s), and checking your
result against a finite-difference approximation.

64

MIT OpenCourseWare
https://ocw.mit.edu

18.S096 Matrix Calculus for Machine Learning and Beyond
Independent Activities Period (IAP) 2023��

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	cover.pdf
	Blank Page

