18.S096 PSET 1 Solutions

IAP 2023
February 3, 2023

Problem 0 (4+4+4+4 points)

The hyperbolic Corgi notebook may be found at https://mit-c25.netlify.app/notebooks/1_hyperbolic_corgi. Compute the 2×2 Jacobian matrix for each of the following image transformations from that notebook:
(a) $\operatorname{rotate}(\theta):(x, y) \rightarrow(\cos (\theta) x+\sin (\theta) y,-\sin (\theta) x+\cos (\theta) y)$

Solution: This is simply a linear function from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\underbrace{\binom{x}{y}}_{\vec{x}} \rightarrow \underbrace{\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)}_{R(\theta)}\binom{x}{y}
$$

By the same reasoning as in problem 1, the derivative (Jacobian) is simply the rotation operator $R(\theta)$: $d(R \vec{x})=R \overrightarrow{d x}$, and hence the Jacobian is $R(\theta)$.
(b) hyperbolic_rotate $(\theta):(x, y) \rightarrow(\cosh (\theta) x+\sinh (\theta) y, \sinh (\theta) x+\cosh (\theta) y)$

Solution: This is another linear transformation:

$$
\underbrace{\binom{x}{y}}_{\vec{x}} \rightarrow \underbrace{\left(\begin{array}{cc}
\cosh \theta & \sinh \theta \\
\sinh \theta & \cosh \theta
\end{array}\right)}_{H(\theta)}\binom{x}{y}
$$

with Jacobian $H(\theta)$.
(c) nonlin_shear $(\theta):(x, y) \rightarrow\left(x, y+\theta x^{2}\right)$

Solution: The differential is:

$$
d\binom{x}{y+\theta x^{2}}=\binom{d x}{d y+2 \theta x d x}=\left(\begin{array}{cc}
1 & 0 \\
2 \theta x & 1
\end{array}\right)\binom{d x}{d y}
$$

so the Jacobian is the boxed matrix.
(d) $\operatorname{warp}(\theta):(x, y) \rightarrow \operatorname{rotate}\left(\theta \sqrt{x^{2}+y^{2}}\right)(x, y)$

Solution: This is the function $\vec{x} \rightarrow R(\theta\|\vec{x}\|) \vec{x}$ in terms of the rotation matrix $R(\theta)$ from part (a), so we we can use the product rule:

$$
d(R(\theta\|\vec{x}\|) \vec{x})=d R \vec{x}+R \overrightarrow{d x}
$$

where by the chain rule:

$$
d R=R^{\prime}(\theta\|\vec{x}\|) d(\theta\|\vec{x}\|)=\theta R^{\prime}(\theta\|\vec{x}\|) d(\|\vec{x}\|)
$$

with

$$
R^{\prime}(\phi)=\left(\begin{array}{cc}
-\sin \phi & \cos \phi \\
-\cos \phi & -\sin \phi
\end{array}\right)
$$

by familiar 18.01 derivatives of each component-which follows from the definition $d R=R(\phi+d \phi)-R(\phi)=$ $R^{\prime}(\phi) d \phi$, since the scalar $d \phi$ multiplies R^{\prime} elementwise. To get $d(\|\vec{x}\|)$ we can apply the chain rule again:

$$
d(\|\vec{x}\|)=d\left(\left(\vec{x}^{T} \vec{x}\right)^{1 / 2}\right)=\frac{d\left(\vec{x}^{T} \vec{x}\right)}{2\left(\vec{x}^{T} \vec{x}\right)^{1 / 2}}=\frac{\not 2 \vec{x}^{T} \overrightarrow{d x}}{\not 2\|\vec{x}\|},
$$

noting that familiar 18.01 calculus rules work fine when applying the chain rule to scalar terms. ${ }^{1}$ Hence, putting it all together and rearranging scalar terms (which we can move freely), we have:

$$
\begin{aligned}
& d(\operatorname{warp} \vec{x})=\frac{\theta}{\|\vec{x}\|} R^{\prime}(\theta\|\vec{x}\|) \vec{x} \vec{x}^{T} \overrightarrow{d x}+R \overrightarrow{d x} \\
&=\left(\forall \theta\|\vec{x}\| R^{\prime}(\theta\|\vec{x}\|) \frac{\vec{x} \vec{x}^{T}}{\vec{x}^{T} \vec{x}}+R(\theta\|\vec{x}\|)\right. \\
&) \overrightarrow{d x}
\end{aligned}
$$

in terms of R and R^{\prime} defined above, with the boxed term being the Jacobian, and we have re-arranged terms to "beautify" the expression by making it clear that $\frac{\vec{x} \vec{x}^{T}}{\vec{x}^{T} \vec{x}}=\frac{\vec{x} \vec{x}^{T}}{\|\vec{x}\|^{2}}$ is an orthogonal projection operator.

Problem 1 ($5+4$ points)

(a) Suppose that $L[x]$ is a linear operation (for x in some vector space V, with outputs $L[x]$ in some other vector space W). If $f(x)=L[x]+y$ for a constant $y \in W$, what is $f^{\prime}(x)$ (in terms of L and/or y)?

Solution: This problem is mainly about knowing the definitions of linear operators and derivatives. If $f(x)=L[x]+y$, then

$$
d f=f(x+d x)-f(x)=(\underbrace{L[x+d x]}_{=L \nmid x]+L[d x]}+y y)-(L\{x]-\not y)=L[d x]
$$

so we have $f^{\prime}(x)[d x]=L[d x]$ or equivalently $f^{\prime}(x)=L$. For affine functions, the derivative is just the linear part.
(b) Give the derivatives of $f(A)=A^{T}$ (transpose) and $g(A)=1+\operatorname{tr} A$ (trace) as special cases of the rule you derived in the previous part.

Solution: Again, the key is simply to understand linearity. In both of these examples, we have a linear operator that you cannot easily write as a matrix \times vector product (unless you "vectorize" the inputs and/or outputs).
(i) $f(A)=A^{T}$ is a linear operator because transposition is linear: $(A+B)^{T}=A^{T}+B^{T}$ and $(\alpha A)^{T}=$ αA^{T}. So, in the notation of part (a), $L[x]=A^{T}$ and $y=0$, so $f^{\prime}(A)[d A]=(d A)^{T}$. Equivalently, $d\left(A^{T}\right)=(d A)^{T}$.

[^0](ii) Here, the key is that trace is linear: $\operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B$ and $\operatorname{tr}(\alpha A)=\alpha \operatorname{tr} A$ by inspection of the definition of the trace. So, in the notation of part $(\mathrm{a}), g(x)=\underbrace{1}_{y}+\underbrace{\operatorname{tr} A}_{L[A]}$ is an affine function with $g^{\prime}(A)[d A]=\operatorname{tr}(d A)$, or equivalently $d(1+\operatorname{tr} A)=\operatorname{tr}(d A)$.

Problem 2 ($5+6+5+5$ points)

Calculate derivatives of each of the following functions in the requested forms-as a linear operator $f^{\prime}(x)[d x]$, a Jacobian matrix, or a gradient ∇f-as specified in each part.
(a) $f(x)=x^{T}(A+\operatorname{diagm}(x))^{2} x$, where the inputs $x \in \mathbb{R}^{n}$ are vectors, the outputs are scalars, $A=A^{T}$ is a constant symmetric $n \times n$ matrix $\in \mathbb{R}^{n \times n}$, and diagm (x) denotes the $n \times n$ diagonal matrix $\left(\begin{array}{lll}x_{1} & & \\ & x_{2} & \\ & & \ddots\end{array}\right)$. Give the gradient ∇f, such that $f^{\prime}(x) d x=(\nabla f)^{T} d x$.

Solution: Applying the product rule, we have

$$
\begin{aligned}
d f=d x^{T}(A+\operatorname{diagm}(x))^{2} x+x^{T}(A+ & \operatorname{diagm}(x))^{2} d x \\
& +x^{T} \underbrace{d(\operatorname{diagm} x)}_{=\operatorname{diagm}(d x)}(A+\operatorname{diagm}(x)) x+x^{T}(A+\operatorname{diagm}(x)) \operatorname{diagm}(d x) x
\end{aligned}
$$

where $d(A+\operatorname{diagm}(x))=d(\operatorname{diagm} x)$ since A is a constant, and because diagm is linear (as in problem 1) we have $d(\operatorname{diagm} x)=\operatorname{diagm}(d x)$. Now, in order to get this in the form $\nabla f \cdot d x$, we neee to move all of our $d x$ factors to the right. The first trick is one we showed in class for a very similar problem: every scalar equals the transpose of itself, giving

$$
d x^{T}(A+\operatorname{diagm}(x))^{2} x=\left[d x^{T}(A+\operatorname{diagm}(x))^{2} x\right]^{T}=x^{T}(A+\operatorname{diagm}(x))^{2} d x
$$

using the fact that $A+\operatorname{diagm}(x)$ is symmetric $\left(A=A^{T}\right.$ was given and $\operatorname{diagm} x$ is diagonal). Similarly combining the other pair of terms in $d f$, we get:

$$
d f=2 x^{T}(A+\operatorname{diagm}(x))^{2} d x+2 x^{T}(A+\operatorname{diagm}(x)) \operatorname{diagm}(d x) x
$$

The second trick is more subtle: if you think carefully about diagm $(d x) x$, you will realize that it is simply an elementwise product (denoted by .* in Julia), so:

$$
\operatorname{diagm}(d x) x=d x . * x=x . * d x=\operatorname{diagm}(x) d x
$$

Hence

$$
d f=\left[2 x^{T}(A+\operatorname{diagm}(x))^{2}+2 x^{T}(A+\operatorname{diagm}(x)) \operatorname{diagm}(x)\right] d x
$$

and $\nabla f=[\cdots]^{T}$ therefore gives

$$
\nabla f=2\left[(A+\operatorname{diagm}(x))^{2}+\operatorname{diagm}(x)(A+\operatorname{diagm}(x))\right] x=2(A+2 \operatorname{diagm}(x))(A+\operatorname{diagm}(x)) x
$$

(b) $f(x)=\left(A+y x^{T}\right)^{-1} b$, where the inputs x and outputs $f(x)$ are n-component (column) vectors in \mathbb{R}^{n}, y and b are constant vectors $\in \mathbb{R}^{n}$, and A is a constant $n \times n$ matrix $\in \mathbb{R}^{n \times n}$.
(i) Give $f^{\prime}(x)$ as a Jacobian matrix.

Solution: The key here is the formula derived in class for the derivative of a matrix inverse: $d\left(B^{-1}\right)=$ $-B^{-1} d B B^{-1}$. Applying this to $B=A+y x^{T}$ and $d B=y(d x)^{T}$, and hence to $f(x)$ via the product rule, gives:

$$
\begin{aligned}
d f & =-\left(A+y x^{T}\right)^{-1} y(d x)^{T} \underbrace{\left(A+y x^{T}\right)^{-1} b}_{f(x)} \\
& =-\left(A+y x^{T}\right)^{-1} y f(x)^{T} d x
\end{aligned}
$$

where we have again used $(d x)^{T} f(x)=f(x)^{T} d x$ to move $d x$ to the right. By inspection, our Jacobian matrix is then the rank-1 matrix:

$$
f^{\prime}(x)=-\left(A+y x^{T}\right)^{-1} y f(x)^{T}
$$

(ii) If you are given A^{-1}, then you can compute $\left(A+y x^{T}\right)^{-1}$ and hence $f(x)$ for any x in $\sim n^{2}$ scalararithmetic operations (i.e., roughly proportional to n^{2}, or in computer-science terms $\Theta\left(n^{2}\right)$ "complexity"), using the "Sherman-Morrison" formula (Google it). Explain how your Jacobian matrix can therefore also be computed in $\sim n^{2}$ operations for any x given A^{-1} (i.e. give a sequence of computational steps, each of which costs no more than $\sim n^{2}$ arithmetic).

Solution: Since we have $\left(A+y x^{T}\right)^{-1}$ in $\sim n^{2}$ operations for any x, we can also use it to compute $c=\left(A+y x^{T}\right)^{-1} y$ by an additional matrix-vector multiplication ($\sim n^{2}$ scalar arithmetic operations). Our Jacobian is then the outer product (column \times row)

$$
f^{\prime}(x)=-c f(x)^{T}
$$

which requires an additional n^{2} multiplications (and n negations of c) to yield an $n \times n$ matrix. Hence, overall, the whole process requires an operation count that scales proportional to n^{2}.

Note that the order in which we do the operations matters! If we computed it in the order

$$
f^{\prime}(x)=-\left(A+y x^{T}\right)^{-1}\left(y f(x)^{T}\right)
$$

we would have had a matrix-matrix multiplication costing $\sim n^{3}$ operations, even if the matrix inversion had a cost $\sim n^{2}$.
(c) $f(x)=\frac{x x^{T}}{x^{T} x}$, with vector inputs $x \in \mathbb{R}^{n}$ and matrix outputs $f \in \mathbb{R}^{n \times n}$. Give $f^{\prime}(x)$ as a linear operator, i.e. a linear formula for $f^{\prime}(x)[d x]$.

Solution: We mainly just apply the product rule here, noting that $d\left(\left(x^{T} x\right)^{-1}\right)$ simplifes to the ordinary
quotient rule because $x^{T} x$ is a scalar:

$$
\begin{aligned}
d f & =\frac{d\left(x x^{T}\right)}{x^{T} x}+x x^{T} d\left(\left(x^{T} x\right)^{-1}\right) \\
& =\frac{d x x^{T}+x d x^{T}}{x^{T} x}-\frac{x x^{T} d\left(x^{T} x\right)}{\left(x^{T} x\right)^{2}} \\
& =\frac{d x x^{T}+x d x^{T}}{x^{T} x}-2 \frac{x x^{T}\left(x^{T} d x\right)}{\left(x^{T} x\right)^{2}}=f^{\prime}(x)[d x]
\end{aligned}
$$

which could be simplified in various ways, but we cannot simply ut all of the $d x$ factors on the right since $d x x^{T} \neq x d x^{T}$ (very different from the scalar $\left.d x^{T} x=x^{T} d x\right)$.
(d) $g(x)=\frac{x x^{T}}{x^{T} x} b$, with vector inputs $x \in \mathbb{R}^{n}$ and vector outputs $f \in \mathbb{R}^{n}$, where $b \in \mathbb{R}^{n}$ is a constant vector. Give $g^{\prime}(x)$ as a Jacobian matrix.

Solution: We can use the solution from in the previous part since $g(x)=f(x) b$, but we can simplify it further because $d x^{T} b=b^{T} d x$, and $x^{T} b$ is a scalar that can be commuted freely, allowing us to move all of the $d x$ factors to the right:

$$
\begin{aligned}
d g & =d f b=\frac{d x x^{T} b+x d x^{T} b}{x^{T} x}-\frac{x x^{T} b\left(2 x^{T} d x\right)}{\left(x^{T} x\right)^{2}} \\
& =\underbrace{\frac{1}{x^{T} x}\left(\left(x^{T} b\right) I+x b^{T}-2 \frac{x x^{T} b x^{T}}{x^{T} x}\right)}_{g^{\prime}(x)} d x
\end{aligned}
$$

where I is the $n \times n$ identity matrix (since $\left.d x\left(x^{T} b\right)=\left(x^{T} b\right) I d x\right)$. This again could be simplified in various ways.

Problem 3 (5+5+5 points)

(a) Argue briefly that linear functions that map $n \times n$ matrices to $n \times n$ matrices themselves form a vector space V. What is the dimension of this vector space?

Solution: Suppose $L_{1}, L_{2} \in V$ are two such linear functions. Then this is a vector space if we let $L=\alpha L_{1}+\beta L_{2}$ be the linear map $L[X]=\alpha L_{1}[X]+\beta L_{2}[X]$ for some scalars α, β-it is clear by inspection that L satisfies the axioms of linearity if L_{1}, L_{2} do, so this is a vector space (we can add, subtract, and scale).
How many parameters does such a map have? It has n^{2} inputs and n^{2} outputs, so a linear function has n^{4} parameters-we could equivalently write an $L \in V$ in "vectorized" form as an $n^{2} \times n^{2}$ matrix multiplying $\operatorname{vec}(X)$ to produce $\operatorname{vec}(L[X])$.
(b) Argue briefly that linear functions of $n \times n$ matrices of the form $X \rightarrow A X$, where A is $n \times n$, form a vector space. What is the dimension of this vector space?

Solution: This is clearly a subspace of V : if we let $L_{A}[X]=A X$, then by inspection

$$
L_{A_{1}} \pm L_{A_{2}}=L_{A_{1} \pm A_{2}}
$$

and $\alpha L_{A}=L_{\alpha A}$ using the definitions above. But it is of dimension $\boxed{n^{2}}$, the number of parameters in the
$n \times n$ matrix A.
(c) Argue briefly why it follows that there must be infinitely many linear functions $\in V$ that are not of the form $X \rightarrow A X$.

Solution: Since the $X \rightarrow A X$ functions are an n^{2}-dimensional subspace of the n^{4}-dimensional V, it clearly cannot be all of V unless $n=1$. Indeed, simply counting dimensions we know that there are $n^{4}-n^{2}=n^{2}\left(n^{2}-1\right)$ dimensions left.

MIT OpenCourseWare
https://ocw.mit.edu
18.S096 Matrix Calculus for Machine Learning and Beyond

Independent Activities Period (IAP) 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ We can alternatively let $r=\|x\| \Longrightarrow r^{2}=x^{T} x \Longrightarrow 2 r d r=d\left(x^{T} x\right)=2 x^{T} d x \Longrightarrow d r=\frac{2 x^{T} d x}{r}$. But this is basically re-deriving a rule from first-year calculus. Once we hit a scalar term we needn't be shy about applying 18.01 rules.

