Introduction and Syllabus for 18.S096:

 Matnix Calculus IAP 2023
Profs. Alan Edelman \& Steven Johnson MWF 11am-1pm in 2-190

- Lectures: Jan. 18,20,23,25,27 + Feb. 1,3 - 11am-1pm in 2-142, short break around noon
- Two Psets: Released Wednesday due following Wednesday (Jan 19 \& 26) @ midnight on Canvas
- 3 Units
- Prerequisite: Linear Algebra (18.06 or similar)

Some demos and hw may use julià (minimal programming experience assumed, though most LinAlg classes at MIT use a little Julia already)

Where does matrix calculus fit in?

- MIT 18.01: Scalar or Single Variable Calculus
- MIT 18.02: Vector or Multivariable Calculus


```
18.02 Calculus
\ (4, &) 今2L
rereq: Calculus I (GIR)
Jnits: 5-0-7
Credit cannot also be received for 18.022, 18.02A, CC.1802, ES.1802, ES.182A
{ Lecture: TR11,F2 (32-123) Recitation: MW9 (2-147) or MW10 (2-147, 2-142) or MW11 (2-142, 2-
143, 2-142, 2-136) or MW1 (2-142, 2-136) or MW2 (2-136) or MW3 (2-136) +final
Calculus of several variables. Vector algebra in 3-space, determinants, matrices. Vector-valued functions
space motion. Scalar functions of several variables: partial differentiation, gradient, optimization techniq
```

Perhaps an ideal world might go Scalar, Vector, Matrix, Higher Dimensional Arrays... (0 dimensional, 1 dimensional, 2 dimensional...)
(e.g. size(scalar)=[], size(vector)=[n], size(matrix) $=[\mathrm{m}, \mathrm{n}], \ldots$)
(some programming language do not implement this fully)

Why now?

- In the last decade or two, the role of linear algebra has taken on larger importance in lots of areas including Machine Learning, Statistics, Engineering, etc.
- Warning: googling Matrix Calculus may only give a small view of the full range of the mathematics that we hope to cover example what is the derivative of X^{2} when X is a square matrix? Should it be $2 X$? (It's not). What about X^{-1} ? $-X^{-2}$? (Not quite).
 information, see https://ocw.mit.edu/help/faq-fair-use.

Notes on Matrix Calculus for

 Deep Learning(8) nemare Fobs. 2018 . 0 minnead

Based on this paper by Parr and Howard
Deep learning is an exciting field that is having a great real-world impact. This article is a collection of notes based on 'The Matrix Calculus You Need For Deep Learning' by Terence Parr and Jeremy Howard.

© Medium (medium.com). All rights reserved This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Home A matrix calculus problem in backpropagation
puesc
(1) Questions
© Stack Exchange Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Applications: Physical Problems

Topology-optimized aircraft wing

$\sim 10^{9}$ parameters

© Springer Nature Limited. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Topology optimization with fluid dynamics
 viscosity
Zhou, Mingdong, et al. "Shape morphing and opology optimization of fluid channels by F Numerical Methods in Fluids 88.6 (2018): 296-313.

Engineering optimization (structural "topology" optimization): Find the physical structure that optimizes some objective (e.g. focusing light, minimizing drag, supporting weight, ...).
 This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Topology-optimized 3D-printed seat bracket (General Motors)
© General Motors. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Key point is that if you have any complicated calculation with lots of parameters, you can compute gradient (sensitivity) of a scalar output $\mathrm{g}(\mathrm{u})$ with respect to every parameter with roughly one additional calculation.

Enabling factor for large-scale optimization in machine learning [$\mathrm{g}=$ loss function, $\mathrm{u}=$ network outputs, $\mathrm{p}=$ network weights \& other parameters], statistics, finance, and many other fields.
© John Wiley \& Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Courtesy Elsevier, Inc., http://www.sciencedirect.com.
Used with permission.

Applications: Data Science \& Multivariable Statistics

Derivative of a Matrix : Data Science Basics

The Role of Automatic Differentiation

Typical differential calculus classes are mostly symbolic calculus:

- Students learn to do what mathematica/wolfram alpha readily can do

For a small portion of the class, some numerics may show up

- approximate $f^{\prime}(x)$ by finite differences $(f(x+\epsilon)-f(x)) / \epsilon$ or $(f(x+\epsilon)-f(x-\epsilon)) / 2 \epsilon$
- e.g. students and professors think that "sin" is actually computed using Taylor series

Today's automatic differentiation is neither of these two things. It is more in the field of the computer science topic of compiler technology than mathematics.

However the underlying mathematics is interesting! We will learn about this in this class.

Everything is easy with scalar functions of scalars

- The derivative of a function of one variable is a function of one variable
- The linearization of a function has the form $\left(y-y_{0}\right) \approx f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$

Other notations (sometimes confusing x and x_{0}):

- $\delta y \approx f^{\prime}(x) \delta x$
- $d y=f^{\prime}(x) d x$
- $f(x)-f\left(x_{0}\right) \approx f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$
- $\quad \mathrm{df}=\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx} \leftarrow$ this one is preferred here
- Numerics are fairly trivial:

Numerical Example of what's going on in the previous slide

```
Suppose \(f(x)=x^{2}\) with \(\left(x_{0}, y_{0}\right)=(3,9)\) and \(f^{\prime}\left(x_{0}\right)=6\)
\(\mathrm{f}(3.0001)=9.00060001\)
\(\mathrm{f}(3.00001)=9.0000600001\)
\(f(3.000001)=9.000006000001\)
\(f(3.0000001)=9.00000060000001 \quad\) (Notice that \(\Delta y=6 \Delta x\) )
\(f(3+\Delta x) \approx 9+\Delta y=9+6 \Delta x \quad\left(\Delta y=f^{\prime}\left(x_{0}\right) \Delta x\right)\)
\(f(x)-f(3) \approx 6(x-3) \leftarrow\) linearization of \(x^{2}\) at \(x=3\) is the "multiply by 6 " function
```

We write:
$d y=f\left(x_{0}+d x\right)-f\left(x_{0}\right)$ where $d y=f^{\prime}\left(x_{0}\right) d x$ or $f\left(x_{0}+d x\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) d x$
I think of $d x$ and dy as really small numbers; in math they are called infinitesimal. In rigorous mathematics, one takes limits.

Demo

http://www.matrixcalculus.org/

Notation: Elementwise vector or matrix product. We will use $x .{ }^{*} y$, they use $x \circ y$

- $\quad[2,3] . *[10,11]=[20,33]$
- $\operatorname{trace}(A)=\operatorname{tr}(A)=$ the sum (a scalar) of the diagonal elements of matrix A
- Some limitations:
- matrixcalculus.org will not display derivatives that involve more than 2 dimensions:
- e.g. a derivative of a matrix with respect to a vector or a matrix
$?$ question @1143 © 合 向 -

Matrix Calculus

Take a problem like:

```
d}d0t((\mathbb{Y}-\mathbb{X}0)(\mathbb{Y}-\mathbb{X}0\mp@subsup{)}{}{t})
where
\(\mathbb{Y} \in \mathbb{R}^{n, m}, \mathbb{X} \in \mathbb{R}^{n, k}\), and \(\theta \in \mathbb{R}^{k, m}\)
```

Do people have good resources for the detailed rules behind matrix calculus to solve problems like this? It seems to be one of these things that is implicitly required for higher level ML/Statistics classes but is never taught at MIT (say in 18.022).

If we differentiate a scalar function of a matrix
Answer is a matrix: - $2 \mathrm{X}^{\prime}(\mathrm{Y}-\mathrm{XX})$

$$
\begin{aligned}
& \text { derivative of } \operatorname{tr}\left((\mathrm{Y}-\mathrm{X} * \mathrm{H})^{\prime *}(\mathrm{Y}-\mathrm{X} * \mathrm{H})\right) \\
& \frac{\partial}{\partial H}\left(\operatorname{tr}\left((Y-X \cdot H)^{\top} \cdot(Y-X \cdot H)\right)\right)= \\
& \text { where }
\end{aligned}
$$

$$
\text { w.r.t. } \mathrm{H}
$$

$$
\frac{\partial}{\partial H}\left(\operatorname{tr}\left((Y-X \cdot H)^{\top} \cdot(Y-X \cdot H)\right)\right)=-2 \cdot X^{\top} \cdot(Y-X \cdot H)
$$

Format of the first derivative, explicit notation:

input $\downarrow \backslash$ output \rightarrow	scalar	vector	matrix
scalar	scalar	vector (e.g. velocity)	matrix
vector	gradient = vector (or column vector) Notation: $\nabla \mathrm{f}$	matrix (Jacobian matrix) $f^{\prime}(x)=$ row vector df= $f^{\prime}(x) \mathrm{dx}$	higher order array
matrix	matrix	higher order array	higher order array

Format of the first derivative, implicit view: linear operator

$d\left(x^{3}\right)=3 x^{2} d x$ scalar in, scalar out (multiply the infinitesimal scalar $d x$ by $3 x^{2}$)
$d\left(x^{\top} x\right)=2 x^{\top} d x$ scalar in, vector out (take the dot product of the infinitesimal vector $d x$ with the vector $2 x$)
$d\left(X^{2}\right)=X d X+d X X$ matrix in, matrix out (multiply the infinitesimal matrix $d X$ by matrix X on each side and add)
You will learn to do all of these in great detail - the purpose of this slide is just to plant the notion of linearization.

Let's check the linearization numerically

$$
\begin{aligned}
& f(x)=x^{\top} x \\
& x_{0}=[3 ; 4] \Rightarrow f\left(x_{0}\right)=x_{0}^{\top} x_{0}=25 \\
& d x=[0.001 ; 0.002] \Rightarrow(3.001)^{2}+(4.002)^{2}=25.022005 \\
& 2 x_{0}^{\top} d x=2[3 ; 4]^{\top}[0.001 ; 0.002]=0.022 \\
& \text { Notice that } f\left(x_{0}+d x\right) \approx f\left(x_{0}\right)+2 x_{0}^{\top} d x=25+0.022
\end{aligned}
$$

Matrix and vector product rule

$d(A B)=(d A) B+A(d B)$ is still correct but generally the products do not commute
However if x is a vector:
$d\left(x^{\top} x\right)=d x^{\top} x+x^{\top} d x$ and since vector dot products commute (a dot b is b dot a), we in this special case can write $d\left(x^{\top} x\right)=(2 x)^{\top} d x$.

Example: $x=[1 ; 2 ; 3 ; 4] ; \quad d x=\operatorname{rand}(4) / 100000$;
$(x+d x)^{\prime *}(x+d x)-x^{\prime} x$ \# this is $d\left(x^{\prime} x\right)$
$(2 x)^{\prime *} d x$ \# this is approximately the same as $d\left(x^{\prime} x\right)$
Note: the way the product rule works for vectors and matrices is that transposes "go for the ride"
Examples:

1. $d\left(u^{\top} v\right)=d u^{\top} v+u^{\top} d v$ but note $d u^{\top} v=v^{\top} d u$ because dot products commute 2. $d\left(u v^{\top}\right)=d u v^{\top}+u d v^{\top}$

For the explicit form we want derivatives of all outputs w.r.t. to all inputs.

How many parameters are needed? If there are n inputs and m outputs

Answer:

Second derivatives (a few words for starters)

Explicit form: The second derivative of a scalar valued function of a vector is represented explicitly as a symmetric matrix known as the Hessian of the function.

Implicit form: All second derivatives are what is known in advanced linear algebra as a quadratic form (or a symmetric bilinear form).

MIT OpenCourseWare
https://ocw.mit.edu

18.S096 Matrix Calculus for Machine Learning and Beyond

Independent Activities Period (IAP) 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

