[RUSTLING]
[CLICKING]
OK.
So just to let you know what
this notebook is and isn't,
this notebook is
kind of meant to let
you see how automatic
differentiation is
kind of magical in a way.
That's kind of the real purpose.
You'll start to get a
bit of a feel for how
forward mode works.
And what I'd like to
emphasize is to what extent
this is possibly more computer
science than mathematics.
We all have this notion
that whatever courses
that are now being taught in
computer science that maybe
used to be taught
in math courses,
like probability
statistics, I think
everybody agrees that calculus
lives in math departments
all over the world.
Lots of other math
subjects are being
hijacked by engineers, computer
scientists, and so forth.
But calculus, that's sacred.
That belongs in mathematics.
Well, here's a
case where calculus
is as much of a computer science
topic as it is a math topic.
I think that's kind of what
fascinated me most about this.
Oh, gosh.
I first put this
together in 2017.
Is it really 2023 now?
Six years later.
Well, so it's an oldie but
goodie, but I promise you
you'll like it just the same.

And I do like to
tell people that I
used to go to
conferences, and I would
hear people talking about
automatic differentiation.
People talked about
it before it was hot.
I mean, it became hot
because of machine learning.
But a couple of decades before
machine learning, people
would do it, and they would
do it on the sidelines.
Nobody paid attention back then.
It didn't have sort of the big
excitement that it has today.
But I would go to
conferences, and somebody
would get up and talk about it.
And I don't know.
I would read my email or tune
out or work on my own math
or something.
I didn't really pay attention.
And so I missed the boat.
I didn't appreciate
what I thought
was most important about
automatic differentiation.
I made a jump in my
mind of what it is.
And I figured it was something
symbolic, like Mathematica,
Wolfram Alpha.
We've all memorized
tables of derivatives.
Here's a small table
of derivatives.
I figured that if
I could memorize it
when I learned calculus,
then a computer could be
taught to do this thing also.
So maybe that's what it is.
That's great.
I could do it.
A computer could do
it better than me.
Fine.

101 I didn't care.
102 Turns out that's not what
103 automatic differentiation
104 So then I said to myself,

111 I want the derivative
maybe I got it wrong.
I'm just guessing anyway,
and I don't really care.
But maybe it's some sort
of numerical difference,
like we do to check our answers.
at this point x,
so I can do a forward
derivative and get
the slope of the tangent.
Or I could do a
backward derivative,
go backwards and get
the slope of this--
I guess it's a secant,
to be technical--
but the slope of this line.
Or I could even do a
central difference,
which connects these two dots.
And the whole big
deal, of course,
is when you do that, as Steven
explained, what's a good delta?
In math, you want
the delta to go to 0 .
That's the very limiting
definition of a derivative.
But on a computer, if delta
gets too small, as you've seen,
you get that catastrophic
cancellation happening.
And so numerical
analysis is kind
of about what's a good delta.
And Steven's basically
said that something
on the order of 2
to the minus 26,
which is the square root
of double precision machine
epsilon is a good rule of thumb.
You might remember that curve
where the error went down,
like an absolute value
sign, as it got smaller,
and then it went up again.
And the best one
was at the bottom.
That's the best delta x.
But the key thing
that's interesting
is that automatic
differentiation is not this,
and it's not that.
And so what could it be?
And the way I'd like to show
people of what it is is I'd
like to start with a simple
example of it in action.
And this is where, at first,
it's going to look like magic.
Nothing up my sleeve.
And then I will explain
to you how it worked.
So I'm going to take one of
the oldest algorithms, one
of the oldest interesting
algorithms known to mankind,
the Babylonian square
root algorithm, which
I think maybe you've all seen.
But if you haven't, you
start with a guess t
to square root of x.
So I've got a t,
which I'm hoping
is close to square root of x.
And if I take t and x over t--
if t was too small--
x over t, of course, will be
kind of on the large side.
If t was a guess--
between t and x over t,
one's on the large side,
one's on the small side.
So why don't we just
take the average?
And then so this is something
we could keep doing.
And that's the
Babylonian algorithm
that converges to
the square root of x.
Very simple algorithm.

It was known for thousands of years.
How complicated could it be?
But I still think it was
pretty clever, the Babylonians.
I mean, they didn't have Julia.
I mean, I thought it
was pretty clever.
So in any event, just
for simplicity sake,
I'm going to start
at 1 for no reason.
I'm just doing an example.
So I'm going to start it at 1.
So I have 1 and x over 1,
and I'll take the average.
And then, by default, I'll do 10
iterations of t plus x over 2.
So even if you
don't speak Julia,
I think this algorithm
is easy to understand.
Just it's an input x.
And by default, we run 10 times,
but you can give an argument
and make it run more times.
And so let's go
using ForwardDiff.
Let ForwardDiff do it.
And of course, with our
modern view of the world,
we know how to take square root.
Everybody in this building,
everybody in this institute
could take the
derivative square root.
It's one half over
the square root.
And so we get the derivative.
But before we do
that, let's actually
make sure that the code works.
Let's actually check
the Babylonian algorithm
that I wrote.
The second one is Julia's
built-in square root of pi.
And here's the
Babylonian calculating
the square root of pi.

```
And I guess this is pretty convincing that the Babylonians knew what they were doing.
I mean, we could do
the same thing with 2.
We could run the
Babylonian algorithm, except for some
little bit over here.
Maybe the last bit.
We basically get the
same answer with Julia's built-in square root and the Babylonian algorithm. Let's skip this for a minute.
I think that's not important.
So just checking the algorithm
for the moment, not even
the derivative.
So I'm actually going to plot a
few iterates of the Babylonian
algorithm just so you can see.
So the first iteration,
maybe remember,
it was 1 plus x over 2.
I still want to call
this a linear function.
But in this class, I have to
call it an affine function.
Yeah, I don't know what
the real terminology is.
When do I get to say that a
first-degree polynomial is
a linear function?
I think there's a
context as to whether I'm
calling it a map or a function.
But any event, this
thing's a line,
however you want to call it.
The first step of the Babylonian
algorithm, iteration 1,
is given x, compute 1
plus x divided by 2.
And that's a
first-degree function.
The second iteration,
I'm plotting it, is here.
And then it gets
closer and closer
```

301 to the sideways parabola, which,
302 of course, is the square root.
303 In fact, by iteration
304 5, you can't even
305 see much of a difference
306 with your eye.
307 So iteration 4 is the purple.
308 And iteration 5, you
309 can't even see it
310
311

349 D is for dual number, so that's

351 And we're basically
352 going to keep
353 a function derivative
354 pair, an ordered pair.
And so this is nothing
but a container
to be able to keep two floats.
But which floats
am I going to keep?
I'm going to have the value
of a function at a point
and the derivative of
that function at a point.
All right.
I've used up three
of my nine lines.
And everybody agrees there's
no finite difference,
no symbolic answer, right?
So I've got six more lines here.
Yeah, let me just show
you what I've done here
before I do anything else.
So if I wanted to--
if I want to create
one of these objects,
I would have to put in
a tuple, like D of $1,2$.
This line lets me
remove the parentheses,
which are sort of--
I just find them annoying.
This line doesn't count.
But you see, I've
got this dual number.
It doesn't do anything yet.
I can't add dual numbers yet.
If I try, it gets mad at me.
Look, plus not defined.
All I can do is
define a dual number.
That's it.
It's just a pair of numbers.
Can't do anything at all
with it other than store it.
But here what I'm going
to do is create a--
oh, I don't need
this greater than.
That's why.

401 I could have one fewer line.
402 I'm going to comment
403 this one out.
404 I think somebody once asked
405 me to define it for greater.
406 But yeah, I don't
407 need this line.

408
o I'm actually going to
have 3 plus 5, 8 lines.
So let me tell you about
these next five lines.
Mainly I want to define, add,
and divide on a dual number.
I don't need minus
and times yet,
because if you look at
my Babylonian algorithm,
if you remember the
algorithm-- where
is the Babylonian algorithm?
I do a plus and a
divide and nothing more.
Later on, I'll add times and
minus, but I don't need it yet.
So I wanted to define
a plus and a divide.
I don't need this one either.
This thing could go away.
In Julia, if you want to
overload plus and divide
and a few other things, you
have to import it from base.
So this is just like
a Julia detail thing
that says give me permission
to redefine plus and divide
and a few other things.
And what do I want to do?
When I plus a couple of
dual numbers-- here let
me just do this one
only, just so you see.
I'll execute only the plus.
Now I can add dual numbers.
And it's just going to
be like adding vectors.
So I'm just going to add the
first element of the tuple, 2
and 3 , and the second element.
So now I can add tuples,

```
4 5 1 ~ b u t ~ I ~ c a n ' t ~ d i v i d e ~ t h e m ~ y e t .
4 5 2 ~ S o ~ t h i s ~ d o t ~ n o t a t i o n , ~ t h i s
```

broadcast or pointwise
notation, says
that basically add
the two parts of x and the two parts of y, like a vector.
So this adds 2 and 3 to
get 5 and 3 and 4 to 7 .
All right.
Now let me bring in the divide.
I can't divide yet, by the way.
I can try, but it'll
get mad at me, you see.
Oh, I must have executed it.
Oh, did I execute it?
I'm sorry.
Then it took away my--
well, whatever.
All right.
I guess I must have
executed it, so I'm not
getting away with it.
But here it doesn't matter.
So this is 2
divided by 3 is 2/3.
But notice this
isn't 3 divided by 4.
So I have a different rule.
So the add rule is just
adding up a vector,
but the divide rule is a
little more complicated.
STEVEN G. JOHNSON:
By the way, Alan,
did you want to share
your screen on Zoom?
I forgot about--
ALAN EDELMAN: Oh, my gosh.
I didn't share my screen, so you don't see a thing I've done.
STEVEN G. JOHNSON: No, I can
see it behind you on the--
ALAN EDELMAN: Oh, that's funny.
OK.
There we go.
All right.
Better?
All right.
So divide.

501 So everybody, of course,
502 remembers the quotient rule
from calculus?
When I think of it, I hear
my math teacher singing it.
It was denominator times
the derivative of numerator
minus the numerator
times the denominator,
or was it denominator squared?
I don't know.
Did your teacher sing it to you?
How did you sort of
memorize the quotient rule?
Anybody have a good song for it?
Anyway, you drill
it into your head.
vdu minus udv over v squared,
or denominator, d numerator.
I mean, I don't know.
You may have heard
it different ways,
but you all know it, right?
This thing over here, the
quotient rule, everybody
knows it.
I'm just extracting
the parts from--
so y is the denominator.
And so 1 is the value.
So this is the denominator.
x is the numerator.
And 2 is the derivative.
So it's the denominator times
the derivative numerator
minus the numerator times
the derivative denominator
over the denominator squared.
So that is what
I'm going to teach.
I'm going to teach Julia how
to essentially add derivatives,
which is just add, and how
to divide derivatives, which
is just the formula you know,
just apply it at a point.
And so this division is
using all four numbers
so that it can get
the denominator

551 times the derivative of the
552 numerator minus the numerator
553 times the derivative
554 of the denominator
number, we want to think of it--
if you have a scalar,
we want, in effect--
a constant is really
what's going on here.
We want to think of this as the
constant x, where the value is
x and the derivative is 0 .
And we want that to
be kind of automatic
because it would be nuisancy
to type it all the time.
So that's what that does.
And then the promote rule
says that if you give it
a number, when you see it in
the context of a dual number,
everything should be
promoted to the dual number.

601
602
603
604
605

606
607
608
609
610
611
612
613

614
615
616

Just like it happens with
complex numbers, where,
like I said, 3 plus
4i plus a real number,
you'd put that $0 i$ in your
mind or on a computer.
But you would promote everything into the complex land and then do the addition.
So those are two
necessary things.
And now let me go ahead and
run the Babylonian algorithm.
And without changing
the algorithm--
remember the algorithm
takes a scalar in.
Let's see it again.
Let's find it.
The Babylonian algorithm, which
is up here, it takes a scalar.
I'm not going to
rewrite the algorithm.
I'm just going to
feed it something new, something different
from a scalar.
I'm going to feed
it a dual number.
And so let's do it.
Where did it happen here?
So I'm feeding the Babylonian
algorithm 49 comma 1.
This is how you seed--
we'll talk more about
seeding the start
of the story with the number 1.
Or if it was matrices,
it would be the identity.
And we get the
square root being 7.
Yep, that's good.
The square root of 49 is 7.
And the derivative,
which you all
know-- we could let
Julia tech it for us--
is one half over the square root
of x is this number right here.
So whatever one half over

6517 is, $1 / 14$ or something.
652 So this is the number $1 / 14$.
653 You should be astounded
654 by this, that I
655 took an original piece of
656 code without a rewrite,
657 and I fed it this
658 funny kind of argument.
659 And all that argument did was
660 it knew the quotient rule,
661 and it knew the sum rule.
662
663
664
665
666
667
668
669
670
And I got the right answer for the derivative,
not symbolically and not
with finite differences.
Isn't that amazing like
that's even possible?
Wouldn't that blow your
calculus teacher's mind
that this could happen?
Here's another example where I
do it with pi, just in case 7
wasn't convincing enough.
So this would be the
square root of pi
and 1 over 2 square root of pi.
And this is the way
done with Julia.
And you could check the numbers.
You see it all works.
And in fact, what you can
do is actually look at--
what's happening is the
Babylonian algorithm
was an iteration.
And so somehow, this square root
is the result of an iteration.
We do 10 steps of an iteration.
And so at each time, we must
be getting closer and closer
to the derivative.
So just like we get closer
to the square root, somehow,
by feeding this in, we must
be getting closer and closer
to the derivative
of the square root.
And in fact, I could plot
each step of the algorithm.
So remember the first

701 algorithm was first degree.
702 I still want to say linear,
703 but I'll say first degree
704 And so its derivative,
705 of course, is a constant.
706 It's just the constant
707 one half, in fact.
708 So there it is.
709 And here are a
710 couple of iterations.
711 And I also plotted one
712 half over the square root
713 of x, the true answer, the
714 reciprocal of the parabola,
715 in effect.

716
717
718
719
nd you could see that it's
heading closer and closer.
And pretty quickly, the
eye can't even see it.
So this doesn't explain
to you how it works,
but maybe it kind of adds to the
convincing nature of the fact
that it does work, and
it's still mysterious.
I could say a little bit more.
I'm going to tell
you how it works.
But before I do, I'd like
to show off a few things.
I don't know how well
this works these days.
But I do like to tell
people that, in Julia, you
can see assembler.
Nobody reads assembler.
Anybody here read assembler?
Anybody here actually-- you
do or have or a little bit?
One person is willing to admit
that they do it a little bit.
Some computer science classes
at MIT teach you this stuff.
Most people never look at this,
don't want to look at this.
The thing that I
like to just mention
is that, in Julia, the
assembler is short.
And so this is the assembler
for this derivative code, this kind of derived code. And short assembler is more or less correlated with fast code. And so not only does it get the right answer, but this sort of game is also quite fast in Julia. And that's kind of a nice thing to be able to have. So I'm still not going to tell you how it works, but I'm going to grab SymPy.
So this is Python
symbolic program.
There's is a Julia
symbolic program, but I don't completely trust it yet. Maybe it's ready for prime time, but I did this originally with--
I wrote this before there even was Julia symbolic. And anyway, it just works so well, I would take it. And so one of the things that's interesting is to ask-how should I say this?
I'm going to tell you something that's mathematically equivalent to what we're doing, but I don't want you to get the impression that this is how it's computed. So let's talk about not the derivative yet but just the Babylonian algorithm. You remember that this is the function at the first step, x plus 1 over 2.
I can use Julia's
ability to overload to run it on a symbol x. And then I could see what there is at the second step or at the third step.
And so in a way, at whatever this is--

801
802
803
813 I mean, these coefficients, we
814 wouldn't want to store them.
815 They'd be unwieldy to work with.
816 But as a mathematical
if this is the first step, second, third, fourth, fifth.
At the fifth step, the
Babylonian algorithm
exactly computes this
rational function.
It's a 16th-degree polynomial
over a 15th-degree polynomial.
But don't get the wrong idea.
Nobody in the real world is
calculating the coefficients of this polynomial.
I mean, these coefficients, we wouldn't want to store them.
They'd be unwieldy to work with.
But as a mathematical
sense, the fifth step
of the Babylonian
algorithm is calculating exactly this function.
And the plots tell us
that this crazy function, the 16th over
15th-degree polynomial, is not a bad approximation to the square root of x, at least visually on the graph.
So this is pretty good for square root of x. That's what we've seen. We could talk about where it is good, where it isn't good. But the point is that what it's computing is this function.
And we could do the same game for the derivatives.
So the first derivative here is the coefficient of x as a half, that constant.
And we can see what's being computed exactly here.
This is a ratio of
30th-degree polynomials.
And again, I want to
stress we are not--
I'm just building
this up just for fun.
We are not in the
algorithm getting literally these coefficients.

They're too big anyway
for working with.
But in a mathematical
sense, the fifth step
of this derivative
Babylonian algorithm
is calculating
exactly this thing.
And so this has to be some sort of approximation
to one half over the square root of x, the derivative of square root of x.
This is what that is.
So let me get a little
closer as to how-- now you
must be wondering.
I hope you're all kind of sitting in your seats saying, how is this working?
What's happening here?
And to get you a little
bit kind of closer,
let me do what people used
to do in the old days.
People used to take derivatives
of functions by hand.
Before this became
automatic, people
would take derivatives
of functions by hand.
And so I'm going to
do that for you here.
I'm going to create
a dBabylonian
algorithm, the derivative
of the Babylonian algorithm.
And you'll recognize that
this line and this line
are the original algorithm.
And below it, I'll create derivative variables, t prime. And so t prime, the derivative of this is, of course, a half. The derivative of this line of code, well, what is it?
It's t prime plus
the denominator
times the root of the numerator, which is 1 minus x times t

901 prime over t squared.
902 So if you check, this is the
903 ordinary calculus derivative
904 with respect to x.
905 So t prime is the
906 derivative respect to x.
907 So this is the ordinary
908
909
910
911
912
913
914
915
916
to do dispatch and overload and all those fancy words. But to use simple English, I am using the fact that I don't have to rewrite the code to get the derivative. I just need the code to know the rules of taking derivatives of every operation that-more atomic operations at the lowest level and rely on the computer to piece it all together.
Because humans are really bad at this sort of stuff. They make mistakes all the time. It's worse than long division. I mean, no matter how good you are at long division, humans just make mistakes. We just do.
And so the trick
is if you wanted
to teach a computer--
if you want
to get the answers to
a division problem,
we humans have taught computers
to do the division for us
so we don't have to.
And this is what's going on
with automatic differentiation.
We teach the computer
to do the atomic steps
and then let it just
go through the motions.
So the derivative goes in
before the JIT compiler,
and we get efficient code.
So there's a notational
trick, which is rather nice,
which is instead of taking the
dual number, which is a, b, we
can write a plus b epsilon.
And in effect, what we're
doing is the same thing that--
on the first week of
class, when Steven said,
oh, let's just write
everything as a plus bdx.

Just write everything
to first order.
Physicists do this all the time.
They write everything
to first order,
and they throw away higher-order
terms just all the time.
So in effect, what's
happening on the computer is
we're treating every computation
as a first-order computation.
And then the basic rules are-- let me just see.
There was one version of this that's broken, but let me see if this is right.
I think this is
the right version.
So the basic rules--
every computation on a computer that's ever been written always can come down to plus, minus, times, and divide.
Even square root is implemented somewhere as plus, minus, times, and divide.
So in effect, if
you wanted to do, you can get automatic differentiation just by having these basic rules. This is all you need.
Now as a matter of practice,
we try to intercept it all.
We're happy to teach
sine and square root
and cosine because who wants--
whatever method is being
used to compute the sine--
and it's not Taylor
series, by the way--
but whatever method
is being used,
we don't want it to go
through all this work.
So we teach it things.
But in principle, all
you need are these rules,
and you can take the

```
1 0 5 1 ~ d e r i v a t i v e ~ o f ~ a n y t h i n g
1052 in the world on a computer.
1053 This is all you need.
1054 Here's the sum and minus
1055 rule, the multiplication rule,
1 0 5 6 \text { which if you look at this right,}
1 0 5 7 \text { maybe if you squint correctly,}
```

```
this is the udv plus duv rule,
the product rule that you all
learned in calculus.
And we kind of repeated
it in its matrix context
in this class.
This is udv plus vdu, and
this is the quotient rule.
This is denominator times
degree of the numerator
minus numerator times
degree of the denominator
over the denominator squared.
It's just kind of rewritten
in this first-order kind
of notation.
But these are rules that you all
learned in first-year calculus.
And I'll even point out that
you could do this symbolically.
You don't even have
to remember the rules.
You could actually derive the
quotient rule on the computer
by just--
this says basically take a
series around epsilon equals 0,
and give me two terms, please.
No more.
So just give me to the
first order, an epsilon.
And here you see.
You get the quotient and the
quotient rule from calculus.
So this is one way to
get your hands on that.
If you wanted the
product rule, I
guess I could have
just done this.
And you get the
udv plus duv rule.
So that's how you
```

```
1 1 0 1 ~ c a n ~ g e t ~ t h e ~ r u l e s .
1102 So I'm going to
1 1 0 3 ~ d o ~ s o m e t h i n g ~ f u n .
1 1 0 4 ~ I ~ a m ~ g o i n g ~ t o ~ t e l l ~ J u l i a - - ~
1 1 0 5 ~ t h i s ~ i s ~ J u l i a ~ m a g i c
1 1 0 6 ~ t h a t ~ s a y s ~ t o ~ p r i n t
1 1 0 7 ~ a ~ d u a l ~ n u m b e r ~ w i t h ~ e p s i l o n s .
1108 And so now when I
1 1 0 9 ~ t y p e ~ a ~ d u a l ~ n u m b e r ,
1 1 1 0 \text { you remember it was}
1 1 1 1 ~ j u s t ~ w i t h ~ t h e ~ D s .
1 1 1 2 ~ O n c e ~ I ~ e x e c u t e ~ t h i s
1 1 1 3 \text { command, I could see it}
1 1 1 4 \text { in a way that's nice and human.}
1 1 1 5 \text { So I told you this was a}
1 1 1 6 ~ f u n c t i o n ~ d e r i v a t i v e ~ p a i r ,
1 1 1 7 \text { but you could also think}
1 1 1 8 \text { of it, if you like,}
1 1 1 9 \text { as a first-order expansion of--}
1 1 2 0 ~ i t ~ c o u l d ~ b e ~ a ~ f i r s t - o r d e r ~
1 1 2 1 ~ e x p a n s i o n ~ o f ~ a ~ f u n c t i o n .
1122 It could be the
1 1 2 3 \text { first-order expansion}
1124 of x squared around x equals 1.
1 1 2 5 \text { So let's go ahead and}
1126 add these last two rules.
1127 Remember I only did
1 1 2 8 ~ p l u s ~ a n d ~ d i v i d e .
1129 I might as well add the--
1 1 3 0 \text { this seems like a good time}
1 1 3 1 ~ t o ~ d o ~ m i n u s ~ a n d ~ t i m e s .
1 1 3 2 ~ A n d ~ y o u ~ s e e ~ t h a t ~ i f ~ I ~ d o
1 1 3 3 \text { the dual number 1 and 0,}
1134 I get this.
1135 Well, actually let me ask you.
1136 I'm not going to hit Enter yet.
1 1 3 7 \text { Tell me what I should see when}
1 1 3 8 \text { I hit Return, before I do it.}
1 1 3 9 ~ W h o ' s ~ q u i c k ?
1 1 4 0 \text { What's the first thing I'll}
1141 see before the epsilon?
1142 Let me start with
1 1 4 3 ~ t h e ~ 0 - t h - o r d e r ~ t e r m .
1 1 4 4 ~ W h a t ~ w i l l ~ I ~ s e e ?
1145 Just shout it out.
1146 AUDIENCE: 4.
1147 ALAN EDELMAN: 4.
1148 And then what's the next term?
1149 AUDIENCE: 2, 4.
1150 ALAN EDELMAN: 2 times 2.
```

```
1151 4.
1152 Yep.
1 1 5 3 ~ Y o u ~ g u y s ~ g o t ~ i t .
1154 OK.
1155 I changed the output.
1156 I might as well go
1 1 5 7 \text { the whole direction.}
1 1 5 8 \text { Why don't I make the input also?}
1 1 5 9 ~ D , ~ 0 , ~ 1 , ~ I ' l l ~ c a l l ~ i t ~ e p s i l o n . ~
1160 And so now I can actually
1161 input epsilons too.
1 1 6 2 \text { Not just see it as an output,}
1 1 6 3 \text { but I can do it as an output.}
1 1 6 4 \text { So epsilon squared, of}
1165 course, is second order.
1 1 6 6 \text { So we just get rid of it.}
1 1 6 7 \text { By the way, just something fun.}
1168 I actually never
1 1 6 9 \text { defined how to square.}
1 1 7 0 ~ Y o u ' l l ~ n o t i c e ~ I ~ d e f i n e
1171 times, but I never
1 1 7 2 \text { define square for dual number.}
1 1 7 3 \text { But this is sort of a}
1 1 7 4 \text { little bit of a lesson,}
1175 but a good software
1 1 7 6 ~ s y s t e m ~ w o u l d ~ b e ~ o n e
1 1 7 7 \text { where when you square something,}
1178 it actually replaces it
1 1 7 9 \text { with a thing times itself.}
1 1 8 0 \text { So that a matrix square is}
1 1 8 1 ~ a ~ m a t r i x ~ t i m e s ~ a ~ m a t r i x ,
1 1 8 2 \text { and a scalar square is}
1 1 8 3 ~ a ~ s c a l a r ~ t i m e s ~ a ~ s c a l a r . ~
1184 And in Julia, for
1 1 8 5 \text { whatever reasons,}
1 1 8 6 ~ a ~ s t r i n g ~ t i m e s ~ a ~ s t r i n g ~ i s ~ a
1 1 8 7 \text { concatenation of the string.}
1 1 8 8 \text { So a string squared--}
1189 I don't even know if
1190 this works anymore.
1191 I have a feeling
1192 it doesn't work.
1 1 9 3 ~ I t ' s ~ n o t ~ a ~ n u m b e r .
1 1 9 4 ~ T h i s ~ i s ~ g o i n g ~ t o ~ f a i l ,
1 1 9 5 \text { but it shouldn't fail.}
1196 Actually I think this
1 1 9 7 \text { is going to fail.}
1198 Oh, forget it.
1199 It does work.
1200 So multiplying two strings
```

1201 will concatenate them,
1202 and squaring it concatenates it.
1203 And so if you have sort of
1204 a novice computer system,
1205 every time you
1206 have another type,
1207 you define another square.
1208 But if you have a
1209 good computer system,
1210 then the square inherits
1211 it from multiply,
1212 and then you just have
1213 to define multiplication.
1214 What should I get here when
1215 I go 1 over 1 plus epsilon?
1216 And again, nothing symbolic.
1217 This is actually happening
1218 completely numerical,
1219 by the way.
1220 But what should I get
1221 when I hit Return?
1222 What should I see?
1223 Anybody?
1224 You're smiling.
1225 You think you know the answer?
1226 AUDIENCE: I guess it's
1227 just written there.
1228 ALAN EDELMAN: So
1229 I'll give you a hint.
1230 What's written there
1231 is not what you'll see.
1232 AUDIENCE: [INAUDIBLE] minus 1.
1233 ALAN EDELMAN: Yeah,
1234 how would it appear?
1235 Just read it to me
1236 how it would appear.
1237 AUDIENCE: I'd guess
12381 plus minus epsilon.
1239 ALAN EDELMAN: There you go.
12401 plus minus 1 epsilon.
1241 You could have just
1242 said 1 minus epsilon.
1243 I would have accepted that.
1244 All right.
1245 Doesn't that look like
1246 symbolic mathematics?
1247 But it's not.
1248 This whole thing
1249 happened through these--
1250 it's all numerical.
1259 stuff is starting
1260 to look more and more symbolic.
1261 But it's not symbolic.
1262 All right.
1263 What's the answer here?
1264 I'm not using any
1265 weird packages.
1266 Everything that I'm using was
1267 defined right in front of you.
1268 I'm not using
1269 ForwardDiff or anything.
1270 Everything here is just
1271 pure, simple Julia.
1272 You saw it.
1273 There's nothing up my sleeve.
1274 What should this answer be?
1275 AUDIENCE: [INAUDIBLE]
1276 ALAN EDELMAN: I'm sorry.
1277 AUDIENCE: [INAUDIBLE]
1278 ALAN EDELMAN: You're right.
12791 plus 5 epsilon.
1280 OK.
1281 And this one,
1282 unfortunately, won't work.
1283 Oh, it does work.
1284 Oh, that's amazing.
1285 I don't know why that works.
1286 All right.
1287 Never mind.
1288 I didn't think we could
1289 take negative powers,
1290 but I guess we could.
1291 All right.
1292 I'm going to stop.
1293 You could do this
1294 with n-th roots.
1295 You could do lots
1296 of other things.
1297 But I think this is a
1298 good time for a break.
1299 And you guys get the right idea.
1300 So now you're starting to see.

1301	If I were to summarize-- and
1302	I know it's still a little bit
1303	magical, but I think
1304	you'll see that roughly
1305	how this works is that
1306	one way or another,
1307	we're giving the rules of
1308	plus, minus, times, and divide
1309	And we're writing programs.
1310	And then these programs
1311	are, in effect--
1312	they're not really
1313	rewriting themselves.
1314	What's really happening
1315	is that every time you
1316	execute a plus, a minus,
1317	times, and a divide,
1318	it's doing not just
1319	the basic operation
1320	that you'd all expect,
1321	but it's also carrying
1322	along the derivative as well
1323	And the way Julia works,
1324	Julia will actually
1325	look at that divide and say
1326	I'm not dividing scalars.
1327	I'm dividing dual numbers.
1328	Or if it sees a star,
1329	I'm not multiplying.
1330	How does Julia know what to do
1331	When it sees two matrices,
1332	matrix, star, matrix,
1333	it knows, because it's a
1334	matrix, to do matrix multiply.
1335	So here when I did
1336	dual numbers, I
1337	taught it to do this
1338	dual-number thing.
1339	And once Julia
1340	knows how to do it,
1341	it'll just carry
1342	all the way through.
1343	And in effect, this
1344	is really the magic
1345	of great software,
1346	where you just
1347	can define some
1348	atomic operations,
1349	and the whole thing
350	kind of composes

1351 itself almost by magic.
1352 And in a way, it's
1353 almost opposite
1354 from what we teach students in
1355 a lot of classes, where we want
1356 to teach-- the
1357 old-fashioned thing
1358 was to teach a student to
1359 carry through every operation
1360 and be really competent at it.
1361 In a way, the modern
1362 world is to teach students
1363 how to not have to
1364 think, rather how
1365 to build a system that is so
1366 simply designed that it just
1367 works.
1368 And actually, to
1369 build a simple system
1370 is what takes the
1371 real human cleverness,
1372 if that sounds not like
1373 some sort of contradiction.
1374 But that's what it takes.
1375 All right.
1376 I'm a little late for the break.
1377 But after the break,
1378 on the Blackboard,
1379 I'm going to go into
1380 more detail about forward
1381 and reverse mode,
1382 automatic differentiation.
1383

