
13 Derivatives of Eigenproblems

13.1 Differentiating on the Unit Sphere
Geometrically, we know that velocity vectors (equivalently, tangents) on the sphere are orthogonal to the radii.
Out differentials say this algebraically, since given x ∈ Sn we have xTx = 1, this implies that

2xT dx = d(xTx) = d(1) = 0.

In other words, at the point x on the sphere (a radius, if you will), dx, the linearization of the constraint of moving
along the sphere satisfies dx ⊥ x. This is our first example where we have seen the infinitesimal perturbation dx

being constrained. See Figure 16.

xx+dx

dx ⟂ x

Figure 16: Differentials on a sphere (xTx = 1): the differential dx is constrained to be perpendicular to x.

13.1.1 Special Case: A Circle

Let us simply consider the unit circle in the plane where x = (cos θ, sin θ) for some θ ∈ [0, 2π). Then,

xT dx = (cos θ, sin θ) · (− sin θ, cos θ)dθ = 0.

Here, we can think of x as “extrinsic” coordinates, in that it is a vector in R2. On the other hand, θ is an “intrinsic”
coordinate, as every point on the circle is specified by one θ.

13.1.2 On the Sphere

You may remember that the rank-1 matrix xxT , for any unit vector xTx = 1, is a projection matrix (meaning
that it is equal to its square and it is symmetric) which projects vectors onto their components in the direction of
x. Correspondingly, I − xxT is also a projection matrix, but onto the directions perpendicular to x: geometrically,
the matrix removes components in the x direction. In particular, if xT dx = 0, then (I − xxT )dx = dx. It follows
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that if xT dx = 0 and A is a symmetric matrix, we have

d

(
1

2
xTAx

)
= (Ax)T dx

= xTA(dx)

= xTA(I − xxT )dx

= ((I − xxT )Ax)T dx.

In other words, (I − xxT )Ax is the gradient of 1
2x

TAx on the sphere.
So what did we just do? To obtain the gradient on the sphere, we needed (i) a linearization of the function that

is correct on tangents, and (ii) a direction that is tangent (i.e. satisfies the linearized constraint). Using this, we
obtain the gradient of a general scalar function on the sphere:

Theorem 60
Given f : Sn → R, we have

df = g(x)T dx = ((I − xxT )g(x))T dx.

The proof of this is precisely the same as we did before for f(x) = 1
2x

TAx.

13.2 Differentiating on Orthogonal Matrices

Let Q be an orthogonal matrix. Then, computationally (as is done in the Julia notebook), one can see that QT dQ

is an anti-symmetric matrix (sometimes called skew-symmetric).

Definition 61
A matrix M is anti-symmetric if M = −MT . Note that all anti-symmetric matrices thus have zeroes on their
diagonals.

In fact, we can prove that QT dQ is anti-symmetric.

Theorem 62
Given Q is an orthogonal matrix, we have that QT dQ is anti-symmetric.

Proof. The constraint of being orthogonal implies that QTQ = I. Differentiating this equation, we obtain

QT dQ+ dQT Q = 0 =⇒ QT dQ = −(QT dQ)T .

This is precisely the definition of being anti-symmetric.

Before we move on, we may ask what the dimension of the “surface” of orthogonal matrices is in Rn2

.
When n = 2, all orthogonal matrices are rotations and reflections, and rotations have the form

Q =

(
cos θ sin θ

− sin θ cos θ

)
.

Hence, when n = 2 we have one parameter.
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When n = 3, airplane pilots know about “roll, pitch, and yaw”, which are the three parameters for the orthogonal
matrices when n = 3. In general, in Rn2

, the orthogonal group has dimension n(n− 1)/2.
There are a few ways to see this.

• Firstly, orthogonality QTQ = I imposes n(n+ 1)/2 constraints, leaving n(n− 1)/2 free parameters.

• When we do QR decomposition, the R “eats” up n(n+ 1)/2 of the parameters, again leaving n(n− 1)/2 for
Q.

• Lastly, If we think about the symmetric eigenvalue problem where S = QΛQT , S has n(n+ 1)/2 parameters
and Λ has n, so Q has n(n− 1)/2.

13.2.1 Differentiating the Symmetric Eigendecomposition

Let S be a symmetric matrix, Λ be diagonal containing eigenvalues of S, and Q be orthogonal with column
vectors as eigenvectors of S such that S = QΛQT . [For simplicity, let’s assume that the eigenvalues are “simple”
(multiplicity 1); repeated eigenvalues turn out to greatly complicate the analysis of perturbations because of the
ambiguity in their eigenvector basis.] Then, we have

dS = dQΛQT +QdΛQT +QΛdQT ,

which may be written as
QT dS Q = QT dQΛ− ΛQT dQ+ dΛ.

As an exercise, one may check that the left and right hand sides of the above are both symmetric. This may
be easier if one looks at the diagonal entries on their own, as there (QT dS Q)ii = qTi dS qi. Since qi is the ith
eigenvector, this implies qTi dS qi = dλi. (In physics, this is sometimes called the “Hellman–Feynman” theorem, or
non-degenerate first-order eigenvalue-perturbation theory.)

Sometimes we think of a curve of matrices S(t) depending on a parameter such as time. If we ask for dλi

dt , this
implies it is thus equal to qTi

dS(t)
dt qi. So how can we get the gradient ∇λi for one of the eigenvalues? Well, firstly,

note that
tr(qiq

T
i )

T dS) = dλi =⇒ ∇λi = qiq
T
i .

What about the eigenvectors? Those come from off diagonal elements, where for i ̸= j,

(QT dS Q)ij =

(
QT dQ

dt

)
ij

(λj − λi).

Therefore, we can form the elements of QT dQ
dt , and left multiply by Q to obtain dQ

dt (as Q is orthogonal).
It is interesting to get the second derivative of eigenvalues when moving along a line in symmetric matrix space.

For simplicity, suppose Λ is diagonal and S(t) = Λ + tE. Therefore, differentiating

dΛ

dt
= diag

(
QT dS(t)

dt
Q

)
,

we get
d2Λ

dt2
= diag

(
QT d2S(t)

dt2
Q

)
+ 2diag

(
QT dS(t)

dt

dQ

dt

)
.

Evaluating this at Q = I and recognizing the first term is zero as we are on a line, we have that

d2Λ

dt2
= 2diag

(
E · dQ

dt

)
,
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or
d2Λ

dt2
= 2

∑
k ̸=i

E2
ik/(λi − λk).

Using this, we can write out the eigenvalues as a Taylor series:

λi(ϵ) = λi + ϵEii + ϵ2
∑
k ̸=i

E2
ik/(λi − λk) + . . . .

(In physics, this is known as second-order eigenvalue perturbation theory.)
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