
Derivatives of Random Functions 
(MIT 18.S096, Lecture 7) 

Gaurav Arya 

February 1, 2023 

1 Introduction 

In this class, we’ve learned how to take derivatives of all sorts of crazy functions. Recall 
one of our first examples: 

f(A) = A 2 , (1) 

where A is a matrix. To di˙erentiate this function, we had to go back to the drawing 
board, and ask: 

Q1: If we perturb the input slightly, how does the output change? 

To this end, we wrote down something like: 

df = (A + dA)2 −A 2 = A(dA) + (dA)A + (dA)2    
neglected 

. (2) 

We called df and dA di˙erentials. We then had to ask: 

Q2: What terms in the di˙erential can we neglect? 

We decided that (dA)2 should be neglected1 , justifying this by the fact that (dA)2 is 
“higher-order”. We were left with the derivative operator dA → A(dA) + (dA)A: the best 
possible linear approximation to f in a neighbourhood of A. 
At a high level, the main challenge here was dealing with a complicated input and 

output space: f was matrix-valued, and also matrix-accepting. We had to ask ourselves: 
in this case, what should the notion of a derivative even mean? 
In this class, we will face a similar challenge, but with a di˙erent output space. This 

time, the output of our function will be random. Now, we need to revisit the same 
questions. If the output is random, how can we describe its response to a change in the 
input? And how can we form a useful notion of derivative? 

1I am admittedly being a bit unclear about what a di˙erential means here, and what it means to 
neglect a term. In one perspective, we can imagine that dA is infinitesimally small so that (dA)2 = 0. 
Alternatively, we can imagine dA representing a finite quantity (what might be called ΔA in class), 
and define the derivative, which is what we really care about, in the limit of |dA| → 0: this perspective 
might work better with how I define the di˙erential for a stochastic program later. 

1 



2 Stochastic programs 

More precisely, we will consider random, or stochastic, functions X with real input p ∈ R 
and real-valued random variable output. As a map, we can write X as 

p → X(p), (3) 

where X(p) is a random variable. 
The idea is that we can only sample from X(p). For example, suppose X(p) follows 

the exponential distribution with scale p, i.e. X(p) ∼ Exp(p). 

julia> using Distributions 

julia> sample_X(p) = rand(Exponential(p)) 
X (generic function with 1 method) 

julia> sample_X(10.0) 
1.7849785709142214 

julia> sample_X(10.0) 
4.435847397169775 

julia> sample_X(10.0) 
0.6823343897949835 

If our program gives a di˙erent output each time, what could a useful notion of derivative 
be? Before we try to answer this, let’s ask why we might want to take a derivative. The 
answer is that we may be very interested in statistical quantities of random functions, i.e. 
values that can be expressed using an average. Furthermore: 

It is often much easier to produce an “unbiased estimate” of a stochastic 
quantity than to compute it exactly. 

Here, an unbiased estimate means that X(p) averages out to our statitistical quantity of 
interest. 

For example, in deep learning, the variational autoencoder (VAE) [1] is a very common 
architecture that is inherently stochastic. It is easy to get a stochastic unbiased estimate 
of the loss function by random simulation: if X(p) represents this estimate, then the 
loss function L(p) is E[X(p)]. However, computing the loss L(p) exactly would require 
integrating over all possible outcomes. Now, to train the VAE, we also need to di˙erentiate 
L(p), i.e. di˙erentiate E[X(p)]! 

Perhaps an even more compelling example is in the physical sciences, where randomness 
may be baked into your model of a physical process. In this case, it’s hard to get around 
the fact that you need to deal with stochasticity! For example, you may have two particles 
that interact with an average rate of r. But in reality, the times when these interactions 
actually occur follow a stochastic process. (In fact, the time until the first reaction would 
be exponentially distributed, with scale 1/r.) And if you want to e.g. fit the parameters 
of your stochastic model to real-world data, it’s once again very useful to have derivatives. 

If we can’t compute our statistical quantity of interest exactly, it seems unreasonable to 
assume we can compute its derivative exactly. However, we could hope to stochastically 
estimate its derivative. So, if X(p) represents the full program that produces an unbiased 

2 



estimate of our statistical quantity, here’s one property we’d definitely like our derivative 
to have: we should be able to construct from it an unbiased gradient estimator [2] X̃(p) 
satisfying 

E[ X̃(p)] = 
dE[X(p)] 

dp 
. (4) 

3 Stochastic di˙erentials and the reparameterization trick 

Let’s begin by answering our first question: how does X(p) respond to a change in p? 
Let us consider a specific p and write down the stochastic di˙erential2: 

dX(ε) = X(p + ε) − X(p), (5) 

where ε represents a small change in p, which we use instead of dp. What sort of object 
is dX(ε)? 
Since we’re subtracting two random variables, it ought to itself be a random variable. 

However, dX(ε) is still not fully specified! We have only specified the marginal distributions 
of X(p) and X(p + ε): to be able to subtract the two, we need to know their joint 
distribution. 

One possibility is to treat X(p) and X(p + ε) as independent. This means that dX(ε) 
would be constructed as the di˙erence of independent samples. Let’s see how samples 
from dX(ε) would look like in this case! 

julia> sample_X(p) = rand(Exponential(p)) 
sample_X (generic function with 1 method) 

julia> sample_dX(ε) = sample_X(p + ε) - sample_X(p) 
sample_dX (generic function with 1 method) 

julia> p = 10; ε = 1e-5; 

julia> sample_dX(ε) 
-26.000938718875904 

julia> sample_dX(ε) 
-2.6157162001718092 

julia> sample_dX(ε) 
6.352622554495474 

julia> sample_dX(ε) 
-9.53215951927184 

julia> sample_dX(ε) 
1.2232268930932104 

We can observe something a bit worrying: even for a very tiny ε (we chose ε = 10−5), 
dX(ε) is still fairly large: essentially as large as the original random variables. This is 

2unlike before, I’ve introduced an explicit dependence on ε in dX, to avoid thinking about infinitesimals. 
Thus, the stochastic di˙erential is a “di˙erential" in the sense of being a conventional di˙erence, which 
may be a non-standard use. 

3 



not good news if we want to construct a derivative from dX(ε): we’d want its magnitude 
to be getting smaller and smaller with ε, like in the usual case. 
Let’s try a di˙erent approach. It is natural to think of X(p) for all p as forming a 

family of random variables, all defined on the same probability space. A probability space, 
with some simplification, is a sample space Ω, with a probability distribution P defined 
on the sample space. On this probability space, each X(p) can be expressed as a function 
Ω → R. Intuitively, all of the “randomness” resides in the probability space, and crucially 
P does not depend on p: as p varies, X(p) just becomes a di˙erent deterministic map on 
this space. To sample from a particular X(p), we can imagine drawing a random ω from 
Ω according to P, and then plugging this in to X(p), i.e. computing X(p)(ω). 
The crux here is that all the X(p) now depend on a shared source of randomness: 

the random draw of ω. This means that X(p) and X(p + ε) have a non-trivial joint 
distribution: what does it look like? 
For concreteness, let’s study an exponential random variable X(p) ∼ Exp(p), Using 

the “inversion method" parameterization3 , it is possible to choose Ω to be [0, 1] and P 
to be the uniform distribution over Ω = [0, 1], and make X(p) an increasing function 
over Ω. Applied to our example X(p) ∼ Exp(p) from before, the inversion method gives 
X(p)(ω) = −p · log (1 − ω), i.e. the below is an equivalent way of sampling X(p): 

julia> sample_X2(p, ω) = -p * log(1 - ω) 
sample_X2 (generic function with 1 method) 

julia> # rand() samples a uniform random number in [0,1] 
julia> sample_X2(p) = sample_X2(p, rand()) 
sample_X2 (generic function with 2 methods) 

julia> sample_X2(10.0) 
8.380816941818618 

julia> sample_X2(10.0) 
2.073939134369733 

julia> sample_X2(10.0) 
29.94586208847568 

julia> sample_X2(10.0) 
23.91658360124792 

Okay, so what does our joint distribution look like? 

3This certainly isn’t the only way to choose Ω and P, and in fact it’s probably not the simplest choice 
for exponential random variables, but we’ll stick to it for consistency with the discrete case later. 

4 



Output 

Ω 
0 

X(p + ε) 

X(p) 

dX(ε) 

O(ε) 

ω1ω2 1 
{ 

{Not 
O(ε) 

Figure 1: For X(p) ∼ Exp(p) parameterized via the inversion method, we can write X(p), 
X(p + ε), and dX(ε) as functions from Ω = [0, 1] → R, defined on a probability 
space with P = Unif(0, 1). 

As shown in Figure 1, we can plot X(p) and X(p + ε) as functions over Ω. To sample 
the two of them jointly, we use the same choice of ω: thus, dX(ε) can be formed by 
subtracting the two functions pointwise at each Ω. Ultimately, dX(ε) is itself a random 
variable over the same probability space, sampled in the same way: we pick a random ω 
according to P, and evaluate dX(ε)(ω), using the function dX(ε) depicted above. Our 
first approach with independent samples is depicted in red in Figure 1, while our second 
approach is in blue. We can now see the flaw of the independent samples approach: the 
O(1)-sized “noise” from the independent samples washes out the O(ε)-sized “signal”. 
What about question 2: how can actually take the limit of ε → 0 and compute the 

derivative? The idea is to di˙erentiate dX(ε) at each fixed sample ω ∈ Ω. In probability 
theory terms, we take the limit of random variables dX(ε)/ε as ε → 0: 

δ = lim 
ε→0 

dX(ε) 
ε 

. (6) 

For X(p) ∼ Exp(p) parameterized via the inversion method, we get: 

δ(ω) = lim 
ε→0 

−ε log (1 − ω) 
ε 

= − log (1 − ω). (7) 

Once again, δ is a random variable over the same probability space. The claim is that δ 
is the notion of derivative we were looking for! Indeed, δ is itself in fact a valid gradient 
estimator: 

E[δ] = E 

 

lim 
ε→0 

dX(ε) 
ε 

 
? 
= lim 

ε→0 

E[dX(ε)] 
ε 

= 
dE[X(p)] 

dp 
. (8) 

Rigorously, one needs to justify the interchange of limit and expectation in the above. 
Here, we will be content with empirical justification! 

julia> delta(ω) = -log(1 - ω) 
delta (generic function with 1 method) 

julia> delta() = delta(rand()) 
delta (generic function with 2 methods) 

julia> mean(delta() for i in 1:10000) 
1.011689946421105 

5 



So δ does indeed average to 1, which makes sense since the expectation of Exp(p) is 
p, which has derivative 1. However, the number 1 also averages to 1, so that’s not 
very impressive by itself. The crux is that this notion of derivative does not lose any 
information about how the full random variable X(p) reacts to changes in p. This means 
it can be composed to form derivative estimators of more complicated functions. In fact, it 
turns out to obey the same chain rule as usual! In contrast, if our notion of derivative was 
simply dE[X(p)] 

dp = 1, we would not be able to have a chain rule that enables di˙erentiation 
of more complicated functions. 
Using dual numbers introduced in lecture 5, we can di˙erentiate the expectation of 

the square of a sample from an exponential distribution, without having an analytic 
expression for this quantity. (The expression for δ we derived is already implemented as 
a dual number rule in Julia.) The primal and dual values of the outputted dual number 
is a sample from the joint distribution of (X(p), δ). 

julia> using Distributions, ForwardDiff: Dual 

julia> sample_X(p) = rand(Exponential(p))^2 
sample_X (generic function with 1 method) 

julia> sample_X(Dual(10.0, 1.0)) # sample a single dual number! 
Dual}(153.74964559529033,30.749929119058066) 

julia> # obtain the derivative! 
julia> mean(sample_X(Dual(10.0, 1.0)).partials[1] for i in 1:10000) 
40.016569793650525 

Using the “reparameterization trick” to form a gradient estimator, as we have done, is a 
fairly old idea. It is also called the pathwise gradient estimator. Recently, it has become 
very popular in machine learning due to its use in VAEs [1], and lots of resources can 
be found online on it. Since composition simply works by the usual chain rule, it also 
works in reverse-mode, and can di˙erentiate functions far more complicated than the one 
above! Our treatment here is arguably much less concise than it could be, but emphasizes 
some key conceptual points and sets the stage for understanding what goes wrong with 
discreteness, which is what we turn to next. 

4 Handling discrete randomness 

So far we have only considered a continuous random variable. Let’s see how the picture 
changes for a discrete random variable! Let’s take a simple Bernoulli variable X(p) ∼ 
Ber(p), which is 1 with probability p and 0 with probability 1 − p. 

julia> sample_X(p) = rand(Bernoulli(p)) 
sample_X (generic function with 1 method) 

julia> p = 0.5 
0.6 

julia> sample_X(ε) # produces false/true, equivalent to 0/1 
true 

6 



Output 

Ω 
0 1− p− ε 1− p 

X(p + ε) X(p) 

1 

1 

dX(ε) 

1− p− ε 1− p 

Output 

Ω 
0 

X(p)(ω) = 0 X(p)(ω) = 1 { { 
1 

1 

Figure 2: For X(p) ∼ Ber(p) parameterized via the inversion method, plots of X(p), 
X(p + ε), and dX(ε) as functions Ω : [0, 1] → R. 

julia> sample_X(ε) 
false 

julia> sample_X(ε) 
true 

The parameterization of a Bernoulli variable is shown in Figure 2. Using the inversion 
method once again, the parameterization of a Bernoulli variable looks like a step function: 
for ω < 1 − p, X(p)(ω) = 0, while for ω ≥ 1 − p, X(p)(ω). 
Now, what happens when we perturb p? Let’s imagine perturbing p by a positive 

amount ε. As shown in Figure 2, something qualitatively very di˙erent has happened 
here. At nearly every ω except a small region of probability ε, the output does not change. 
Thus, the δ we defined in the previous section (which, strictly speaking, was defined by 
an "almost-sure" limit that neglects regions of probability 0) is 0 at every ω: after all, for 
every ω, there exists small enough ε such that dX(ε)(ω) = 0. 
However, there is certainly an important derivative contribution to consider here. 

The expectation of a Bernoulli is p, so we would expect the derivative to be 1: but 
E[δ] = E[0] = 0. 
What has gone wrong is that, although dX(ε) is 0 with tiny probability, the value of 

dX(ε) on this region of tiny probability is 1, which is large. In particular, it does not 
approach 0 as ε approaches 0. Thus, to develop a notion of derivative of X(p), we need 
to somehow capture these large jumps with “infinitesimal” probability. 
In recent work together with Frank Schäfer, Moritz Schauer, and Chris Rackauckas, 

[3], we’ve worked to extend the ideas I’ve talked about in this class to develop a notion 
of "stochastic derivative", and made a package called StochasticAD.jl which performs 
automatic di˙erentiation by generalizing the idea of dual numbers to stochastic triples, 
which include a third component exactly for storing these large jumps. For example, the 
stochastic triple of a Bernoulli variable might say 

julia> using StochasticAD, Distributions 
julia> f(p) = rand(Bernoulli(p)) # 1 with probability p, 0 otherwise 
julia> stochastic_triple(f, 0.5) # Feeds 0.5 + ε into f 
StochasticTriple of Int64: 
0 + 0ε + (1 with probability 2.0ε) 

Here, ε is imagined to be an “infinitesimal unit”, so that the above triple indicates a flip 
from 0 to 1 with probability that has derivative 2. 

7 

https://StochasticAD.jl


However, this problem remains a very diÿcult one, and there are a lot of improvements 
still to be made! If you’re interested in reading more, you may be interested in our 
paper [3] and our package, as well as [2] which is a great survey of the field of gradient 
estimation in general. 
At the end of class, we considered a random walk example with StochasticAD.jl. 

Here it is! 

julia> using Distributions, StochasticAD 

julia> function f(p) 
n = 0 
for i in 1:100 

n += rand(Bernoulli(p * (1 - (n+i)/200))) 
end 
return n 

end 
f (generic function with 1 method) 

julia> mean(f(0.5) for _ in 1:10000) # calculate mean at p = 0.5 
32.6956 

julia> st = stochastic_triple(f, 0.5) # sample a single stochastic triple at p = 0.5 
StochasticTriple of Int64: 
32 + 0ε + (1 with probability 74.17635818221052ε) 

julia> derivative_contribution(st) # derivative estimate produced by the triple 
74.17635818221052 

julia> # obtain the derivative! 
julia> mean(derivative_contribution(stochastic_triple(f, 0.5)) for i in 1:10000) 
56.65142976168479 

References 

[1] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv 
preprint arXiv:1312.6114 (2013). 

[2] Shakir Mohamed et al. “Monte carlo gradient estimation in machine learning”. In: 
The Journal of Machine Learning Research 21.1 (2020), pp. 5183–5244. 

[3] Gaurav Arya et al. “Automatic Di˙erentiation of Programs with Discrete Random-
ness”. In: Thirty-Sixth Conference on Neural Information Processing Systems. 2022. 
doi: 10.48550/arXiv.2210.08572. 

8 

https://doi.org/10.48550/arXiv.2210.08572
https://StochasticAD.jl


MIT OpenCourseWare 
https://ocw.mit.edu 

18.S096 Matrix Calculus for Machine Learning and Beyond 
Independent Activities Period (IAP) 2023�� 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/terms
https://ocw.mit.edu

	Introduction
	Stochastic programs
	Stochastic differentials and the reparameterization trick
	Handling discrete randomness
	Blank Page



