```
[SQUEAKING]
[RUSTLING]
[CLICKING]
STEVEN G. JOHNSON:
```

OK, so last time
I talked about how in
order to define a gradient,
you need an inner product.
So that way, if you have a
scalar function of a vector,
the gradient is defined--
basically the
derivative has to be
a linear function that takes
a vector in and gives you
a scalar out.
So it turns out this has to
be-- if you have a dot product,
this has to be a dot product
of something with the x.
And we call the gradient.
So the gradient is the
thing with the same shape
as x that we take the
dot product with the x
to get the f.
So what I didn't mention is
that, in fact, not only did
we need a dot product
to define a gradient,
actually we swept something
under the rug earlier.
We actually need a norm in order
to even define a derivative
in the first place.
All right.
If you have a
vector space, a norm
is some measure of the
length of the vector
or a measure of distance.
A norm takes in a vector v
and gives you out a scalar.
And technically, to
qualify as a norm,
this map has to be non-negative.
It can't be negative.
It can only be 0 if v is 0 .
If you multiply
the vector by 2 , it
54 it has to multiply the length by
2, basically the absolute value
of any scalar.
It has to satisfy something
called a triangle inequality.
So usually, most commonly
we're going to get a norm just
from an inner product.
So once you define
an inner product--
we talked about those last time.
You can even define inner
products of matrices--
you get a norm for free.
You can take the norm
is just a square root
of the inner
product with itself.
And this satisfies
all these properties
for any inner product.
So the reason I mention
this-- oh, and, by the way,
just cultural note.
So if you have a
continuous vector space
with an inner product, we
call that a Hilbert space.
If you have a continuous
vector space with a norm,
that's called a Banach space.
So it's a fancy-sounding
name, but it just
means you have a norm.
Alan edelman: You can
impress your friends
with your fancy mathematics,
but that's all it is.
STEVEN G. JOHNSON: Yes.
So the reason I
wanted to mention this
is that really the definition
of the derivative that we
used earlier implicitly
requires us to have a norm.
So it actually is both
the input and the output.

101 So it really only
102 applies to Banach spaces.
103 So the reason for that
104 is remember I define
105 the derivative to start with.

If you look at the
change in the output, f of x plus delta x minus f of x, for not an infinitesimal but a finite delta x that may be small, remember that we defined the derivative as the linear part, as the linear operator that gives the change to first order, which means we dropped any term that's-we called it little o of delta x-- any term that goes to 0 faster than delta x . So any term that's small compared to this. But in order to define what it means to be small, you need a norm. If I have two vectors, a column vector, and I want to say is this column
vector smaller than that column vector, how do I check it?
I check the length.
You need to map it
to a real number
to get a distance
or a smallness.
So formally, the definition of this little o dx is basically any function
such that the norm
of this over the norm
of delta x goes to 0 ,
as delta x goes to 0 .
And in fact, even
to define a limit, you need a norm of delta x because if you've taken [INAUDIBLE],, there's this epsilon delta meaning of a norm-of a limit, sorry.
arbitrarily small.
You can make this less
than or equal to epsilon
for all epsilon greater than 0 .
And I'm not going to go
through the definition.
If you've seen the
definition of a limit,
there's some absolute values
in there that for vector spaces
have to turn into norms.
But basically it's just--
ALAN EDELMAN: My
experience is everyone's
seen the definition of
delta and epsilon limits,
and no one really
understands it.
STEVEN G. JOHNSON: Yeah.
ALAN EDELMAN: Is that fair?
Maybe some of you guys really
do, but most of us don't.
STEVEN G. JOHNSON: Yeah,
I mean, to be fair,
it took people 2,000
years to figure it out.
The concept of a limit
and an infinitesimal
was a big struggle
in mathematics
going back to the ancient
Greeks, Zeno's paradoxes
and so forth.
So it really took a
long time for people
to nail down what this meant.
But yeah, you need
to be able to have
a length, a norm of the
output, because this has
the same shape as the output.
These are the same shape as f.
To say that these terms
are small compared to delta
x, which you also need
a norm of delta x.
So just implicitly,
you always need
200 a norm of all of these

```
2 0 1 ~ t h i n g s ~ t o ~ d e f i n e ~ i t .
```

```
And usually, we're
going to get it
because we're going to define--
in most cases, we'll
define an inner product, as we'll want that
anyway because if we want
to take derivatives
of scalar functions,
we want to be able to
write down gradients.
But this is what
you really need.
So anyway, so I just wanted to--
this is something we swept under the rug in the beginning. But since we defined Hilbert spaces,
so I thought I should
define a Banach space.
I mean, I'm still sweeping
some things under the rug.
I'm sweeping what
does it mean for it
to be continuous under the rug?
But yeah, I wanted to
throw that out there.
That's all I wanted to say.
ALAN EDELMAN: That's it?
STEVEN G. JOHNSON: Yeah.
Any questions about that?
ALAN EDELMAN: Questions?
By all means.
OK, good.
All right.
So this is just a
little notebook.
And if we really need--
this isn't the live version,
so I can't really do anything.
But I have a feeling that
this will be good enough.
But if we need the
live version, we
can just press a few buttons.
So if I understood
correctly, last time
you got the answer for
what is the gradient
```

```
251 of the determinant.
252 Is that right?
2 5 3 \text { Did you derive this formula?}
2 5 4 ~ S T E V E N ~ G . ~ J O H N S O N :
2 5 5 ~ I ~ d i d ~ n o t ~ d e r i v e ~ i t .
256 I just gave the answer.
257 ALAN EDELMAN: You
258 gave the answer.
259 And there's a few
260 different formats.
261 Did you--
```

STEVEN G. JOHNSON: I
give it the first one. Determinant A--
ALAN EDELMAN: Is the cofactor.
STEVEN G. JOHNSON:
--inverse transpose, yeah.
ALAN EDELMAN: Oh,
the gradient is
the determinant of A times--
that's the second one, right?
STEVEN G. JOHNSON: Yeah.
ALAN EDELMAN: So the
first one is the cofactor of A, which is one of those linear algebra terms that you may or may not remember.
This is the one.
And just another
term is the adjugate of A transpose, which is the-the adjugate of a matrix is the inverse of the matrix divided by the determinant.
STEVEN G. JOHNSON: Multiplied by the determinant.
ALAN EDELMAN: Multiplied
by the determinant, right.
Let's see.
Of course, if you have the gradient, then--
did you write down this version as well last time?
The d of the determinant.
STEVEN G. JOHNSON: Well, I did d of any matrix function, so yes.
I defined the dot product and matrix dot product.

301 ALAN EDELMAN: Right, right.
302 I see.
303 So d, the determinant, will be
304 the trace of whatever formula
305 you have over here,
306 this formula times dA.
STEVEN G. JOHNSON: Transposed.
Transposed times it, yeah.
ALAN EDELMAN: Yes, right, sorry.
STEVEN G. JOHNSON: [INAUDIBLE]
ALAN EDELMAN: Let
me clear my head.
Yes, the trace of this
thing transposed times dA, which is the element-wise-it's just like the dot product. You all get that.
It's just like the vector dot product.
You multiply corresponding elements, and you take the sum. Whenever you have the trace of A transpose B, as Steven is writing very nicely over here, that's the A dot B. So if we know the gradient, then the d has to be this formula.
I'm just defining the
adjugate right here so
that I can have it handy.
As Steven was saying,
it's just the determinant times the inverse. This is just a definition. And then there's the cofactor matrix, which is the adjugate of A transpose. Once I've defined this one, to define this one, I just get to do the equality. So this defines these functions. And here I've sort of written it every which way. The inverse in terms of the adjugate and the cofactor, the adjugate in terms of the determinant, the inverse and the cofactor. You get it.

351 All three possibilities
352 are written here.
353 So for 2-by-2 matrices,
354 here's the 2-by-2 matrix,

Some of you will
recognize that when
you form the inverse of a 2-by-2 matrix, the determinant goes
in the denominator.
And the thing that goes in the numerator-- right, you're all good at 2-by-2 inverses.
Do you know that by heart?
Would you be able to
do it in your sleep?
You switch the a and the d,
and you negate the b and the c.
Well, let's see.
You negate the b and the c, but
I'm also doing the transpose.
So you negate the b
and c and transpose
because it's the cofactor.
For the adjugate, you
just take the minus.
And anyway, these
are all the formulas.
Here's the inverse.
So the inverse is the adjugate
divided by the determinant.
Doing all this
numerically just for fun.
So numerically, here's
a random matrix,
and here's a random
perturbation.
What we're going to do is
look at the determinant
of the perturbed A minus
the determinant of A.
So there's the numerical value.
And by the way, I know
Steven has recommended always
using things on the order
of square root of epsilon
to make the perturbations
10 to the minus eighth.

401 And he's right.
402 I never do that, but you
403 should listen to him.
404 I just start typing three
405 or four 0's and a 1.
406 And actually, it's been good
407 enough for my purposes just
408 to check things.
409 I mean, Steven's is more--
410 it's the best possible one,
411 a square root of epsilon.
412 But with a quick
413 and dirty test, I
414 don't have the time to type
415 all those 0's, and I never
416 remember to type 1e minus 8.
417 So I just type these four
418 or five 0 's or three, four,
419 or five 0's.
420 But in any event, here's
421 what the finite difference.
422 Here's the trace of
the adjugate times.
We see that they're correct to enough digits to believe it.
STEVEN G. JOHNSON: How
come the adjugate is not
transposed there?
There's something missing here.
Oh, no, it's the
adjugate-- yeah, OK, right.
The determinant is the
transpose of the adjugate.
Never mind.
Never mind.
Adjugate is the great--
ALAN EDELMAN: I have to go
back and look at these formulas
to answer your--
STEVEN G. JOHNSON:
It's the transpose
of the gradient, so yes.
ALAN EDELMAN: Let me
say, yes, what you just
said, that the adjugate
of the transpose
is the thing that you want.
And so the trace needs
to transpose it twice,
so it's left non-transposed.

451 Yeah.
452 You got it.
453 The gradient is
454 the one transposed,
455 and this has to be the
456 transpose of the gradient.
457 STEVEN G. JOHNSON: Yeah.
458 This is gradient of determinant.
459 ALAN EDELMAN: Right,
460 like a double negative
461 makes a positive, a double
462 transpose makes for a no op

463
464
465
466
467
468
469
470
471
472
473
474
475
476

478
479
480
481

500

STEVEN G. JOHNSON: This
is our dot product.
ALAN EDELMAN: Yep.
That's right.
ОК.
So to actually see
the gradient, we
can rely on Julia's
internal forward difference mode, for example, which is--
forward differentiation.
It's not forward difference.
It's automatic differentiation.
It's different from
forward differencing.
It's the forward
mode automatic--
I see this, and I think forward differences, but it's not.
I think in this
lecture, if I get
a chance in just
a little bit, I'll
tell you about how this
forward mode works.
Steven kind of gave
you one view of it.
I'll give you
another view today.
But you just say, give me the derivative or the gradient of the determinant function, and Julia will happily do it.
And of course, I
can compare that
with the adjugate
of A transpose.
And you guys know me by now.

501 When I see these
502 things matching,
503 it looks like to all the
504 digits, it makes me happy.
505 It makes me think, wow, this
506
507
508
is correct.
Right, so this, for sure, is
the derivative of the gradient.
ОК.
I don't know.
Maybe I tried to
say this before,
but I'm just going to repeat
it, if you've heard me say it.
But just philosophically,
I find it remarkable
that you could think of a limit of a finite difference, and the great mathematical
gods let us have a formula.
I mean, you've all
done it in calculus,
like the difference of a-- you take a sine and a little bit more sine, you get a cosine. Or the log, you get 1 over x. Or x squared, you get $2 x$.
But I don't know.
Could you guys
imagine a universe
where the mathematical
gods weren't kind enough?
Not every integral could be written as a formula. I mean, as you know,
lots of integrals can't be written in terms of elementary functions. But derivatives, you could always do it. And you could do it for scalar calculus.
That's why calculus
is so easy to teach and is a beginning subject. You could do it for vector calculus, and you could do it for these complicated matrix functions.

551 I don't know.
552 Do you ever stop and think
553 about that being remarkable, 554 or you just take it as a given
555 and move on with your lives?
556 I think it's amazing
557 that we could have
558 a formula for this difference.
559 I just do.
560
561 But maybe you guys just

562
take it as a granted given,
but I don't know.
I think formulas are
gifts from the gods,
and I don't take
them for granted.
All right.
So this is really
just to show you
how to do reverse mode in Julia.
So it's not much different.
I'm just calling
Zygote, which is
one of the big, popular
packages in Julia
to do reverse mode autodiff.
And you see it's
not much different.
This is the ForwardDiff
package dot gradient,
and this is the
Zygote dot gradient.
Under the hood, it's
getting the answer
in a completely different
way, by going reverse mode.
But it actually gives
the same answer.
Though I wouldn't be surprised--
maybe Steven knows better--
I wouldn't be surprised if
this is just built-in formulas
in both cases.
I don't know.
Let's see.
We could do it symbolically,
but let's get to the proof.
So there are a couple of ways
to prove this mathematically.

601 So one relatively
602 simple proof is
603 to remember the Laplace
604 expansion of determinants.
605 So I suspect you all
606 remember that if you
607
608
609
610
611
want to calculate the
determinant of a big matrix,
usually people take
maybe the first row.
But in fact, you
could take any row.
But do you remember?
You take the
top-left entry times
the determinant of what
happens if you cross out
the first row and first column.
Then the second entry, and you
cross out that row and column
with a minus sign.
Plus, minus, plus, minus.
You remember that rule?
So that's the Laplace expansion.
And the key fact is that if--
for example, if I'm
working with Ai1.
Let's say I'm starting
with the i-th row.
Then Ai1 is not inside
any of these Cs.
Ail only appears here.
Everything else you see
depends on other elements
of the matrix, but it
doesn't depend on Ai1.
Similarly, if you look at
Ai2, Ci2, and every other term
only depends on Ai2.
To make that point very
clear, here what I did was I
took this matrix, and
I made this matrix--
this 3-by-3 matrix
you'll see, it's
almost completely
numerical, but I put
one symbol in the bottom right.
And if you take the determinant,
you see that this is an--

651 I don't know whether
652 to call this a linear
653 or an affine function.
654 STEVEN G. JOHNSON:
655 It would be affine.
656 ALAN EDELMAN: Affine
657 for this class.
658 Some people would
659 actually say it's
660 linear in the sense of
661 linear, quadratic, cubic.
662 It's first-degree polynomial.
663 But let's call it affine for
664 the purposes of this class
665
because it's not 13a plus 0 .
But whatever it is, it's
a first-degree polynomial
is what it is.
And the fact of the
matter is the coefficient
of a is exactly
this determinant.
It's 4 times 4 minus 3.
It's 16 minus 3.
It's 13.
And so the
coefficient of every--
if you make any
element a symbol,
the coefficient that's in
front of it is just this minor.
And so taking derivatives of
first-degree functions is easy.
It's just the slope.
The derivative of
this determinant
with respect to this element
is clearly the number 13.
And so the way to
say this, in general,
is if I want to take the
derivative of determinant
with respect to any
Aij element, the slope
is the thing that multiplies it.
So it's Cij.
And so that is one
immediate way to conclude
that the gradient
of the determinant

701 is the cofactor matrix.
702 It's that simple.
703 There's another proof
704 that is sort of--
705 I mean, this proof
706 is pretty simple.
707 I think it's easy to agree that
708 this is a nice, simple proof.
709 There's another proof that
710 might seem a slightly harder,
711 in one way, but in a
712 way, it's sort of--
713 mathematicians like
714 this kind of proof.
your pick which one you
like best, but let me just
show you an alternative proof.
So in this alternative
proof, what we're going to do
is we're going to figure out the
right answer near the identity.
And then we're going to--
and then we're going to use
that to bootstrap ourselves
to any other matrix.
You know how to expand--
you're all familiar,
if I ask you
to compute the characteristic
polynomial of a matrix,
let's call it M. If
I need to do the--
here, I'll do what Steven
does, and I'll do it like this.
So if anybody asked
you to calculate
the characteristic polynomial--
and I'm using the mouse, which
means it's really sloppy.
Not that my handwriting is so
great, but it's not this bad.
All right.
So the characteristic
polynomial of any matrix M
is usually written like this.
And there's lots of factors.
There's lambda to the
n and all the way down
to the determinant, plus or

751 minus the determinant of M.
752 So you remember that.
753 And if you want, you can--
754 if you want, you can
755 make this a plus sign,
756 and then you get plus signs
757 in this whole formula.
758 And so this is not
759 much different.
760 Here if lambda was 1, if you
761 just took lambda equals 1,
762 you'd have determinant
763 of I-- well,
764 let's just see it this way.
765 Determinant of I plus a
766 matrix would be 1 plus.
767 And then there would be the
768 terms that you would get.
769 There would be the next terms.
770 This thing here,
771 as you all know,
772 is the trace of the matrix.
773 So maybe I should
774 have put that in.
You get lambda to
the n plus lambda
to the n minus 1 times
the trace of the matrix.
So if you make a tiny,
little perturbation,
the determinant of I plus dA--
I guess I should have made
this 1 plus the trace of dA,
to be honest.
Let's fix that right now.
So the determinant of
I plus dA would be 1.
That would be 1 to the n.
Plus 1 to the n minus 1 times
the trace of the matrix.
And then there's the
lower-order terms.
So that's one way
to think of it.
And so there we immediately get
the answer around the identity.
And now if we want
to get this anywhere,
all we have to do is
recognize that if we want

801 to go to the determinant
802 of A plus dA,
803 then we just go A times
804 A inverse over here,
805 and that's just the identity.
806 But then we can use the
properties of determinants
to pull out the
determinant of A.
And you just get I
plus A inverse dA.
And this basically here, we
just think of this A inverse dA
as the trace formula.
And therefore, we
get our answer,
the very answer
we're looking for.
In a way, this is
more complicated,
but mathematicians like
this one better than--
I don't know why.
They're both valid.
You get to take your pick.
There's something I like
about this, though it is
a little bit more complicated.
But in any event, we
get the same answer.
So what do we have here?
So application to
the derivative of
the characteristic polynomial.
So once again, there's
the simple proof.
The characteristic
polynomial of a matrix
is the product of x
minus the eigenvalues.
Probably a different sign
from what I have here.
You take the derivative
of this product.
You get the sum of these
products, n minus 1
at a time, which you
could rewrite like this.
But you can also directly
do-- with our technology,

851 you can do this and get
852 basically the same answer
853 as the direct proof.
854 And then I have some
855 numerical checks.
856 Let's see.
857 And the derivative of
858 the log determinant.
859 Log determinant comes up a lot.
860 Logs have lots of
861 functions come up a lot.

862

864 a few lectures ago talked
865 about this f over f prime.
866 It's what shows up whenever you
867
868
869
870
871
do anybody's Newton's method.
And of course, this
could be written as 1
over the log f prime.
So basically, the logarithmic
derivative and its reciprocal
come up all over mathematics.
So the derivative of the
log of the determinant
is simply the trace of
the inverse times the dA.
This you've seen, A inverse.
And that's it.
Any questions?
That basically covers the gradient of the determinant. Any questions about that?
So maybe a few words about determinant.
Interestingly
enough, people often
tell you that you should
never compute a determinant.
Or hardly ever might
be a fair term.
So determinants are real.
It's a real favorite of
elementary linear algebra
classes.
Determinants are great for telling you in exact arithmetic whether a matrix
is singular or not.
So a matrix has determinant

901 0, it's singular.
902 If the determinant
903 is not 0, it's not.
904 And that sounds like
905 a really good idea,
906 to have something like that.
907 But it turns out that when
908 you're doing computations
909 in finite precision, if
910 you're doing it on a computer,
911 the determinant turns out
912 to be not so meaningful.
913 It gets to be hard to
914 compute accurately.
915 There are a lot of issues with
916 calculating the determinant.
917 It turns out that while the pure mathematicians live
in a binary world where a matrix
is singular or non-singular,
the truth of the matter is
is that the world of matrices
is not so binary.
It's a bit more of
a spectrum where
matrices are singular or nearly
singular or a little bit bad
or not at all bad.
And probably you've all heard
the word that I'm referring to.
The word that we use
in numerical analysis
is conditioning.
So ill conditioned means a
matrix is nearly singular.
And well conditioned means
that it's very non-singular.
Too many double
negatives there, but it's
sort of the good
side of singular
when we say it's
well conditioned.
And so the determinant
doesn't really give--
the determinant it's
not a really good--
give a good job of talking
about how nearly singular matrices are.

951 The condition number, which is
related to singular values--
I'm not going to talk
about that today--
is a much better way of
talking about matrices
being singular or not.
So you learned it
all in a course,
like 18.06 or elementary
linear algebra.
You learned about determinants.
And then later on,
when you compute,
people tell you to forget
about determinants mostly.
There are times, but mostly.
And the other thing
we tell people to do
is forget about the
characteristic polynomial
as well.
That's not how we calculate eigenvalues either.
We don't take roots
of polynomials.
Anybody happen to know
how we compute eigenvalues
in the real world?
We don't do characteristic
polynomials.
Anybody know the
magic two letters
that happen when you
type eigenvalues?
How many of you
just thought it was
the characteristic polynomial?
You take the roots.
How many of you had any
idea how roots got taken--
eigenvalues got taken
on the computer?
So do you have any idea what
the algorithm is being used?
AUDIENCE: [INAUDIBLE]
ALAN EDELMAN: The power method.
AUDIENCE: Yeah.
ALAN EDELMAN: OK, so you probably

```
1001 didn't hear the student
1002 saying that, well, in 18.06,
1003 I learned about something like
1004 the power method, which gives
1005 you the dominant eigenvalue.
1006 Yeah.
1007 And then nobody else in
1008 the room has any idea
1 0 0 9 \text { how eigenvalues get calculated?}
1 0 1 0 ~ J u s t ~ a ~ l i t t l e ~ b i t
1 0 1 1 ~ o f ~ c u l t u r e ~ h e r e .
1012 So people don't know.
1013 I see.
1014 I kind of feel like I
1015 ruined the question then.
1016 I should have just asked how
1017 are eigenvalues computed?
1018 Because I imagine many
1 0 1 9 \text { of you would have said,}
1020 isn't it the
1021 characteristic polynomial?
1022 You get the roots.
1023 Because every one
1 0 2 4 \text { of you have formed}
1025 the characteristic polynomials
1027 I know you have.
1 0 2 8 \text { You got that quadratic equation,}
1029 and you solve for the roots.
1030 You remember?
1031 Who remembers doing that?
1 0 3 2 \text { Quadratics, you get the roots.}
1033 If you had a mean teacher, maybe
1034 they forced you to do a cubic,
1 0 5 0 ~ a l g o r i t h m ~ f o r ~ e i g e n v a l u e .
```

```
1051 So in general, a QR for
1 0 5 2 ~ a ~ m a t r i x ~ f a c t o r s ~ a ~ m a t r i x ~
1 0 5 3 ~ t o ~ o r t h o g o n a l ~ t i m e s
1054 upper triangular.
1055 And a funny thing happens.
1056 If you factor a matrix into QR
1 0 5 7 \text { and then reverse it and get RQ,}
1058 and if you do that again,
1059 factor that new matrix into QR
1060 and reverse it to RQ,
1 0 6 1 ~ a n d ~ y o u ~ k e e p ~ d o i n g ~ t h a t ,
1062
1064 And there are some details.
1065 If the matrix is
1066 symmetric, the matrix
1067 will actually become more
1068 and more diagonal as you go.
1069 If it's not symmetric, but
1 0 7 0 ~ i t ~ h a s ~ r e a l ~ e i g e n v a l u e s ,
1071 it will become triangular.
1072 And you'll see the eigenvalues
1073 on the diagonal eventually.
1074 And if it's complex, you'll
1075 get these little 2-by-2 pieces
```

/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part1-New_2023jan27.txt
Page 23/23

