
10 Calculus of Variations
In this lecture, we will apply our derivative machinery to a new type of input: neither scalars, nor column vectors,
nor matrices, but rather the inputs will be functions u(x), which form a perfectly good vector space (and can
even have norms and inner products).12 It turns out that there are lots of amazing applications for differentiating
with respect to functions, and the resulting techniques are sometimes called the “calculus of variations” and/or
“Frechét” derivatives.

10.1 Functionals: Mapping functions to scalars

Example 44
For example, consider functions u(x) that map x ∈ [0, 1]→ u(x) ∈ R. We may then define the function f :

f(u) =

∫ 1

0

sin(u(x)) dx.

Such a function, mapping an input function u to an output number, is sometimes called a “functional.” What
is f ′ or ∇f in this case?

Recall that, given any function f , we always define the derivative as a linear operator f ′(u) via the equation:

df = f(u+ du)− f(u) = f ′(u)[du] ,

where now du denotes an arbitrary “small-valued” function du(x) that represents a small change in u(x), as depicted
in Fig. 12 for the analogous case of a non-infinitesimal δu(x). Here, we may compute this via linearization of the
integrand:

df = f(u+ du)− f(u)

=

∫ 1

0

sin(u(x) + du(x))− sin(u(x)) dx

=

∫ 1

0

cos(u(x)) du(x) dx = f ′(u)[du] ,

where in the last step we took du(x) to be arbitrarily small13 so that we could linearize sin(u + du) to first-order
in du(x). That’s it, we have our derivative f ′(u) as a perfectly good linear operation acting on du!

10.2 Inner products of functions
In order to define a gradient ∇f when studying such “functionals” (maps from functions to R), it is natural to ask
if there is an inner product on the input space. In fact, there are perfectly good ways to define inner products of
functions! Given functions u(x), v(x) defined on x ∈ [0, 1], we could define a “Euclidean” inner product:

⟨u, v⟩ =
∫ 1

0

u(x)v(x) dx.

12Being fully mathematically rigorous with vector spaces of functions requires a lot of tedious care in specifying a well-behaved set
of functions, inserting annoying caveats about functions that differ only at isolated points, and so forth. In this lecture, we will mostly
ignore such technicalities—we will implicitly assume that our functions are integrable, differentiable, etcetera, as needed. The subject
of functional analysis exists to treat such matters with more care.

13Technically, it only needs to be small “almost everywhere” since jumps that occur only at isolated points don’t affect the integral.

74



0.0 0.2 0.4 0.6 0.8 1.0
x

0.8

1.0

1.2

1.4

1.6

1.8

2.0

fu
nc

tio
n 

va
lu

e

u(x)
u(x) + u(x)

Figure 12: If our f(u)’s inputs u are functions u(x) (e.g., mapping [0, 1] 7→ R), then the essence of differentiation
is linearizing f for small perturbations δu(x) that are themselves functions, in the limit where δu(x) becomes
arbitrarily small. Here, we show an example of a u(x) and a perturbation u(x) + δu(x).

Notice that this implies

∥u∥ :=
√
⟨u, u⟩ =

√∫ 1

0

u(x)2dx .

Recall that the gradient ∇f is defined as whatever we take the inner product of du with to obtain df . Therefore,
we obtain the gradient as follows:

df = f ′(u)[du] =

∫ 1

0

cos(u(x)) du(x) dx = ⟨∇f, du⟩ =⇒ ∇f = cos(u(x)) .

The two infinitesimals du and dx may seem a bit disconcerting, but if this is confusing you can just think of the
du(x) as a small non-infinitesimal function δu(x) (as in Fig. 12) for which we are dropping higher-order terms.

The gradient ∇f is just another function, cos(u(x))! As usual, ∇f has the same “shape” as u.

Remark 45. It might be instructive here to compare the gradient of an integral, above, with a discretized version
where the integral is replaced by a sum. If we have

f(u) =
n∑

k=1

sin(uk)∆x

where ∆x = 1/n, for a vector u ∈ Rn, related to our previous u(x) by uk = u(k∆x), which can be thought of as a
“rectangle rule” (or Riemann sum, or Euler) approximation for the integral. Then,

∇uf =


cos(u1)

cos(u2)
...

∆x .

Why does this discrete version have a ∆x multiplying the gradient, whereas our continuous version did not? The
reason is that in the continuous version we effectively included the dx in the definition of the inner product ⟨u, v⟩
(which was an integral). In discrete case, the ordinary inner product (hence the ordinary gradient) is just a sum.
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However, if we define a weighted discrete inner product ⟨u, v⟩ =
∑n

k=1 ukvk∆x, then, according to Sec. 5, this
changes the definition of the gradient, and in fact will remove the ∆x term to correspond to the continuous version.

10.3 Example: Minimizing arc length
We now consider a more tricky example with an intuitive geometric interpretation.

Example 46
Let u be a differentiable function on [0, 1] and consider the functional

f(u) =

∫ 1

0

√
1 + u′(x)2 dx.

Solve for ∇f when u(0) = u(1) = 0.

Geometrically, you learned in first-year calculus that this is simply the length of the curve u(x) from x = 0

to x = 1. To differentiate this, first notice that ordinary single-variable calculus gives us the linearization

d
(√

1 + v2
)
=
√
1 + (v + dv)2 −

√
1 + v2 =

(√
1 + v2

)′
dv =

v√
1 + v2

dv .

Therefore,

df = f(u+ du)− f(u)

=

∫ 1

0

(√
1 + (u+ du)′2 −

√
1 + u′2

)
dx

=

∫ 1

0

u′
√
1 + u′2

du′dx.

However, this is a linear operator on du′ and not (directly) on du. Abstractly, this is fine, because du′ is itself
a linear operation on du, so we have f ′(u)[du] as the composition of two linear operations. However, it is more
revealing to rewrite it explicitly in terms of du, for example in order to define ∇f . To accomplish this, we can
apply integration by parts to obtain

f ′(u)[du] =

∫ 1

0

u′
√
1 + u′2

du′dx =
u′

√
1 + u′2

du

∣∣∣∣1
0

−
∫ 1

0

(
u′

√
1 + u′2

)′

du dx .

Notice that up until now we did not need utilize the “boundary conditions” u(0) = u(1) = 0 for this calculation.
However, if we want to restrict ourselves to such functions u(x), then our perturbation du cannot change the
endpoint values, i.e. we must have du(0) = du(1) = 0. (Geometrically, suppose that we want to find the u that
minimizes arc length between (0, 0) and (1, 0), so that we need to fix the endpoints.) This implies that the boundary
term in the above equation is zero. Hence, we have that

df = −
∫ 1

0

(
u′

√
1 + u′2

)′

︸ ︷︷ ︸
∇f

du dx = ⟨∇f, du⟩ .

Furthermore, note that the u that minimizes the functional f has the property that ∇f |u = 0. Therefore, for
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a u that minimizes the functional f (the shortest curve), we must have the following result:

0 = ∇f = −
(

u′
√
1 + u′2

)′

= −
u′′√1 + u′2 − u′ u′′u′

√
1+u′2

1 + u′2

= −u′′(1 + u′2)− u′′u′2

(1 + u′2)3/2

= − u′′

(1 + u′2)3/2
.

Hence, ∇f = 0 =⇒ u′′(x) = 0 =⇒ u(x) = ax+ b for constants a, b; and for these boundary conditions a = b = 0.
In other words, u is the horizontal straight line segment!

Thus, we have recovered the familiar result that straight line segments in R2 are the shortest curves between
two points!

Remark 47. Notice that the expression u′′

(1+u′2)3/2
is the formula from multivariable calculus for the curvature of

the curve defined by y = u(x). It is not a coincidence that the gradient of arc length is the (negative) curvature,
and the minimum arc length occurs for zero gradient = zero curvature.

10.4 Euler–Lagrange equations
This style of calculation is part of the subject known as the calculus of variations. Of course, the final answer in
this example above (a straight line) may have been obvious, but a similar approach can be applied to many more
interesting problems. We can generalize the approach as follows:

Example 48
Let f(u) =

∫ b

a
F (u, u′, x) dx where u is a differentiable function on [a, b]. Suppose the endpoints of u are fixed

(i.e. its values at x = a and x = b are constants). Let us calculate df and ∇f .

We find:

df = f(u+ du)− f(u)

=

∫ b

a

(
∂F

∂u
du+

∂F

∂u′ du
′
)
dx

=
∂F

∂u′ du
∣∣b
a︸ ︷︷ ︸

=0

+

∫ b

a

(
∂F

∂u
−
(
∂F

∂u′

)′
)

du dx ,

where we used the fact that du = 0 at a or b if the endpoints u(a) and u(b) are fixed. Hence,

∇f =
∂F

∂u
−
(
∂F

∂u′

)′

,

which equals zero at extremum. Notice that this gives rise to a 2nd-order differential equation in u, known as the
Euler–Lagrange equations!

Remark 49. The notation ∂F/∂u′ is a notoriously confusing aspect of the calculus of variations—what does it
mean to take the derivative “with respect to u′” while holding u fixed? A more explicit, albeit more verbose, way
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of expressing this is to think of F (u, v, x) as a function of three unrelated arguments, for which we only substitute
v = u′ after differentiating with respect to the second argument v:

∂F

∂u′ =
∂F

∂v

∣∣∣∣
v=u′

.

There are many wonderful applications of this idea. For example, search online for information about the
“brachistochrone problem” (animated here) and/or the “principle of least action”. Another example is a catenary
curve, which minimizes the potential energy of a hanging cable. A classic textbook on the topic is Calculus of
Variations by Gelfand and Fomin.
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