
14 Where We Go From Here
There are many topics that we did not have time to cover, even in 16 hours of lectures. If you came into this class
thinking that taking derivatives is easy and you already learned everything there is to know about it in first-year
calculus, hopefully we’ve convinced you that it is an enormously rich subject that is impossible to exhaust in a
single course. Some of the things it might have been nice to include are:

• When automatic differentiation (AD) hits something it cannot handle, you may have to write a custom
Jacobian–vector product (a “Jvp,” “frule,” or “pushforward”) in forward-mode, and/or a custon row vector–
Jacobian product (a “vJp,” “rrule,” “pullback,” or “JacobianT -vector product”) in reverse-mode. In Julia with
Zygote AD, this is done using the ChainRules packages. In Python with JAX, this is done with jax.custon_jvp
and/or jax.custon_vjp respectively. In principle, this is straightforward, but the APIs can take some getting
used to because the of the generality that they support.

• For functions f(z) with complex arguments z (i.e. complex vector spaces), you cannot take “ordinary” complex
derivatives whenever the function involves the conjugate z, for example, |z|,Re(z), and Im(z). This must
occur if f(z) is purely real-valued and not constant, as in optimization problems involving complex-number
calculations. One option is to write z = x + iy and treat f(z) as a two-argument function f(x, y) with real
derivatives, but this can be awkward if your problem is “naturally” expressed in terms of complex variables
(for instance, the Fourier frequency domain). A common alternative is the “CR calculus” (or “Wirtinger
calculus”), in which you write

df =

(
∂f

∂z

)
dz +

(
∂f

∂z

)
dz,

as if z and z were independent variables. This can be extended to gradients, Jacobians, steepest-descent, and
Newton iterations, for example. A nice review of this concept can be found in these UCSD course notes by
K. Kreuz Delgado.

• Many, many more derivative results for matrix functions and factorizations can be found in the literature,
some of them quite tricky to derive. For example, a number of references are listed in this GitHub issue for
the ChainRules package.

• Another important generalization of differential calculus is to derivatives on curved manifolds and differential
geometry, leading to the exterior derivative.

• When differentiating eigenvalues λ of matrices A(x), a complication arises at eigenvalue crossings (where
multiplicity k > 1). Here, the eigenvalues and eigenvectors usually cease to be differentiable. More generally,
this problem arises for any implicit function with a repeated root. In this case, one option is use an expanded
definition of sensitivity analysis called a generalized gradient (a k×k matrix-valued linear operator G(x)[dx]

whose eigenvalues are the perturbations dλ. See for example Cox (1995), Seyranian et al. (1994), and
Stechlinski (2022). Physicistss call a related idea “degenerate perturbation theory.” A recent formulation
of similar ideas is called the lexicographic directional derivative. See for example Nesterov (2005) and
Barton et al. (2017).

Sometimes, optimization problems involving eigenvalues can be reformulated to avoid this difficulty by using
SDP constraints. See for example Men et al. (2014).

For a defective matrix the situation is worse: even the generalized derivatives blow up because dλ can be
proportional to (e.g.) the square root of the perturbation ∥dA∥ (for an eigenvalue with algebraic multiplicity
= 2 and geometric multiplicity = 1).
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https://github.com/JuliaDiff/ChainRulesCore.jl
https://jax.readthedocs.io/en/latest/_autosummary/jax.custom_jvp.html
https://jax.readthedocs.io/en/latest/_autosummary/jax.custom_vjp.html
https://en.wikipedia.org/wiki/Frequency_domain
https://arxiv.org/abs/0906.4835
https://github.com/JuliaDiff/ChainRules.jl/issues/117
https://github.com/JuliaDiff/ChainRules.jl/issues/117
https://en.wikipedia.org/wiki/Exterior_derivative
https://en.wikipedia.org/wiki/Implicit_function
https://doi.org/10.1006/jfan.1995.1117
https://doi.org/10.1007/BF01742705
https://doi.org/10.1016/j.laa.2022.04.019
https://doi.org/10.1007/s10107-005-0633-0
https://doi.org/10.1080/10556788.2017.1374385
https://en.wikipedia.org/wiki/Semidefinite_programming
http://doi.org/10.1364/OE.22.022632
https://en.wikipedia.org/wiki/Defective_matrix


• Famous generalizations of differentation are the “distributional” and “weak” derivatives. For example, to
obtain Dirac delta “functions” by differentiating discontinuities. This requires changing not only the definition
of “derivative,” but also changing the definition of function, as reviewed at an elementary level in these MIT
course notes.
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https://en.wikipedia.org/wiki/Distributional_derivative
https://en.wikipedia.org/wiki/Weak_derivative
https://en.wikipedia.org/wiki/Dirac_delta_function
https://math.mit.edu/~stevenj/18.303/delta-notes.pdf
https://math.mit.edu/~stevenj/18.303/delta-notes.pdf
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