
Page	1/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

[SQUEAKING]¬1

[RUSTLING]¬2

[CLICKING]¬3

OK.¬4

So	just	to	let	you	know	what¬5

this	notebook	is	and	isn't,¬6

this	notebook	is¬7

kind	of	meant	to	let¬8

you	see	how	automatic¬9

differentiation	is¬10

kind	of	magical	in	a	way.¬11

That's	kind	of	the	real	purpose.¬12

You'll	start	to	get	a¬13

bit	of	a	feel	for	how¬14

forward	mode	works.¬15

And	what	I'd	like	to¬16

emphasize	is	to	what	extent¬17

this	is	possibly	more	computer¬18

science	than	mathematics.¬19

We	all	have	this	notion¬20

that	whatever	courses¬21

that	are	now	being	taught	in¬22

computer	science	that	maybe¬23

used	to	be	taught¬24

in	math	courses,¬25

like	probability¬26

statistics,	I	think¬27

everybody	agrees	that	calculus¬28

lives	in	math	departments¬29

all	over	the	world.¬30

Lots	of	other	math¬31

subjects	are	being¬32

hijacked	by	engineers,	computer¬33

scientists,	and	so	forth.¬34

But	calculus,	that's	sacred.¬35

That	belongs	in	mathematics.¬36

Well,	here's	a¬37

case	where	calculus¬38

is	as	much	of	a	computer	science¬39

topic	as	it	is	a	math	topic.¬40

I	think	that's	kind	of	what¬41

fascinated	me	most	about	this.¬42

Oh,	gosh.¬43

I	first	put	this¬44

together	in	2017.¬45

Is	it	really	2023	now?¬46

Six	years	later.¬47

Well,	so	it's	an	oldie	but¬48

goodie,	but	I	promise	you¬49

you'll	like	it	just	the	same.¬50



Page	2/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

And	I	do	like	to¬51

tell	people	that	I¬52

used	to	go	to¬53

conferences,	and	I	would¬54

hear	people	talking	about¬55

automatic	differentiation.¬56

People	talked	about¬57

it	before	it	was	hot.¬58

I	mean,	it	became	hot¬59

because	of	machine	learning.¬60

But	a	couple	of	decades	before¬61

machine	learning,	people¬62

would	do	it,	and	they	would¬63

do	it	on	the	sidelines.¬64

Nobody	paid	attention	back	then.¬65

It	didn't	have	sort	of	the	big¬66

excitement	that	it	has	today.¬67

But	I	would	go	to¬68

conferences,	and	somebody¬69

would	get	up	and	talk	about	it.¬70

And	I	don't	know.¬71

I	would	read	my	email	or	tune¬72

out	or	work	on	my	own	math¬73

or	something.¬74

I	didn't	really	pay	attention.¬75

And	so	I	missed	the	boat.¬76

I	didn't	appreciate¬77

what	I	thought¬78

was	most	important	about¬79

automatic	differentiation.¬80

I	made	a	jump	in	my¬81

mind	of	what	it	is.¬82

And	I	figured	it	was	something¬83

symbolic,	like	Mathematica,¬84

Wolfram	Alpha.¬85

We've	all	memorized¬86

tables	of	derivatives.¬87

Here's	a	small	table¬88

of	derivatives.¬89

I	figured	that	if¬90

I	could	memorize	it¬91

when	I	learned	calculus,¬92

then	a	computer	could	be¬93

taught	to	do	this	thing	also.¬94

So	maybe	that's	what	it	is.¬95

That's	great.¬96

I	could	do	it.¬97

A	computer	could	do¬98

it	better	than	me.¬99

Fine.¬100



Page	3/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

I	didn't	care.¬101

Turns	out	that's	not	what¬102

automatic	differentiation	is.¬103

So	then	I	said	to	myself,¬104

maybe	I	got	it	wrong.¬105

I'm	just	guessing	anyway,¬106

and	I	don't	really	care.¬107

But	maybe	it's	some	sort¬108

of	numerical	difference,¬109

like	we	do	to	check	our	answers.¬110

I	want	the	derivative¬111

at	this	point	x,¬112

so	I	can	do	a	forward¬113

derivative	and	get¬114

the	slope	of	the	tangent.¬115

Or	I	could	do	a¬116

backward	derivative,¬117

go	backwards	and	get¬118

the	slope	of	this--¬119

I	guess	it's	a	secant,¬120

to	be	technical--¬121

but	the	slope	of	this	line.¬122

Or	I	could	even	do	a¬123

central	difference,¬124

which	connects	these	two	dots.¬125

And	the	whole	big¬126

deal,	of	course,¬127

is	when	you	do	that,	as	Steven¬128

explained,	what's	a	good	delta?¬129

In	math,	you	want¬130

the	delta	to	go	to	0.¬131

That's	the	very	limiting¬132

definition	of	a	derivative.¬133

But	on	a	computer,	if	delta¬134

gets	too	small,	as	you've	seen,¬135

you	get	that	catastrophic¬136

cancellation	happening.¬137

And	so	numerical¬138

analysis	is	kind¬139

of	about	what's	a	good	delta.¬140

And	Steven's	basically¬141

said	that	something¬142

on	the	order	of	2¬143

to	the	minus	26,¬144

which	is	the	square	root¬145

of	double	precision	machine¬146

epsilon	is	a	good	rule	of	thumb.¬147

You	might	remember	that	curve¬148

where	the	error	went	down,¬149

like	an	absolute	value¬150



Page	4/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

sign,	as	it	got	smaller,¬151

and	then	it	went	up	again.¬152

And	the	best	one¬153

was	at	the	bottom.¬154

That's	the	best	delta	x.¬155

But	the	key	thing¬156

that's	interesting¬157

is	that	automatic¬158

differentiation	is	not	this,¬159

and	it's	not	that.¬160

And	so	what	could	it	be?¬161

And	the	way	I'd	like	to	show¬162

people	of	what	it	is	is	I'd¬163

like	to	start	with	a	simple¬164

example	of	it	in	action.¬165

And	this	is	where,	at	first,¬166

it's	going	to	look	like	magic.¬167

Nothing	up	my	sleeve.¬168

And	then	I	will	explain¬169

to	you	how	it	worked.¬170

So	I'm	going	to	take	one	of¬171

the	oldest	algorithms,	one¬172

of	the	oldest	interesting¬173

algorithms	known	to	mankind,¬174

the	Babylonian	square¬175

root	algorithm,	which¬176

I	think	maybe	you've	all	seen.¬177

But	if	you	haven't,	you¬178

start	with	a	guess	t¬179

to	square	root	of	x.¬180

So	I've	got	a	t,¬181

which	I'm	hoping¬182

is	close	to	square	root	of	x.¬183

And	if	I	take	t	and	x	over	t--¬184

if	t	was	too	small--¬185

x	over	t,	of	course,	will	be¬186

kind	of	on	the	large	side.¬187

If	t	was	a	guess--¬188

between	t	and	x	over	t,¬189

one's	on	the	large	side,¬190

one's	on	the	small	side.¬191

So	why	don't	we	just¬192

take	the	average?¬193

And	then	so	this	is	something¬194

we	could	keep	doing.¬195

And	that's	the¬196

Babylonian	algorithm¬197

that	converges	to¬198

the	square	root	of	x.¬199

Very	simple	algorithm.¬200



Page	5/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

It	was	known	for¬201

thousands	of	years.¬202

How	complicated	could	it	be?¬203

But	I	still	think	it	was¬204

pretty	clever,	the	Babylonians.¬205

I	mean,	they	didn't	have	Julia.¬206

I	mean,	I	thought	it¬207

was	pretty	clever.¬208

So	in	any	event,	just¬209

for	simplicity	sake,¬210

I'm	going	to	start¬211

at	1	for	no	reason.¬212

I'm	just	doing	an	example.¬213

So	I'm	going	to	start	it	at	1.¬214

So	I	have	1	and	x	over	1,¬215

and	I'll	take	the	average.¬216

And	then,	by	default,	I'll	do	10¬217

iterations	of	t	plus	x	over	2.¬218

So	even	if	you¬219

don't	speak	Julia,¬220

I	think	this	algorithm¬221

is	easy	to	understand.¬222

Just	it's	an	input	x.¬223

And	by	default,	we	run	10	times,¬224

but	you	can	give	an	argument¬225

and	make	it	run	more	times.¬226

And	so	let's	go¬227

using	ForwardDiff.¬228

Let	ForwardDiff	do	it.¬229

And	of	course,	with	our¬230

modern	view	of	the	world,¬231

we	know	how	to	take	square	root.¬232

Everybody	in	this	building,¬233

everybody	in	this	institute¬234

could	take	the¬235

derivative	square	root.¬236

It's	one	half	over¬237

the	square	root.¬238

And	so	we	get	the	derivative.¬239

But	before	we	do¬240

that,	let's	actually¬241

make	sure	that	the	code	works.¬242

Let's	actually	check¬243

the	Babylonian	algorithm¬244

that	I	wrote.¬245

The	second	one	is	Julia's¬246

built-in	square	root	of	pi.¬247

And	here's	the¬248

Babylonian	calculating¬249

the	square	root	of	pi.¬250



Page	6/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

And	I	guess	this	is	pretty¬251

convincing	that	the	Babylonians¬252

knew	what	they	were	doing.¬253

I	mean,	we	could	do¬254

the	same	thing	with	2.¬255

We	could	run	the¬256

Babylonian	algorithm,¬257

except	for	some¬258

little	bit	over	here.¬259

Maybe	the	last	bit.¬260

We	basically	get	the¬261

same	answer	with	Julia's¬262

built-in	square	root	and¬263

the	Babylonian	algorithm.¬264

Let's	skip	this	for	a	minute.¬265

I	think	that's	not	important.¬266

So	just	checking	the	algorithm¬267

for	the	moment,	not	even¬268

the	derivative.¬269

So	I'm	actually	going	to	plot	a¬270

few	iterates	of	the	Babylonian¬271

algorithm	just	so	you	can	see.¬272

So	the	first	iteration,¬273

maybe	remember,¬274

it	was	1	plus	x	over	2.¬275

I	still	want	to	call¬276

this	a	linear	function.¬277

But	in	this	class,	I	have	to¬278

call	it	an	affine	function.¬279

Yeah,	I	don't	know	what¬280

the	real	terminology	is.¬281

When	do	I	get	to	say	that	a¬282

first-degree	polynomial	is¬283

a	linear	function?¬284

I	think	there's	a¬285

context	as	to	whether	I'm¬286

calling	it	a	map	or	a	function.¬287

But	any	event,	this¬288

thing's	a	line,¬289

however	you	want	to	call	it.¬290

The	first	step	of	the	Babylonian¬291

algorithm,	iteration	1,¬292

is	given	x,	compute	1¬293

plus	x	divided	by	2.¬294

And	that's	a¬295

first-degree	function.¬296

The	second	iteration,¬297

I'm	plotting	it,	is	here.¬298

And	then	it	gets¬299

closer	and	closer¬300



Page	7/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

to	the	sideways	parabola,	which,¬301

of	course,	is	the	square	root.¬302

In	fact,	by	iteration¬303

5,	you	can't	even¬304

see	much	of	a	difference¬305

with	your	eye.¬306

So	iteration	4	is	the	purple.¬307

And	iteration	5,	you¬308

can't	even	see	it¬309

because	the	black¬310

parabola's	on	top	of	it.¬311

And	so	just	to	kind¬312

of	convince	you¬313

that	the	Babylonian¬314

algorithm	works.¬315

Anyway,	I	like	Plotly.¬316

I	love	doing	this	all	day.¬317

I	can	go	left	and	right¬318

and	look	at	these	numbers.¬319

I	love	this.¬320

So	I	like	interactive	things.¬321

Now	what	I'm	going	to	do	is--¬322

let	me	see.¬323

I	change	this	over	the	years.¬324

So	3,	4,	5,	6.¬325

In	about	nine	lines,¬326

I'm	going	to	create¬327

a	function	that	will¬328

calculate	the	derivative¬329

of	the	Babylonian	algorithm.¬330

And	nowhere	will	I	teach	it	one¬331

half	over	the	square	root	of	x.¬332

I	will	not	do	that.¬333

You'll	see	there'll	be¬334

no	finite	differences.¬335

And	there	will	be	no	symbolic--¬336

it's	going	to	be¬337

by	magic,	but	we're¬338

going	to	get	the	right	answer.¬339

So	are	you	ready?¬340

So	I'm	going	to	do¬341

it	in	nine	lines.¬342

So	here's	three	lines.¬343

I'm	going	to	create¬344

a	Julia	type.¬345

I'm	going	to	call	it¬346

capital	D.	Maybe	some	of	you¬347

have	heard	this	word.¬348

D	is	for	dual	number,	so	that's¬349

why	we're	going	to	use	the	D.¬350



Page	8/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

And	we're	basically¬351

going	to	keep¬352

a	function	derivative¬353

pair,	an	ordered	pair.¬354

And	so	this	is	nothing¬355

but	a	container¬356

to	be	able	to	keep	two	floats.¬357

But	which	floats¬358

am	I	going	to	keep?¬359

I'm	going	to	have	the	value¬360

of	a	function	at	a	point¬361

and	the	derivative	of¬362

that	function	at	a	point.¬363

All	right.¬364

I've	used	up	three¬365

of	my	nine	lines.¬366

And	everybody	agrees	there's¬367

no	finite	difference,¬368

no	symbolic	answer,	right?¬369

So	I've	got	six	more	lines	here.¬370

Yeah,	let	me	just	show¬371

you	what	I've	done	here¬372

before	I	do	anything	else.¬373

So	if	I	wanted	to--¬374

if	I	want	to	create¬375

one	of	these	objects,¬376

I	would	have	to	put	in¬377

a	tuple,	like	D	of	1,	2.¬378

This	line	lets	me¬379

remove	the	parentheses,¬380

which	are	sort	of--¬381

I	just	find	them	annoying.¬382

This	line	doesn't	count.¬383

But	you	see,	I've¬384

got	this	dual	number.¬385

It	doesn't	do	anything	yet.¬386

I	can't	add	dual	numbers	yet.¬387

If	I	try,	it	gets	mad	at	me.¬388

Look,	plus	not	defined.¬389

All	I	can	do	is¬390

define	a	dual	number.¬391

That's	it.¬392

It's	just	a	pair	of	numbers.¬393

Can't	do	anything	at	all¬394

with	it	other	than	store	it.¬395

But	here	what	I'm	going¬396

to	do	is	create	a--¬397

oh,	I	don't	need¬398

this	greater	than.¬399

That's	why.¬400



Page	9/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

I	could	have	one	fewer	line.¬401

I'm	going	to	comment¬402

this	one	out.¬403

I	think	somebody	once	asked¬404

me	to	define	it	for	greater.¬405

But	yeah,	I	don't¬406

need	this	line.¬407

So	I'm	actually	going	to¬408

have	3	plus	5,	8	lines.¬409

So	let	me	tell	you	about¬410

these	next	five	lines.¬411

Mainly	I	want	to	define,	add,¬412

and	divide	on	a	dual	number.¬413

I	don't	need	minus¬414

and	times	yet,¬415

because	if	you	look	at¬416

my	Babylonian	algorithm,¬417

if	you	remember	the¬418

algorithm--	where¬419

is	the	Babylonian	algorithm?¬420

I	do	a	plus	and	a¬421

divide	and	nothing	more.¬422

Later	on,	I'll	add	times	and¬423

minus,	but	I	don't	need	it	yet.¬424

So	I	wanted	to	define¬425

a	plus	and	a	divide.¬426

I	don't	need	this	one	either.¬427

This	thing	could	go	away.¬428

In	Julia,	if	you	want	to¬429

overload	plus	and	divide¬430

and	a	few	other	things,	you¬431

have	to	import	it	from	base.¬432

So	this	is	just	like¬433

a	Julia	detail	thing¬434

that	says	give	me	permission¬435

to	redefine	plus	and	divide¬436

and	a	few	other	things.¬437

And	what	do	I	want	to	do?¬438

When	I	plus	a	couple	of¬439

dual	numbers--	here	let¬440

me	just	do	this	one¬441

only,	just	so	you	see.¬442

I'll	execute	only	the	plus.¬443

Now	I	can	add	dual	numbers.¬444

And	it's	just	going	to¬445

be	like	adding	vectors.¬446

So	I'm	just	going	to	add	the¬447

first	element	of	the	tuple,	2¬448

and	3,	and	the	second	element.¬449

So	now	I	can	add	tuples,¬450



Page	10/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

but	I	can't	divide	them	yet.¬451

So	this	dot	notation,	this¬452

broadcast	or	pointwise¬453

notation,	says¬454

that	basically	add¬455

the	two	parts	of	x	and	the¬456

two	parts	of	y,	like	a	vector.¬457

So	this	adds	2	and	3	to¬458

get	5	and	3	and	4	to	7.¬459

All	right.¬460

Now	let	me	bring	in	the	divide.¬461

I	can't	divide	yet,	by	the	way.¬462

I	can	try,	but	it'll¬463

get	mad	at	me,	you	see.¬464

Oh,	I	must	have	executed	it.¬465

Oh,	did	I	execute	it?¬466

I'm	sorry.¬467

Then	it	took	away	my--¬468

well,	whatever.¬469

All	right.¬470

I	guess	I	must	have¬471

executed	it,	so	I'm	not¬472

getting	away	with	it.¬473

But	here	it	doesn't	matter.¬474

So	this	is	2¬475

divided	by	3	is	2/3.¬476

But	notice	this¬477

isn't	3	divided	by	4.¬478

So	I	have	a	different	rule.¬479

So	the	add	rule	is	just¬480

adding	up	a	vector,¬481

but	the	divide	rule	is	a¬482

little	more	complicated.¬483

STEVEN	G.	JOHNSON:¬484

By	the	way,	Alan,¬485

did	you	want	to	share¬486

your	screen	on	Zoom?¬487

I	forgot	about--¬488

ALAN	EDELMAN:	Oh,	my	gosh.¬489

I	didn't	share	my	screen,	so¬490

you	don't	see	a	thing	I've	done.¬491

STEVEN	G.	JOHNSON:	No,	I	can¬492

see	it	behind	you	on	the--¬493

ALAN	EDELMAN:	Oh,	that's	funny.¬494

OK.¬495

There	we	go.¬496

All	right.¬497

Better?¬498

All	right.¬499

So	divide.¬500



Page	11/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

So	everybody,	of	course,¬501

remembers	the	quotient	rule¬502

from	calculus?¬503

When	I	think	of	it,	I	hear¬504

my	math	teacher	singing	it.¬505

It	was	denominator	times¬506

the	derivative	of	numerator¬507

minus	the	numerator¬508

times	the	denominator,¬509

or	was	it	denominator	squared?¬510

I	don't	know.¬511

Did	your	teacher	sing	it	to	you?¬512

How	did	you	sort	of¬513

memorize	the	quotient	rule?¬514

Anybody	have	a	good	song	for	it?¬515

Anyway,	you	drill¬516

it	into	your	head.¬517

vdu	minus	udv	over	v	squared,¬518

or	denominator,	d	numerator.¬519

I	mean,	I	don't	know.¬520

You	may	have	heard¬521

it	different	ways,¬522

but	you	all	know	it,	right?¬523

This	thing	over	here,	the¬524

quotient	rule,	everybody¬525

knows	it.¬526

I'm	just	extracting¬527

the	parts	from--¬528

so	y	is	the	denominator.¬529

And	so	1	is	the	value.¬530

So	this	is	the	denominator.¬531

x	is	the	numerator.¬532

And	2	is	the	derivative.¬533

So	it's	the	denominator	times¬534

the	derivative	numerator¬535

minus	the	numerator	times¬536

the	derivative	denominator¬537

over	the	denominator	squared.¬538

So	that	is	what¬539

I'm	going	to	teach.¬540

I'm	going	to	teach	Julia	how¬541

to	essentially	add	derivatives,¬542

which	is	just	add,	and	how¬543

to	divide	derivatives,	which¬544

is	just	the	formula	you	know,¬545

just	apply	it	at	a	point.¬546

And	so	this	division	is¬547

using	all	four	numbers¬548

so	that	it	can	get¬549

the	denominator¬550



Page	12/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

times	the	derivative	of	the¬551

numerator	minus	the	numerator¬552

times	the	derivative¬553

of	the	denominator¬554

over	the	denominator¬555

squared,	you	see.¬556

And	that's	what¬557

this	one	ninth	is.¬558

All	right.¬559

That's	it.¬560

Just	these	3	plus--¬561

what	did	I	say?¬562

3	plus--	oh,	I	haven't	told¬563

you	about	convert	and	promote.¬564

These	are	a	little	bit	more¬565

sort	of	technical	details.¬566

But	do	you	know	how	if	you	add¬567

a	complex	number	and	a	real,¬568

like	if	you	go	3	plus¬569

4i,	and	you	add	7?¬570

Now	what's	really	going¬571

on	is	that	that	7,¬572

in	some	abstract	sense,	is¬573

being	converted	into	7	plus	0i.¬574

And	then	you	add	the	real¬575

parts	and	the	imaginary	parts.¬576

Everybody	does¬577

that	all	the	time.¬578

So	we	want	to	do¬579

that	sort	of	thing¬580

where	if	you	have	a	real¬581

number,	we	want	to	think	of	it--¬582

if	you	have	a	scalar,¬583

we	want,	in	effect--¬584

a	constant	is	really¬585

what's	going	on	here.¬586

We	want	to	think	of	this	as	the¬587

constant	x,	where	the	value	is¬588

x	and	the	derivative	is	0.¬589

And	we	want	that	to¬590

be	kind	of	automatic¬591

because	it	would	be	nuisancy¬592

to	type	it	all	the	time.¬593

So	that's	what	that	does.¬594

And	then	the	promote	rule¬595

says	that	if	you	give	it¬596

a	number,	when	you	see	it	in¬597

the	context	of	a	dual	number,¬598

everything	should	be¬599

promoted	to	the	dual	number.¬600



Page	13/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

Just	like	it	happens	with¬601

complex	numbers,	where,¬602

like	I	said,	3	plus¬603

4i	plus	a	real	number,¬604

you'd	put	that	0i	in	your¬605

mind	or	on	a	computer.¬606

But	you	would	promote¬607

everything	into	the	complex	land¬608

and	then	do	the	addition.¬609

So	those	are	two¬610

necessary	things.¬611

And	now	let	me	go	ahead	and¬612

run	the	Babylonian	algorithm.¬613

And	without	changing¬614

the	algorithm--¬615

remember	the	algorithm¬616

takes	a	scalar	in.¬617

Let's	see	it	again.¬618

Let's	find	it.¬619

The	Babylonian	algorithm,	which¬620

is	up	here,	it	takes	a	scalar.¬621

I'm	not	going	to¬622

rewrite	the	algorithm.¬623

I'm	just	going	to¬624

feed	it	something	new,¬625

something	different¬626

from	a	scalar.¬627

I'm	going	to	feed¬628

it	a	dual	number.¬629

And	so	let's	do	it.¬630

Where	did	it	happen	here?¬631

So	I'm	feeding	the	Babylonian¬632

algorithm	49	comma	1.¬633

This	is	how	you	seed--¬634

we'll	talk	more	about¬635

seeding	the	start¬636

of	the	story	with	the	number	1.¬637

Or	if	it	was	matrices,¬638

it	would	be	the	identity.¬639

And	we	get	the¬640

square	root	being	7.¬641

Yep,	that's	good.¬642

The	square	root	of	49	is	7.¬643

And	the	derivative,¬644

which	you	all¬645

know--	we	could	let¬646

Julia	tech	it	for	us--¬647

is	one	half	over	the	square	root¬648

of	x	is	this	number	right	here.¬649

So	whatever	one	half	over¬650



Page	14/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

7	is,	1/14	or	something.¬651

So	this	is	the	number	1/14.¬652

You	should	be	astounded¬653

by	this,	that	I¬654

took	an	original	piece	of¬655

code	without	a	rewrite,¬656

and	I	fed	it	this¬657

funny	kind	of	argument.¬658

And	all	that	argument	did	was¬659

it	knew	the	quotient	rule,¬660

and	it	knew	the	sum	rule.¬661

And	I	got	the	right¬662

answer	for	the	derivative,¬663

not	symbolically	and	not¬664

with	finite	differences.¬665

Isn't	that	amazing	like¬666

that's	even	possible?¬667

Wouldn't	that	blow	your¬668

calculus	teacher's	mind¬669

that	this	could	happen?¬670

Here's	another	example	where	I¬671

do	it	with	pi,	just	in	case	7¬672

wasn't	convincing	enough.¬673

So	this	would	be	the¬674

square	root	of	pi¬675

and	1	over	2	square	root	of	pi.¬676

And	this	is	the	way¬677

done	with	Julia.¬678

And	you	could	check	the	numbers.¬679

You	see	it	all	works.¬680

And	in	fact,	what	you	can¬681

do	is	actually	look	at--¬682

what's	happening	is	the¬683

Babylonian	algorithm¬684

was	an	iteration.¬685

And	so	somehow,	this	square	root¬686

is	the	result	of	an	iteration.¬687

We	do	10	steps	of	an	iteration.¬688

And	so	at	each	time,	we	must¬689

be	getting	closer	and	closer¬690

to	the	derivative.¬691

So	just	like	we	get	closer¬692

to	the	square	root,	somehow,¬693

by	feeding	this	in,	we	must¬694

be	getting	closer	and	closer¬695

to	the	derivative¬696

of	the	square	root.¬697

And	in	fact,	I	could	plot¬698

each	step	of	the	algorithm.¬699

So	remember	the	first¬700



Page	15/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

algorithm	was	first	degree.¬701

I	still	want	to	say	linear,¬702

but	I'll	say	first	degree.¬703

And	so	its	derivative,¬704

of	course,	is	a	constant.¬705

It's	just	the	constant¬706

one	half,	in	fact.¬707

So	there	it	is.¬708

And	here	are	a¬709

couple	of	iterations.¬710

And	I	also	plotted	one¬711

half	over	the	square	root¬712

of	x,	the	true	answer,	the¬713

reciprocal	of	the	parabola,¬714

in	effect.¬715

And	you	could	see	that	it's¬716

heading	closer	and	closer.¬717

And	pretty	quickly,	the¬718

eye	can't	even	see	it.¬719

So	this	doesn't	explain¬720

to	you	how	it	works,¬721

but	maybe	it	kind	of	adds	to	the¬722

convincing	nature	of	the	fact¬723

that	it	does	work,	and¬724

it's	still	mysterious.¬725

I	could	say	a	little	bit	more.¬726

I'm	going	to	tell¬727

you	how	it	works.¬728

But	before	I	do,	I'd	like¬729

to	show	off	a	few	things.¬730

I	don't	know	how	well¬731

this	works	these	days.¬732

But	I	do	like	to	tell¬733

people	that,	in	Julia,	you¬734

can	see	assembler.¬735

Nobody	reads	assembler.¬736

Anybody	here	read	assembler?¬737

Anybody	here	actually--	you¬738

do	or	have	or	a	little	bit?¬739

One	person	is	willing	to	admit¬740

that	they	do	it	a	little	bit.¬741

Some	computer	science	classes¬742

at	MIT	teach	you	this	stuff.¬743

Most	people	never	look	at	this,¬744

don't	want	to	look	at	this.¬745

The	thing	that	I¬746

like	to	just	mention¬747

is	that,	in	Julia,	the¬748

assembler	is	short.¬749

And	so	this	is	the	assembler¬750



Page	16/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

for	this	derivative	code,¬751

this	kind	of	derived	code.¬752

And	short	assembler	is	more	or¬753

less	correlated	with	fast	code.¬754

And	so	not	only	does	it¬755

get	the	right	answer,¬756

but	this	sort	of	game	is¬757

also	quite	fast	in	Julia.¬758

And	that's	kind	of	a	nice¬759

thing	to	be	able	to	have.¬760

So	I'm	still	not	going¬761

to	tell	you	how	it	works,¬762

but	I'm	going	to	grab	SymPy.¬763

So	this	is	Python¬764

symbolic	program.¬765

There's	is	a	Julia¬766

symbolic	program,¬767

but	I	don't	completely¬768

trust	it	yet.¬769

Maybe	it's	ready	for	prime¬770

time,	but	I	did	this	originally¬771

with--¬772

I	wrote	this	before	there¬773

even	was	Julia	symbolic.¬774

And	anyway,	it	just	works¬775

so	well,	I	would	take	it.¬776

And	so	one	of	the	things¬777

that's	interesting	is	to	ask--¬778

how	should	I	say	this?¬779

I'm	going	to	tell	you¬780

something	that's	mathematically¬781

equivalent	to	what¬782

we're	doing,	but	I¬783

don't	want	you	to¬784

get	the	impression¬785

that	this	is	how	it's	computed.¬786

So	let's	talk	about	not¬787

the	derivative	yet	but	just¬788

the	Babylonian	algorithm.¬789

You	remember	that	this	is	the¬790

function	at	the	first	step,	x¬791

plus	1	over	2.¬792

I	can	use	Julia's¬793

ability	to	overload¬794

to	run	it	on	a	symbol	x.¬795

And	then	I	could	see	what¬796

there	is	at	the	second	step¬797

or	at	the	third	step.¬798

And	so	in	a	way,	at¬799

whatever	this	is--¬800



Page	17/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

if	this	is	the	first	step,¬801

second,	third,	fourth,	fifth.¬802

At	the	fifth	step,	the¬803

Babylonian	algorithm¬804

exactly	computes	this¬805

rational	function.¬806

It's	a	16th-degree	polynomial¬807

over	a	15th-degree	polynomial.¬808

But	don't	get	the	wrong	idea.¬809

Nobody	in	the	real	world	is¬810

calculating	the	coefficients¬811

of	this	polynomial.¬812

I	mean,	these	coefficients,	we¬813

wouldn't	want	to	store	them.¬814

They'd	be	unwieldy	to	work	with.¬815

But	as	a	mathematical¬816

sense,	the	fifth	step¬817

of	the	Babylonian¬818

algorithm	is	calculating¬819

exactly	this	function.¬820

And	the	plots	tell	us¬821

that	this	crazy	function,¬822

the	16th	over¬823

15th-degree	polynomial,¬824

is	not	a	bad	approximation	to¬825

the	square	root	of	x,	at	least¬826

visually	on	the	graph.¬827

So	this	is	pretty	good¬828

for	square	root	of	x.¬829

That's	what	we've	seen.¬830

We	could	talk	about	where	it¬831

is	good,	where	it	isn't	good.¬832

But	the	point	is	that	what	it's¬833

computing	is	this	function.¬834

And	we	could	do	the	same¬835

game	for	the	derivatives.¬836

So	the	first	derivative	here	is¬837

the	coefficient	of	x	as	a	half,¬838

that	constant.¬839

And	we	can	see	what's	being¬840

computed	exactly	here.¬841

This	is	a	ratio	of¬842

30th-degree	polynomials.¬843

And	again,	I	want	to¬844

stress	we	are	not--¬845

I'm	just	building¬846

this	up	just	for	fun.¬847

We	are	not	in	the¬848

algorithm	getting¬849

literally	these	coefficients.¬850



Page	18/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

They're	too	big	anyway¬851

for	working	with.¬852

But	in	a	mathematical¬853

sense,	the	fifth	step¬854

of	this	derivative¬855

Babylonian	algorithm¬856

is	calculating¬857

exactly	this	thing.¬858

And	so	this	has	to	be¬859

some	sort	of	approximation¬860

to	one	half	over	the	square¬861

root	of	x,	the	derivative¬862

of	square	root	of	x.¬863

This	is	what	that	is.¬864

So	let	me	get	a	little¬865

closer	as	to	how--	now	you¬866

must	be	wondering.¬867

I	hope	you're	all	kind	of¬868

sitting	in	your	seats	saying,¬869

how	is	this	working?¬870

What's	happening	here?¬871

And	to	get	you	a	little¬872

bit	kind	of	closer,¬873

let	me	do	what	people	used¬874

to	do	in	the	old	days.¬875

People	used	to	take	derivatives¬876

of	functions	by	hand.¬877

Before	this	became¬878

automatic,	people¬879

would	take	derivatives¬880

of	functions	by	hand.¬881

And	so	I'm	going	to¬882

do	that	for	you	here.¬883

I'm	going	to	create¬884

a	dBabylonian¬885

algorithm,	the	derivative¬886

of	the	Babylonian	algorithm.¬887

And	you'll	recognize	that¬888

this	line	and	this	line¬889

are	the	original	algorithm.¬890

And	below	it,	I'll	create¬891

derivative	variables,	t	prime.¬892

And	so	t	prime,	the	derivative¬893

of	this	is,	of	course,	a	half.¬894

The	derivative	of	this	line¬895

of	code,	well,	what	is	it?¬896

It's	t	prime	plus¬897

the	denominator¬898

times	the	root	of	the	numerator,¬899

which	is	1	minus	x	times	t¬900



Page	19/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

prime	over	t	squared.¬901

So	if	you	check,	this	is	the¬902

ordinary	calculus	derivative¬903

with	respect	to	x.¬904

So	t	prime	is	the¬905

derivative	respect	to	x.¬906

So	this	is	the	ordinary¬907

calculus	derivative.¬908

And	we're	doing	that¬909

at	each	and	every	step.¬910

And	people	used	to	do	that¬911

by	hand,	that	you	would--¬912

in	other	words,	you	don't	take¬913

the	derivative	analytically¬914

of	the	big	thing.¬915

Rather	you	take	the	derivative¬916

of	each	line	of	code.¬917

And	then	you	have	faith¬918

that	if	you	do	that,¬919

you'll	get	the	derivative¬920

of	the	big	thing¬921

that	you	wanted	on	the	outside.¬922

And	you'll	see	that,¬923

of	course,	it	works.¬924

Adding	these	couple	of	lines¬925

of	code	with	just--	this¬926

is	now	scalars.¬927

There's	no	dual	numbers	here.¬928

This	will	give	me	one	half¬929

over	the	square	root	of	pi¬930

just	by	taking	the	derivative¬931

of	every	line	of	code.¬932

And	so	you	might	realize¬933

that	this	is	actually¬934

an	iteration	for	the¬935

derivative	of	square	root	of	x,¬936

an	iteration	that	we	stop	at--¬937

we	stop	it	at	10,	by	default.¬938

We	could	take	more¬939

steps,	but	this¬940

is	an	iteration	for	the¬941

derivative	square	root,¬942

obtained	completely	by	taking¬943

the	derivative	of	every	line.¬944

And	so	that's	kind¬945

of	what	happened.¬946

And	so	when	I	take	the¬947

Babylonian	of	D,	x,	1,¬948

in	effect,	I	am	using	the¬949

magic	of	Julia's	ability¬950



Page	20/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

to	do	dispatch	and	overload¬951

and	all	those	fancy	words.¬952

But	to	use	simple	English,¬953

I	am	using	the	fact¬954

that	I	don't	have	to	rewrite¬955

the	code	to	get	the	derivative.¬956

I	just	need	the	code	to	know¬957

the	rules	of	taking	derivatives¬958

of	every	operation	that--¬959

more	atomic	operations¬960

at	the	lowest¬961

level	and	rely	on	the	computer¬962

to	piece	it	all	together.¬963

Because	humans	are	really¬964

bad	at	this	sort	of	stuff.¬965

They	make	mistakes	all	the	time.¬966

It's	worse	than	long	division.¬967

I	mean,	no	matter	how	good¬968

you	are	at	long	division,¬969

humans	just	make	mistakes.¬970

We	just	do.¬971

And	so	the	trick¬972

is	if	you	wanted¬973

to	teach	a	computer--¬974

if	you	want¬975

to	get	the	answers	to¬976

a	division	problem,¬977

we	humans	have	taught	computers¬978

to	do	the	division	for	us¬979

so	we	don't	have	to.¬980

And	this	is	what's	going	on¬981

with	automatic	differentiation.¬982

We	teach	the	computer¬983

to	do	the	atomic	steps¬984

and	then	let	it	just¬985

go	through	the	motions.¬986

So	the	derivative	goes	in¬987

before	the	JIT	compiler,¬988

and	we	get	efficient	code.¬989

So	there's	a	notational¬990

trick,	which	is	rather	nice,¬991

which	is	instead	of	taking	the¬992

dual	number,	which	is	a,	b,	we¬993

can	write	a	plus	b	epsilon.¬994

And	in	effect,	what	we're¬995

doing	is	the	same	thing	that--¬996

on	the	first	week	of¬997

class,	when	Steven	said,¬998

oh,	let's	just	write¬999

everything	as	a	plus	bdx.¬1000



Page	21/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

Just	write	everything¬1001

to	first	order.¬1002

Physicists	do	this	all	the	time.¬1003

They	write	everything¬1004

to	first	order,¬1005

and	they	throw	away	higher-order¬1006

terms	just	all	the	time.¬1007

So	in	effect,	what's¬1008

happening	on	the	computer	is¬1009

we're	treating	every	computation¬1010

as	a	first-order	computation.¬1011

And	then	the	basic	rules¬1012

are--	let	me	just	see.¬1013

There	was	one	version	of¬1014

this	that's	broken,	but	let¬1015

me	see	if	this	is	right.¬1016

I	think	this	is¬1017

the	right	version.¬1018

So	the	basic	rules--¬1019

every	computation	on	a	computer¬1020

that's	ever	been	written	always¬1021

can	come	down	to	plus,¬1022

minus,	times,	and	divide.¬1023

Even	square	root	is	implemented¬1024

somewhere	as	plus,	minus,¬1025

times,	and	divide.¬1026

So	in	effect,	if¬1027

you	wanted	to	do,¬1028

you	can	get	automatic¬1029

differentiation¬1030

just	by	having¬1031

these	basic	rules.¬1032

This	is	all	you	need.¬1033

Now	as	a	matter	of	practice,¬1034

we	try	to	intercept	it	all.¬1035

We're	happy	to	teach¬1036

sine	and	square	root¬1037

and	cosine	because	who	wants--¬1038

whatever	method	is	being¬1039

used	to	compute	the	sine--¬1040

and	it's	not	Taylor¬1041

series,	by	the	way--¬1042

but	whatever	method¬1043

is	being	used,¬1044

we	don't	want	it	to	go¬1045

through	all	this	work.¬1046

So	we	teach	it	things.¬1047

But	in	principle,	all¬1048

you	need	are	these	rules,¬1049

and	you	can	take	the¬1050



Page	22/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

derivative	of	anything¬1051

in	the	world	on	a	computer.¬1052

This	is	all	you	need.¬1053

Here's	the	sum	and	minus¬1054

rule,	the	multiplication	rule,¬1055

which	if	you	look	at	this	right,¬1056

maybe	if	you	squint	correctly,¬1057

this	is	the	udv	plus	duv	rule,¬1058

the	product	rule	that	you	all¬1059

learned	in	calculus.¬1060

And	we	kind	of	repeated¬1061

it	in	its	matrix	context¬1062

in	this	class.¬1063

This	is	udv	plus	vdu,	and¬1064

this	is	the	quotient	rule.¬1065

This	is	denominator	times¬1066

degree	of	the	numerator¬1067

minus	numerator	times¬1068

degree	of	the	denominator¬1069

over	the	denominator	squared.¬1070

It's	just	kind	of	rewritten¬1071

in	this	first-order	kind¬1072

of	notation.¬1073

But	these	are	rules	that	you	all¬1074

learned	in	first-year	calculus.¬1075

And	I'll	even	point	out	that¬1076

you	could	do	this	symbolically.¬1077

You	don't	even	have¬1078

to	remember	the	rules.¬1079

You	could	actually	derive	the¬1080

quotient	rule	on	the	computer¬1081

by	just--¬1082

this	says	basically	take	a¬1083

series	around	epsilon	equals	0,¬1084

and	give	me	two	terms,	please.¬1085

No	more.¬1086

So	just	give	me	to	the¬1087

first	order,	an	epsilon.¬1088

And	here	you	see.¬1089

You	get	the	quotient	and	the¬1090

quotient	rule	from	calculus.¬1091

So	this	is	one	way	to¬1092

get	your	hands	on	that.¬1093

If	you	wanted	the¬1094

product	rule,	I¬1095

guess	I	could	have¬1096

just	done	this.¬1097

And	you	get	the¬1098

udv	plus	duv	rule.¬1099

So	that's	how	you¬1100



Page	23/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

can	get	the	rules.¬1101

So	I'm	going	to¬1102

do	something	fun.¬1103

I	am	going	to	tell	Julia--¬1104

this	is	Julia	magic¬1105

that	says	to	print¬1106

a	dual	number	with	epsilons.¬1107

And	so	now	when	I¬1108

type	a	dual	number,¬1109

you	remember	it	was¬1110

just	with	the	Ds.¬1111

Once	I	execute	this¬1112

command,	I	could	see	it¬1113

in	a	way	that's	nice	and	human.¬1114

So	I	told	you	this	was	a¬1115

function	derivative	pair,¬1116

but	you	could	also	think¬1117

of	it,	if	you	like,¬1118

as	a	first-order	expansion	of--¬1119

it	could	be	a	first-order¬1120

expansion	of	a	function.¬1121

It	could	be	the¬1122

first-order	expansion¬1123

of	x	squared	around	x	equals	1.¬1124

So	let's	go	ahead	and¬1125

add	these	last	two	rules.¬1126

Remember	I	only	did¬1127

plus	and	divide.¬1128

I	might	as	well	add	the--¬1129

this	seems	like	a	good	time¬1130

to	do	minus	and	times.¬1131

And	you	see	that	if	I	do¬1132

the	dual	number	1	and	0,¬1133

I	get	this.¬1134

Well,	actually	let	me	ask	you.¬1135

I'm	not	going	to	hit	Enter	yet.¬1136

Tell	me	what	I	should	see	when¬1137

I	hit	Return,	before	I	do	it.¬1138

Who's	quick?¬1139

What's	the	first	thing	I'll¬1140

see	before	the	epsilon?¬1141

Let	me	start	with¬1142

the	0-th-order	term.¬1143

What	will	I	see?¬1144

Just	shout	it	out.¬1145

AUDIENCE:	4.¬1146

ALAN	EDELMAN:	4.¬1147

And	then	what's	the	next	term?¬1148

AUDIENCE:	2,	4.¬1149

ALAN	EDELMAN:	2	times	2.¬1150



Page	24/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

4.¬1151

Yep.¬1152

You	guys	got	it.¬1153

OK.¬1154

I	changed	the	output.¬1155

I	might	as	well	go¬1156

the	whole	direction.¬1157

Why	don't	I	make	the	input	also?¬1158

D,	0,	1,	I'll	call	it	epsilon.¬1159

And	so	now	I	can	actually¬1160

input	epsilons	too.¬1161

Not	just	see	it	as	an	output,¬1162

but	I	can	do	it	as	an	output.¬1163

So	epsilon	squared,	of¬1164

course,	is	second	order.¬1165

So	we	just	get	rid	of	it.¬1166

By	the	way,	just	something	fun.¬1167

I	actually	never¬1168

defined	how	to	square.¬1169

You'll	notice	I	define¬1170

times,	but	I	never¬1171

define	square	for	dual	number.¬1172

But	this	is	sort	of	a¬1173

little	bit	of	a	lesson,¬1174

but	a	good	software¬1175

system	would	be	one¬1176

where	when	you	square	something,¬1177

it	actually	replaces	it¬1178

with	a	thing	times	itself.¬1179

So	that	a	matrix	square	is¬1180

a	matrix	times	a	matrix,¬1181

and	a	scalar	square	is¬1182

a	scalar	times	a	scalar.¬1183

And	in	Julia,	for¬1184

whatever	reasons,¬1185

a	string	times	a	string	is	a¬1186

concatenation	of	the	string.¬1187

So	a	string	squared--¬1188

I	don't	even	know	if¬1189

this	works	anymore.¬1190

I	have	a	feeling¬1191

it	doesn't	work.¬1192

It's	not	a	number.¬1193

This	is	going	to	fail,¬1194

but	it	shouldn't	fail.¬1195

Actually	I	think	this¬1196

is	going	to	fail.¬1197

Oh,	forget	it.¬1198

It	does	work.¬1199

So	multiplying	two	strings¬1200



Page	25/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

will	concatenate	them,¬1201

and	squaring	it	concatenates	it.¬1202

And	so	if	you	have	sort	of¬1203

a	novice	computer	system,¬1204

every	time	you¬1205

have	another	type,¬1206

you	define	another	square.¬1207

But	if	you	have	a¬1208

good	computer	system,¬1209

then	the	square	inherits¬1210

it	from	multiply,¬1211

and	then	you	just	have¬1212

to	define	multiplication.¬1213

What	should	I	get	here	when¬1214

I	go	1	over	1	plus	epsilon?¬1215

And	again,	nothing	symbolic.¬1216

This	is	actually	happening¬1217

completely	numerical,¬1218

by	the	way.¬1219

But	what	should	I	get¬1220

when	I	hit	Return?¬1221

What	should	I	see?¬1222

Anybody?¬1223

You're	smiling.¬1224

You	think	you	know	the	answer?¬1225

AUDIENCE:	I	guess	it's¬1226

just	written	there.¬1227

ALAN	EDELMAN:	So¬1228

I'll	give	you	a	hint.¬1229

What's	written	there¬1230

is	not	what	you'll	see.¬1231

AUDIENCE:	[INAUDIBLE]	minus	1.¬1232

ALAN	EDELMAN:	Yeah,¬1233

how	would	it	appear?¬1234

Just	read	it	to	me¬1235

how	it	would	appear.¬1236

AUDIENCE:	I'd	guess¬1237

1	plus	minus	epsilon.¬1238

ALAN	EDELMAN:	There	you	go.¬1239

1	plus	minus	1	epsilon.¬1240

You	could	have	just¬1241

said	1	minus	epsilon.¬1242

I	would	have	accepted	that.¬1243

All	right.¬1244

Doesn't	that	look	like¬1245

symbolic	mathematics?¬1246

But	it's	not.¬1247

This	whole	thing¬1248

happened	through	these--¬1249

it's	all	numerical.¬1250



Page	26/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

There's	nothing	symbolic	at	all.¬1251

And	this	is	another	thing¬1252

that	people	are	saying,¬1253

that	there's	becoming¬1254

more	and	more¬1255

of	a	blurring	between	the¬1256

symbolic	and	the	numerical,¬1257

and	that	numerical¬1258

stuff	is	starting¬1259

to	look	more	and	more	symbolic.¬1260

But	it's	not	symbolic.¬1261

All	right.¬1262

What's	the	answer	here?¬1263

I'm	not	using	any¬1264

weird	packages.¬1265

Everything	that	I'm	using	was¬1266

defined	right	in	front	of	you.¬1267

I'm	not	using¬1268

ForwardDiff	or	anything.¬1269

Everything	here	is	just¬1270

pure,	simple	Julia.¬1271

You	saw	it.¬1272

There's	nothing	up	my	sleeve.¬1273

What	should	this	answer	be?¬1274

AUDIENCE:	[INAUDIBLE]¬1275

ALAN	EDELMAN:	I'm	sorry.¬1276

AUDIENCE:	[INAUDIBLE]¬1277

ALAN	EDELMAN:	You're	right.¬1278

1	plus	5	epsilon.¬1279

OK.¬1280

And	this	one,¬1281

unfortunately,	won't	work.¬1282

Oh,	it	does	work.¬1283

Oh,	that's	amazing.¬1284

I	don't	know	why	that	works.¬1285

All	right.¬1286

Never	mind.¬1287

I	didn't	think	we	could¬1288

take	negative	powers,¬1289

but	I	guess	we	could.¬1290

All	right.¬1291

I'm	going	to	stop.¬1292

You	could	do	this¬1293

with	n-th	roots.¬1294

You	could	do	lots¬1295

of	other	things.¬1296

But	I	think	this	is	a¬1297

good	time	for	a	break.¬1298

And	you	guys	get	the	right	idea.¬1299

So	now	you're	starting	to	see.¬1300



Page	27/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

If	I	were	to	summarize--	and¬1301

I	know	it's	still	a	little	bit¬1302

magical,	but	I	think¬1303

you'll	see	that	roughly¬1304

how	this	works	is	that¬1305

one	way	or	another,¬1306

we're	giving	the	rules	of¬1307

plus,	minus,	times,	and	divide.¬1308

And	we're	writing	programs.¬1309

And	then	these	programs¬1310

are,	in	effect--¬1311

they're	not	really¬1312

rewriting	themselves.¬1313

What's	really	happening¬1314

is	that	every	time	you¬1315

execute	a	plus,	a	minus,¬1316

times,	and	a	divide,¬1317

it's	doing	not	just¬1318

the	basic	operation¬1319

that	you'd	all	expect,¬1320

but	it's	also	carrying¬1321

along	the	derivative	as	well.¬1322

And	the	way	Julia	works,¬1323

Julia	will	actually¬1324

look	at	that	divide	and	say¬1325

I'm	not	dividing	scalars.¬1326

I'm	dividing	dual	numbers.¬1327

Or	if	it	sees	a	star,¬1328

I'm	not	multiplying.¬1329

How	does	Julia	know	what	to	do?¬1330

When	it	sees	two	matrices,¬1331

matrix,	star,	matrix,¬1332

it	knows,	because	it's	a¬1333

matrix,	to	do	matrix	multiply.¬1334

So	here	when	I	did¬1335

dual	numbers,	I¬1336

taught	it	to	do	this¬1337

dual-number	thing.¬1338

And	once	Julia¬1339

knows	how	to	do	it,¬1340

it'll	just	carry¬1341

all	the	way	through.¬1342

And	in	effect,	this¬1343

is	really	the	magic¬1344

of	great	software,¬1345

where	you	just¬1346

can	define	some¬1347

atomic	operations,¬1348

and	the	whole	thing¬1349

kind	of	composes¬1350



Page	28/28/Users/jcplayer/Desktop/18.S096/OCW_18.S096_Lecture05-Part2-New_2023jan27.txt
Saved:	11/28/23,	4:15:21	PM Printed	for:	Jason	Player

itself	almost	by	magic.¬1351

And	in	a	way,	it's¬1352

almost	opposite¬1353

from	what	we	teach	students	in¬1354

a	lot	of	classes,	where	we	want¬1355

to	teach--	the¬1356

old-fashioned	thing¬1357

was	to	teach	a	student	to¬1358

carry	through	every	operation¬1359

and	be	really	competent	at	it.¬1360

In	a	way,	the	modern¬1361

world	is	to	teach	students¬1362

how	to	not	have	to¬1363

think,	rather	how¬1364

to	build	a	system	that	is	so¬1365

simply	designed	that	it	just¬1366

works.¬1367

And	actually,	to¬1368

build	a	simple	system¬1369

is	what	takes	the¬1370

real	human	cleverness,¬1371

if	that	sounds	not	like¬1372

some	sort	of	contradiction.¬1373

But	that's	what	it	takes.¬1374

All	right.¬1375

I'm	a	little	late	for	the	break.¬1376

But	after	the	break,¬1377

on	the	Blackboard,¬1378

I'm	going	to	go	into¬1379

more	detail	about	forward¬1380

and	reverse	mode,¬1381

automatic	differentiation.¬1382

1383


