An Introduction to (Local) Sensitivity Analysis
for (Ordinary) Differential Equations

—p

pHAp
Frank Schifer?

1Julia Lab, CSAIL, MIT “-" \

18.5096 Special Subject:

Matrix Calculus for Machine Learning and Beyond by Professors Alan
Edelman and Steven G. Johnson

o,

An Introduction to (Local) Sensitivity Analysis
for (Ordinary) Differential Equations

O

D

—np+ Ap
Frank Schafer:

Julia Lab, CSAIL, MIT

18.S096 Special Subject:

Matrix Calculus for Machine Learning and Beyond by Professors Alan
Edelman and Steven G. Johnson

https://math.mit.edu/~edelman/
https://math.mit.edu/~edelman/
https://math.mit.edu/~stevenj/

Ordinary Differential Equations (ODEs)

- Initial value problem

ulto) =uo, S0 = F(t,u(t),p)

- How do we solve an ODE?

Toy example: Free falling ball

XX
- ODE with state u(¢) = [z(?), v(?)] B
= 0. 1
_ = [z0, vO]
dz(t) = v(t)dt, b = [10.0]
dv(t) = —gdt o ey

function f(u, p,
[2]
=p[1]
dv]

[dz

end

- Analytical solution (available in this case)

2(t) = 20 + vo(t —to) — 2(t — to)?

2
v(t) = vo — g (t —to)

Ordinary Differential Equations (ODEs)

Initial value problem

du

) = f(tu(t).p)

U(to) = U,

Simplest numerical solver: Euler’'s method

Up+1 = Up + Atf(tna unap)a tn = To + nAt

Tons of more sophisticated methods

https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode solve/

Coding part |

https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve/

Different methods for sensitivity analysis of ODEs
- 2 main ways of differentiating through an ODE (cf. last lecture for nonlinear
problems)

- Discrete sensitivity analysis (AD on solver operations)

“Exact gradient of the approximation” / “discretize-then-differentiate”

- Continuous sensitivity analysis (custom rules)

“Approximation of the exact gradient” / “differentiate-then-discretize”

Different methods for sensitivity analysis of ODEs

- 2 main ways of differentiating through an ODE (cf. last lecture for nonlinear
problems)

- Discrete sensitivity analysis (AD on solver operations)

“Exact gradient of the approximation” / “discretize-then-differentiate”

- Continuous sensitivity analysis (custom rules)

“Approximation of the exact gradient” / “differentiate-then-discretize”

- ... with two modes each (forward/tangent and reverse/adjoint)

— Optimal choice depends on number of states/parameters and system properties

TODAY: continuous adjoint

What are sensitivities/derivatives good for?

- Sensitivity analysis

* How sensitive is the solution to changes
in the initial conditions/parameters?

- Parameter estimation

« What parameters match the observed
data?

- Control

* How can | drive the solution to a certain
final state?

What are sensitivities/derivatives good for?

- Sensitivity analysis

- Let us consider
* How sensitive is the solution to changes

in the initial conditions/parameters? 0z(T)

0g

[ie., 2(T) = Gu(T))|

of our free falling ball example,
where G is a terminal cost.

- Parameter estimation

« What parameters match the observed
data? — easy when analytical solution
is available

- Control

* How can | drive the solution to a certain
final state?

January 30, 2023

1 Derivation of the continuous-adjoint
sensitivity method for ordinary differential
equations

Suppose a cost function G(u,p) evaluated on the complete solution u(t) of the
ordinary differential equation v'(t,p) = f(u,p,t), u(ty) = ug, i.e.:

T
Gwmzawmmz/gwwmmw 1)

to

The cost function requires the solution w(t). How do we develop a numerical
procedure for the derivative when u(t) can only be obtained numerically? We
only assume that we can numerically solve an ODE!

To derive the adjoint equation, introduce the Lagrange multiplier \. That’s a
nice mathematical trick: add a zero, and then we can determine later what A
really is

T
I(u(p),p) = Glu(p).p) — | N(2E2) — f(u, p,t))dt

to

T
:mmmm—/fﬂwwm—ﬂmnmw 2)

to

(Why is that a zero? Recall v'(t,p) = f(u,p,t)). Let us differentiate Eq. (2)
with respect to p

10

dI(u(p),p) _ dG(u(p).p)

dp dp
T T
_ dg(u(t,p),p) du(t,p) + dg(t,p) dt — AT d du(t,p) df(u,p,t) du(t,p) df(u,p,t) dt
. du(t,p) dp dp . dp dt du(t,p) dp dp :
0 N — e’ N o’ N 0 R N
=gu =s,sensitivity =dp _d du(t,p) —s =fu =fp

—dt dp

(3)

How does u(t, p) change with respect to p? That isn’t easy to say.. We aim to
isolate s and then set A so we can drop it! Let’s take a look at the second term

/T/\T(s’—fus—fp)dt:/T/\Ts’dt—/T)\T (fus + fp)dt. (4)

to to to

We don’t want s and s’. To transform the s’ into an s, we apply integration by
parts

T T T T
/'Vya—/,ﬂgﬁ+@mn4ﬂﬁmm@—/"x%ﬁ—/,ﬂuﬁ+@mp

to to to to
(5)

Insert back into Eq. (3):

T T T

e — [g5t gt - WOSO + [NTsdtr [N (fust) e
to to to

©)

Rearrange terms (group terms in s):

T T
e / gp + AT fpdt = NT(1)s()][z, + / W+ AT fu+ gu)sdt. (T)

to tO

Now, we'’re free to choose \! Let us take

)‘/T = *)‘Tfu — Gu (8)
AT) =0, ()

so that the second term and one of the boundary terms vanish. That’s an ODE.
We call it the “adjoint ODE problem”.

Thus, we get

T
%%@ﬂ:/‘%+ﬂga+ﬂ%p%y (10)

p
to

11

Note that

s(to) = 244o2) = 0, (11)

How do you calculate the remaining integral

T
dompbit / gp + A fdt? (12)

P
to
Note that %;p),m requires A(t), and A(t) requires u(t).

Procedure:

e solve primal ODE «/(¢t,p) = f(u,p,t), u(to) = ug forward in time.

e solve adjoint ODE X = —f,"X — ¢, \(T) = 0 backward in time (cf.
reverse-mode, adjoint methods).

e integrate Eq. (12).

Note that ODEs are reversible! So we do not necessarily have to store the
full ODE in memory but can compute it backward in time from the final time
uw(T). Therefore, we can solve the primal and the adjoint ODE together in
lockstep. (Unfortunately, ODE solvers are not fully reversible in general, so
this approach tends to be unstable. We can use checkpoints to reset the ODE
solution. Other approaches: interpolating adjoints, where we recompute the
ODE solution forward in time (usually) between checkpoints.)

Note that we can also transform the last equation into an ODE. An integral

T
F(T) = / F(t)dt (13)

can be written as an ODE

w' = f(t), w(ty)=0. (14)
So that
T
F(T) = t f)dt = w(T). (15)

For instance, if we apply Euler’s method (see the beginning of the lecture):

w(t + At) = w(t) + Atf(t) (16)

w(t + At) = w(t) + Atf(t) + Atf(t + At) (17)

(18)

w(t + nAt) = w(t) + Atnz_: F(t+iAt) (19)
=0

12

F(T) = Tf(t)dt ~ Atzn:f(t +iAt)

to

Thus, we define

w =g, +ATf,, w(T)=0
so that

G(u(p),
d (d(pp) p) _ —w(to)

Therefore, we can solve an augmented ODE system:

' = f(u,p,t), uw(T) = uT
N=—f"X=¢r' NT)=0
w' = g, + >‘Tfpa w(T) =0

13

(23)

cd(@_DIR_)
using Pkg;
Pkg.activate(".")
Pkg.instantiate()

z0 = 5.0 # initial height
vl = 0.1 # initial velocity
ud = [z0, v@] # initial ODE state

p = [10.0] # gravitational constant
tspan = (0.0, 1.0) # integration time
dt = 0.001 # time discretization

system

function f(u, p, t)
dz = ul2]
dv = —pl[1]
[dz, dv]

end
solving the ODE!

hand—-written Euler solver
function my_euler(f, u@, tspan, p, dt)
u = uod
t = tspan[1]:dt:tspan[2] # time grid
for ti in t[1:end-1]
u=u .+ f(u, p, ti) .*x dt
end
u
end

Jacobian af/au
function fu(u, p, t)
[0 1
0 0]
end

Parameter Jacobian of/ap
function fp(u, p, t)

2x1 matrix

[0;; -11"
end

Continuous—adjoint sensitivity analysis
function f_augmented(z, p, t)

u, Au, Ap = z
dz = ul2]
dv = —pl[1]
du = [dz, dv]

14

dAu
dAp

-Au' x fu(u, p, t)
-Au' x fp(u, p, t)

(du, dAu', dAp')
end

uend = my_euler(f, u@, tspan, p, dt)

z0 = (uend, [1.0, 0.0], zeros(1))
my_euler(f_augmented, z0, reverse(tspan), p, -dt)

15

MIT OpenCourseWare
https://ocw.mit.edu

18.S096 Matrix Calculus for Machine Learning and Beyond
Independent Activities Period (IAP) 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	Blank Page

