
Matrix Calculus lecture notes: 
How can we use so many derivatives? 

… a couple of applications 
… and the “adjoint method” 

Matrix Calculus, IAP 2023 
Profs. Steven G. Johnson & Alan Edelman, MIT 
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Newton’s method: Nonlinear equations via Linearization 

18.01: solving f(x) = 0: 

1. Linearize: 

           f(x+δx) ≈ f(x) + f′(x)δx 

2. Solve linear equation 

f(x) + f’(x)δx = 0 

⇒ δx = –f(x)/f′(x) 

3. Update x 

x ⟵ x – f(x)/f′(x) 

scalar out scalar in 
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Multidimensional Newton’s method: Real world is nonlinear! 

18.06: solving f(x) = 0 where x ∈ ℝⁿ (input=vector) and f and 0 ∈ ℝⁿ 
(output=vector) 
1. Linearize: 
           f(x+δx) ≈ f(x) + f′(x)δx 

2. Solve linear equation 

f(x) + f’(x)δx = 0 

⇒ δx = –f′(x)–1f(x)

3. Update x 

x ⟵ x – f′(x)–1f(x) 

Jacobian 

inverse 
Jacobian 

That’s it!  Once we have the Jacobian, 
just solve a linear system on each step. 

Converges amazingly fast: 
doubles #digits (squares error) 
on each step (“quadratic convergence”)! 

Caveat: needs a starting guess
   close enough to root 

(google “Newton fractal”…) 

vector out vector in 
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Nonlinear optimization: min f(x), x ∈ ℝn 

–∇f points downhill (steepest descent) 

Even if we have n=106 parameters x, we 
can evolve them all simultaneously in the 
downhill direction. 

Reverse-mode / adjoint / left-to-right / 
backpropagation: computing ∇f costs 
about same as evaluating f(x) once. 

Makes large-scale optimization practical: 
training neural nets, optimizing shape of 
airplane wing, portfolio optimization… 

(or maximize) 

contours of f(x)

 

–∇f 
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Nonlinear optimization: Lots of complications 

● How far do we “step” in –∇f direction? 
○ Line search: minα f(x–α∇f) — backtrack if not improved 
○ and/or Limit step size to trust region, grow/shrink as needed 
○ Details are tricky to get right 

● Constraints: min f(x) subject to gk(x) ≤ 0 
○ Algorithms still need gradients ∇gk! 

● Faster convergence by “remembering” previous steps 
○ Steepest-descent tends to “zig-zag” in narrow valleys 
○ “Momentum” terms & conjugate gradients — simple “memory” 
○ Fancier: estimate second derivative “Hessian matrix” from 

sequence of ∇f changes: BFGS algorithm 

● Lots of refinements & competing algorithms … 
○ try out multiple (pre-packaged) algorithms on your problem! 

slow convergence: 
zig-zagging downhill 

This image is in the public domain. 
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Some parting advice: 

Often, the main trick is finding the right mathematical 
formulation of your problem — i.e. what function, what 
constraints, what parameters? — which lets you exploit 
the best algorithms. 

…but if you have many (> 10) parameters,
      always use an analytical gradient (not finite differences!)
        … computed efficiently in reverse mode 
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Engineering/physical optimization 

Design parameters p: 

geometry, materials, 
forces, unknowns… 

Physical model(s): 

Solid mechanics, 
chemical reactions, 
heat transport, 
electromagnetism, 
acoustics, fluid flow… 

e.g. linear model: 
A(p)x = b(p) 

Model solution x(p): 

Forces, 
displacements, 
concentrations, 
temperatures, 
electric/magnetic 
fields, pressures, 
velocities, … 

Design objective f(x(p)) 

Strength, speed, power, 
efficiency, dissipation loss, 
match to experiment, …Maximize/minimize f(x(p)) using gradient ∇ p 

f 
  … ∇ p 

f computed by reverse-mode/“adjoint” methods 7 



Example: “Topology optimization” of a chair 
…optimizing every voxel to support weight with minimal material 

(either voxel “density” or a “level-set” function) 
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Adjoint differentiation 
(yet another example of left-to-right/reverse-mode differentiation) 

Example: gradient of scalar f(x(p)) where A(p)x=b, i.e. f(A(p)–1b) 

● df = f′(x) dx = f’(x) d(A–1) b = – f′(x) A–1 dA A–1 b 

● “Adjoint method:” Just multiply left-to-right!    df = – (f′(x) A–1) dA x 

○ i.e. solve “adjoint equation” ATv = f’(x)T for v    (“adjoint” meaning “transpose”) 
○ …then df = vT dA x 
○ For any given parameter pₖ, ∂f/∂pₖ = vT ∂A/∂pₖ x   (& usually ∂A/∂pₖ is very 

sparse) 

● i.e. Takes only two solves to get both f and ∇f   🤓 
○ Solve Ax=b once to get f(x), then solve one more time with AT for v 
○ … then all derivatives ∂f/∂pₖ are just some cheap dot products 

row 
vec 

row 
vec 

m
atrix

= x = “adjoint” 
solution vT 
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Don’t use right-to-left “forward-mode” derivatives 
with lots of parameters! 

∂f/∂pₖ = – f′(x) (A–1 (∂A/∂pₖ x)) = one solve per parameter pₖ!   ☹ 

Right-to-left (a.k.a. forward mode) better when 1 input & many outputs. 
Left-to-right (a.k.a. backward mode, adjoint, backpropagation) better 
when 1 output & many inputs 

(Note: Using dual numbers is forward mode.  Most AD uses the term 
“forward” if it is forward mode.  e.g. ForwardDiff.jl in Julia is forward mode. 
jax.jacfwd in Python is forward mode.) 

=  vector row 
vector 

solve 

(different rhs) 
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Don’t use finite differences with lots of parameters! 

∂f/∂pₖ ≈ [ f(p + ε eₖ) – f(p) ] / ε        (eₖ = unit vector, ε = small number) 

= requires one solve x(p + ε eₖ) for each parameter pₖ ☹ 

… even worse if you use fancier finite-difference approximations 
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Adjoint differentiation with nonlinear equations 

Example: gradient of scalar f(x(p)) where x(p) ∈ ℝⁿ solves g(p,x) = 0 ∈ ℝⁿ 

● g(p,x) = 0 ⟹ dg = ∂g/∂p dp  +  ∂g/∂x dx = 0  ⟹  dx = –(∂g/∂x)–1 ∂g/∂p dp 

● df = f′(x) dx = – ( f′(x) (∂g/∂x)–1 ) ∂g/∂p dp 

● i.e. Takes only two solves to get both f and ∇f   🤓 
○ one nonlinear solve for x, and one linear solve for v! 
○ … then all derivatives ∂f/∂pₖ are just some cheap dot products 

= inverse Jacobian, 
also used in Newton 

solver for x! 

= “adjoint” 
solution vT ⟹ adjoint equation: (∂g/∂x)Tv = f′(x)T 

Jacobian, 
matrix[ a.k.a. “implicit-function theorem”] 
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You need to understand adjoint methods even if you use AD 

● Helps understand when to use forward vs. reverse mode! 

● Many physical models call large software packages written over decades in 
various languages, and cannot be differentiated automatically by AD 

○ You often just need to supply a “vector–Jacobian product” yTdx for physics, or even just part 
of the physics, and then AD will differentiate the rest and apply the chain rule for you 

● Often models involve approximate calculations, but AD tools don’t know 
this & spend extra effort trying to differentiate the error in your approximation 

○ If you solve for x by an iterative method (e.g. Newton), it is inefficient for AD to 
backpropagate through the iteration … instead, you want take derivative of the underlying 
equation g(p,x) = 0 

○ For discretized physics (e.g. a finite-element methods), it is often more efficient (and 
sufficiently accurate) to apply adjoint method to continuous physics 
(“differentiate-then-discretize”) 
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