
11 Derivatives of Random Functions
These notes are from a guest lecture by Gaurav Arya in IAP 2023.

11.1 Introduction
In this class, we’ve learned how to take derivatives of all sorts of crazy functions. Recall one of our first examples:

f(A) = A2, (8)

where A is a matrix. To differentiate this function, we had to go back to the drawing board, and ask:

Question 50. If we perturb the input slightly, how does the output change?

To this end, we wrote down something like:

δf = (A+ δA)2 −A2 = A(δA) + (δA)A+ (δA)2︸ ︷︷ ︸
neglected

. (9)

We called δf and δA differentials in the limit where δA became arbitrarily small. We then had to ask:

Question 51. What terms in the differential can we neglect?

We decided that (δA)2 should be neglected, justifying this by the fact that (δA)2 is “higher-order”. We were left
with the derivative operator δA 7→ A(δA)+(δA)A: the best possible linear approximation to f in a neighbourhood
of A. At a high level, the main challenge here was dealing with complicated input and output spaces: f was
matrix-valued, and also matrix-accepting. We had to ask ourselves: in this case, what should the notion of a
derivative even mean?

In this lecture, we will face a similar challenge, but with an even weirder type of function. This time, the output
of our function will be random. Now, we need to revisit the same questions. If the output is random, how can we
describe its response to a change in the input? And how can we form a useful notion of derivative?

11.2 Stochastic programs
More precisely, we will consider random, or stochastic, functions X with real input p ∈ R and real-valued random-
variable output. As a map, we can write X as

p 7→ X(p), (10)

where X(p) is a random variable. (To keep things simple, we’ll take p ∈ R and X(p) ∈ R in this chapter, though
of course they could be generalized to other vector spaces as in the other chapters. For now, the randomness is
complicated enough to deal with.)

The idea is that we can only sample from X(p), according to some distribution of numbers with probabilities
that depend upon p. One simple example would be sampling real numbers uniformly (equal probabilities) from
the interval [0, p]. As a more complicated example, suppose X(p) follows the exponential distribution with scale p,
corresponding to randomly sampled real numbers x ≥ 0 whose probability decreases proportional to e−x/p. This
can be denoted X(p) ∼ Exp(p), and implemented in Julia by:

julia> using Distributions

79



julia> sample_X(p) = rand(Exponential(p))

sample_X (generic function with 1 method)

We can take a few samples:

julia> sample_X(10.0)

1.7849785709142214

julia> sample_X(10.0)

4.435847397169775

julia> sample_X(10.0)

0.6823343897949835

julia> mean(sample_X(10.0) for i = 1:10^9) # mean = p

9.999930348291866

If our program gives a different output each time, what could a useful notion of derivative be? Before we try
to answer this, let’s ask why we might want to take a derivative. The answer is that we may be very interested
in statistical properties of random functions, i.e. values that can be expressed using averages. Even if a function
is stochastic, its average (“expected value”), assuming the average exists, can be a deterministic function of its
parameters that has a conventional derivative.

So, why not take the average first, and then take the ordinary derivative of this average? This simple approach
works for very basic stochastic functions (e.g. the exponential distribution above has expected value p, with deriva-
tive 1), but runs into practical difficulties for more complicated distributions (as are commonly implemented by
large computer programs working with random numbers).

Remark 52. It is often much easier to produce an “unbiased estimate” X(p) of a statistical quantity than to compute
it exactly. (Here, an unbiased estimate means that X(p) averages out to our statistical quantity of interest.)

For example, in deep learning, the “variational autoencoder” (VAE) is a very common architecture that is
inherently stochastic. It is easy to get a stochastic unbiased estimate of the loss function by running a random
simulation X(p): the loss function L(p) is then the “average” value of X(p), denoted by the expected value E[X(p)].
However, computing the loss L(p) exactly would require integrating over all possible outcomes, which usually is
impractical. Now, to train the VAE, we also need to differentiate L(p), i.e. differentiate E[X(p)] with respect to p!

Perhaps more intuitive examples can be found in the physical sciences, where randomness may be baked into your
model of a physical process. In this case, it’s hard to get around the fact that you need to deal with stochasticity!
For example, you may have two particles that interact with an average rate of r. But in reality, the times when
these interactions actually occur follow a stochastic process. (In fact, the time until the first interaction might be
exponentially distributed, with scale 1/r.) And if you want to (e.g.) fit the parameters of your stochastic model to
real-world data, it’s once again very useful to have derivatives.

If we can’t compute our statistical quantity of interest exactly, it seems unreasonable to assume we can compute
its derivative exactly. However, we could hope to stochastically estimate its derivative. That is, if X(p) represents
the full program that produces an unbiased estimate of our statistical quantity, here’s one property we’d definitely
like our notion of derivative to have: we should be able to construct from it an unbiased gradient estimator14 X ′(p)

14For more discussion of these concepts, see (e.g.) the review article “Monte Carlo gradient estimation in machine learning” (2020)
by Mohamed et al. (https://arxiv.org/abs/1906.10652).

80

https://arxiv.org/abs/1906.10652


satisfying

E[X ′(p)] = E[X(p)]′ =
∂E[X(p)]

∂p
. (11)

Of course, there are infinitely many such estimators. For example, given any estimator X ′(p) we can add any
other random variable that has zero average without changing the expectation value. But in practice there are two
additional considerations: (1) we want X ′(p) to be easy to compute/sample (about as easy as X(p)), and (2) we
want the variance (the “spread”) of X ′(p) to be small enough that we don’t need too many samples to estimate its
average accurately (hopefully no worse than estimating E[X(p)]).

11.3 Stochastic differentials and the reparameterization trick
Let’s begin by answering our first question (Question 50): how does X(p) respond to a change in p? Let us consider
a specific p and write down a stochastic differential, taking a small but non-infinitesimal δp to avoid thinking about
infinitesimals for now:

δX(p) = X(p+ δp)−X(p), (12)

where δp represents an arbitrary small change in p. What sort of object is δX(p)?
Since we’re subtracting two random variables, it ought to itself be a random variable. However, δX(p) is still

not fully specified! We have only specified the marginal distributions of X(p) and X(p+ δp): to be able to subtract
the two, we need to know their joint distribution.

One possibility is to treat X(p) and X(p + δp) as independent. This means that δX(p) would be constructed
as the difference of independent samples. Let’s see how samples from δX(p) would look like in this case!

julia> sample_X(p) = rand(Exponential(p))

sample_X (generic function with 1 method)

julia> sample_δX(p, δp) = sample_X(p + δp) - sample_X(p)

sample_δX (generic function with 1 method)

julia> p = 10; δp = 1e-5;

julia> sample_δX(p, δp)

-26.000938718875904

julia> sample_δX(p, δp)

-2.6157162001718092

julia> sample_δX(p, δp)

6.352622554495474

julia> sample_δX(p, δp)

-9.53215951927184

julia> sample_δX(p, δp)

1.2232268930932104

We can observe something a bit worrying: even for a very tiny δp (we chose δp = 10−5), δX(p) is still fairly large:

81



essentially as large as the original random variables. This is not good news if we want to construct a derivative
from δX(p): we would rather see its magnitude getting smaller and smaller with δp, like in the non-stochastic case.
Computationally, this will make it very difficult to determine E[X(p)]′ by averaging sample_δX(p, δp) / δp over
many samples: we’ll need a huge number of samples because the variance, the “spread” of random values, is huge
for small δp.

Let’s try a different approach. It is natural to think of X(p) for all p as forming a family of random variables,
all defined on the same probability space. A probability space, with some simplification, is a sample space Ω, with
a probability distribution P defined on the sample space. From this point of view, each X(p) can be expressed as
a function Ω → R. To sample from a particular X(p), we can imagine drawing a random ω from Ω according to
P, and then plugging this into X(p), i.e. computing X(p)(ω). (Computationally, this is how most distributions are
actually implemented: you start with a primitive pseudo-random number generator for a very simple distribution,15

e.g. drawing values ω uniformly from Ω = [0, 1), and then you build other distributions on top of this by transforming
ω somehow.) Intuitively, all of the “randomness” resides in the probability space, and crucially P does not depend
on p: as p varies, X(p) just becomes a different deterministic map on Ω.

The crux here is that all the X(p) functions now depend on a shared source of randomness: the random draw
of ω. This means that X(p) and X(p+ δp) have a nontrivial joint distribution: what does it look like?

For concreteness, let’s study our exponential random variable X(p) ∼ Exp(p) from above. Using the “inversion
sampling” parameterization, it is possible to choose Ω to be [0, 1) and P to be the uniform distribution over Ω;
for any distribution, we can construct X(p) to be a corresponding nondecreasing function over Ω (given by the
inverse of X(p)’s cumulative probability distribution). Applied to X(p) ∼ Exp(p), the inversion method gives
X(p)(ω) = −p log (1− ω). This is implemented below, and is a theoretically equivalent way of sampling X(p)

compared with the opaque rand(Exponential(p)) function we used above:

julia> sample_X2(p, ω) = -p * log(1 - ω)

sample_X2 (generic function with 1 method)

julia> # rand() samples a uniform random number in [0,1)

julia> sample_X2(p) = sample_X2(p, rand())

sample_X2 (generic function with 2 methods)

julia> sample_X2(10.0)

8.380816941818618

julia> sample_X2(10.0)

2.073939134369733

julia> sample_X2(10.0)

29.94586208847568

julia> sample_X2(10.0)

23.91658360124792

Okay, so what does our joint distribution look like? As shown in Figure 13, we can plot X(p) and X(p + δp) as
15Most computer hardware cannot generate numbers that are actually random, only numbers that seem random, called “pseudo-

random” numbers. The design of these random-seeming numeric sequences is a subtle subject, steeped in number theory, with a long
history of mistakes. A famous ironic quotation in this field is (Robert Coveyou, 1970): “Random number generation is too important
to be left to chance.”

82



Output

Ω
0

X(p+ δp)

X(p)

δX(p)

O(δp)

ω1ω2 1

{

{Not
O(δp)

Figure 13: For X(p) ∼ Exp(p) parameterized via the inversion method, we can write X(p), X(p+ δp), and δX(p)
as functions from Ω = [0, 1]→ R, defined on a probability space with P = Unif(0, 1).

functions over Ω. To sample the two of them jointly, we use the same choice of ω: thus, δX(p) can be formed by
subtracting the two functions pointwise at each Ω. Ultimately, δX(p) is itself a random variable over the same
probability space, sampled in the same way: we pick a random ω according to P, and evaluate δX(p)(ω), using the
function δX(p) depicted above. Our first approach with independent samples is depicted in red in Figure 13, while
our second approach is in blue. We can now see the flaw of the independent-samples approach: the O(1)-sized
“noise” from the independent samples washes out the O(δp)-sized “signal”.

What about our second question (Question 51): how can actually take the limit of δp → 0 and compute the
derivative? The idea is to differentiate δX(p) at each fixed sample ω ∈ Ω. In probability theory terms, we take the
limit of random variables δX(p)/δp as δp→ 0:

X ′(p) = lim
δp→0

δX(p)

δp
. (13)

For X(p) ∼ Exp(p) parameterized via the inversion method, we get:

X ′(p)(ω) = lim
δp→0

−δp log (1− ω)

δp
= − log (1− ω). (14)

Once again, X ′(p) is a random variable over the same probability space. The claim is that X ′(p) is the notion of
derivative we were looking for! Indeed, X ′(p) is itself in fact a valid gradient estimator:

E[X ′(p)] = E
[
lim
δp→0

δX(p)

δp

]
?
= lim

δp→0

E[δX(p)]

δp
=

∂E[X(p)]

∂p
. (15)

Rigorously, one needs to justify the interchange of limit and expectation in the above. In this chapter, however, we
will be content with a crude empirical justification:

julia> X′(p, ω) = -log(1 - ω)

X′ (generic function with 1 method)

julia> X′(p) = X′(p, rand())

X′ (generic function with 2 methods)

83



julia> mean(X′(10.0) for i in 1:10000)

1.011689946421105

So X ′(p) does indeed average to 1, which makes sense since the expectation of Exp(p) is p, which has derivative
1 for any choice of p. However, the crux is that this notion of derivative also works for more complicated random
variables that can be formed via composition of simple ones such as an exponential random variable. In fact, it
turns out to obey the same chain rule as usual!

Let’s demonstrate this. Using the dual numbers introduced in Chapter 8, we can differentiate the expectation
of the square of a sample from an exponential distribution without having an analytic expression for this quantity.
(The expression for X ′ we derived is already implemented as a dual-number rule in Julia by the ForwardDiff.jl

package.) The primal and dual values of the outputted dual number are samples from the joint distribution of
(X(p), X ′(p)).

julia> using Distributions, ForwardDiff: Dual

julia> sample_X(p) = rand(Exponential(p))^2

sample_X (generic function with 1 method)

julia> sample_X(Dual(10.0, 1.0)) # sample a single dual number!

Dual{Nothing}(153.74964559529033,30.749929119058066)

julia> # obtain the derivative!

julia> mean(sample_X(Dual(10.0, 1.0)).partials[1] for i in 1:10000)

40.016569793650525

Using the “reparameterization trick” to form a gradient estimator, as we have done here, is a fairly old idea. It
is also called the “pathwise” gradient estimator. Recently, it has become very popular in machine learning due
to its use in VAEs [e.g. Kingma & Welling (2013): https://arxiv.org/abs/1312.6114], and lots of resources can be
found online on it. Since composition simply works by the usual chain rule, it also works in reverse mode, and can
differentiate functions far more complicated than the one above!

11.4 Handling discrete randomness
So far we have only considered a continuous random variable. Let’s see how the picture changes for a discrete
random variable! Let’s take a simple Bernoulli variable X(p) ∼ Ber(p), which is 1 with probability p and 0 with
probability 1− p.

julia> sample_X(p) = rand(Bernoulli(p))

sample_X (generic function with 1 method)

julia> p = 0.5

0.6

julia> sample_X(δp) # produces false/true, equivalent to 0/1

true

84

https://arxiv.org/abs/1312.6114


Output

Ω
0 1− p− δp 1− p

X(p+ δp) X(p)

1

1

δX(p)

1− p− δp 1− p

Output

Ω
0

X(p)(ω) = 0 X(p)(ω) = 1{ {
1

1

Figure 14: For X(p) ∼ Ber(p) parameterized via the inversion method, plots of X(p), X(p + δp), and δX(p) as
functions Ω : [0, 1]→ R.

julia> sample_X(δp)

false

julia> sample_X(δp)

true

The parameterization of a Bernoulli variable is shown in Figure 2. Using the inversion method once again, the
parameterization of a Bernoulli variable looks like a step function: for ω < 1− p, X(p)(ω) = 0, while for ω ≥ 1− p,
X(p)(ω) = 1.

Now, what happens when we perturb p? Let’s imagine perturbing p by a positive amount δp. As shown in
Figure 2, something qualitatively very different has happened here. At nearly every ω except a small region of
probability δp, the output does not change. Thus, the quantity X ′(p) we defined in the previous subsection (which,
strictly speaking, was defined by an "almost-sure" limit that neglects regions of probability 0) is 0 at every ω: after
all, for every ω, there exists small enough δp such that δX(p)(ω) = 0.

However, there is certainly an important derivative contribution to consider here. The expectation of a Bernoulli
is p, so we would expect the derivative to be 1: but E[X ′(p)] = E[0] = 0. What has gone wrong is that, although
δX(p) is 0 with tiny probability, the value of δX(p) on this region of tiny probability is 1, which is large. In
particular, it does not approach 0 as δp approaches 0. Thus, to develop a notion of derivative of X(p), we need to
somehow capture these large jumps with “infinitesimal” probability.

A recent (2022) publication (https://arxiv.org/abs/2210.08572) by the author of this chapter (Gaurav Arya), to-
gether with Frank Schäfer, Moritz Schauer, and Chris Rackauckas, worked to extend the above ideas to develop a no-
tion of “stochastic derivative” for discrete randomness, implemented by a software package called StochasticAD.jl

that performs automatic differentiation of such stochastic processes. It generalizes the idea of dual numbers to
stochastic triples, which include a third component to capture exactly these large jumps. For example, the stochas-
tic triple of a Bernoulli variable might look like:

julia> using StochasticAD, Distributions

julia> f(p) = rand(Bernoulli(p)) # 1 with probability p, 0 otherwise

julia> stochastic_triple(f, 0.5) # Feeds 0.5 + δp into f

StochasticTriple of Int64:

0 + 0ε + (1 with probability 2.0ε)

Here, δp is denoted by ϵ, imagined to be an “infinitesimal unit”, so that the above triple indicates a flip from 0 to
1 with probability that has derivative 2.

85

https://arxiv.org/abs/2210.08572


However, many aspects of these problems are still difficult, and there are a lot of improvements awaiting future
developments! If you’re interested in reading more, you may be interested in the paper and our package linked
above, as well as the 2020 review article by Mohamed et al. (https://arxiv.org/abs/1906.10652), which is a great
survey of the field of gradient estimation in general.

At the end of class, we considered a differentiable random walk example with StochasticAD.jl. Here it is!

julia> using Distributions, StochasticAD

julia> function X(p)

n = 0

for i in 1:100

n += rand(Bernoulli(p * (1 - (n+i)/200)))

end

return n

end

X (generic function with 1 method)

julia> mean(X(0.5) for _ in 1:10000) # calculate E[X(p)] at p = 0.5

32.6956

julia> st = stochastic_triple(X, 0.5) # sample a single stochastic triple at p = 0.5

StochasticTriple of Int64:

32 + 0δp + (1 with probability 74.17635818221052δp)

julia> derivative_contribution(st) # derivative estimate produced by this triple

74.17635818221052

julia> # compute d/dp of E[X(p)] by taking many samples

julia> mean(derivative_contribution(stochastic_triple(f, 0.5)) for i in 1:10000)

56.65142976168479

86

https://arxiv.org/abs/1906.10652


MIT OpenCourseWare 
https://ocw.mit.edu 

18.S096 Matrix Calculus for Machine Learning and Beyond
Independent Activities Period (IAP) 2023�� 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 


	cover.pdf
	Blank Page




