18.S096 PSET 1

IAP 2023

Problem 0 (4+4+4+4 points)

The hyperbolic Corgi notebook may be found at https://mit-c25.netlify.app/notebooks/1_hyperbolic_corgi. Compute the 2×2 Jacobian matrix for each of the following image transformations from that notebook:
(a) $\operatorname{rotate}(\theta):(x, y) \rightarrow(\cos (\theta) x+\sin (\theta) y,-\sin (\theta) x+\cos (\theta) y)$
(b) hyperbolic_rotate $(\theta):(x, y) \rightarrow(\cosh (\theta) x+\sinh (\theta) y, \sinh (\theta) x+\cosh (\theta) y)$
(c) nonlin_shear $(\theta):(x, y) \rightarrow\left(x, y+\theta x^{2}\right)$
(d) $\operatorname{warp}(\theta):(x, y) \rightarrow \operatorname{rotate}\left(\theta \sqrt{x^{2}+y^{2}}\right)(x, y)$

Problem 1 (5+4 points)

(a) Suppose that $L[x]$ is a linear operation (for x in some vector space V, with outputs $L[x]$ in some other vector space W). If $f(x)=L[x]+y$ for a constant $y \in W$, what is $f^{\prime}(x)$ (in terms of L and/or y)?
(b) Give the derivatives of $f(A)=A^{T}$ (transpose) and $g(A)=1+\operatorname{tr} A$ (trace) as special cases of the rule you derived in the previous part.

Problem 2 (5+6+5+5 points)

Calculate derivatives of each of the following functions in the requested forms - as a linear operator $f^{\prime}(x)[d x]$, a Jacobian matrix, or a gradient ∇f-as specified in each part.
(a) $f(x)=x^{T}(A+\operatorname{diagm}(x))^{2} x$, where the inputs $x \in \mathbb{R}^{n}$ are vectors, the outputs are scalars, $A=A^{T}$ is a constant symmetric $n \times n$ matrix $\in \mathbb{R}^{n \times n}$, and diagm (x) denotes the $n \times n$ diagonal matrix $\left(\begin{array}{lll}x_{1} & & \\ & x_{2} & \\ & & \ddots\end{array}\right)$. Give the gradient ∇f, such that $f^{\prime}(x) d x=(\nabla f)^{T} d x$.
(b) $f(x)=\left(A+y x^{T}\right)^{-1} b$, where the inputs x and outputs $f(x)$ are n-component (column) vectors in \mathbb{R}^{n}, y and b are constant vectors $\in \mathbb{R}^{n}$, and A is a constant $n \times n$ matrix $\in \mathbb{R}^{n \times n}$.
(i) Give $f^{\prime}(x)$ as a Jacobian matrix.
(ii) If you are given A^{-1}, then you can compute $\left(A+y x^{T}\right)^{-1}$ and hence $f(x)$ for any x in $\sim n^{2}$ scalararithmetic operations (i.e., roughly proportional to n^{2}, or in computer-science terms $\Theta\left(n^{2}\right)$ "complexity"), using the "Sherman-Morrison" formula (Google it). Explain how your Jacobian matrix can therefore
also be computed in $\sim n^{2}$ operations for any x given A^{-1} (i.e. give a sequence of computational steps, each of which costs no more than $\sim n^{2}$ arithmetic).
(c) $f(x)=\frac{x x^{T}}{x^{T} x}$, with vector inputs $x \in \mathbb{R}^{n}$ and matrix outputs $f \in \mathbb{R}^{n \times n}$. Give $f^{\prime}(x)$ as a linear operator, i.e. a linear formula for $f^{\prime}(x)[d x]$.
(d) $g(x)=\frac{x x^{T}}{x^{T} x} b$, with vector inputs $x \in \mathbb{R}^{n}$ and vector outputs $f \in \mathbb{R}^{n}$, where $b \in \mathbb{R}^{n}$ is a constant vector. Give $g^{\prime}(x)$ as a Jacobian matrix.

Problem 3 (5+5+5 points)

(a) Argue briefly that linear functions that map $n \times n$ matrices to $n \times n$ matrices themselves form a vector space V. What is the dimension of this vector space?
(b) Argue briefly that linear functions of $n \times n$ matrices of the form $X \rightarrow A X$, where A is $n \times n$, form a vector space. What is the dimension of this vector space?
(c) Argue briefly why it follows that there must be infinitely many linear functions $\in V$ that are not of the form $X \rightarrow A X$.

MIT OpenCourseWare
https://ocw.mit.edu
18.S096 Matrix Calculus for Machine Learning and Beyond

Independent Activities Period (IAP) 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

