[RUSTLING]
[CLICKING]
PROFESSOR: So you've
already seen a little bit
of the story of forward
mode and reverse
mode from Stephen last week.
One version of the
story is that you're
multiplying derivatives,
or Jacobian matrices,
or something like that.
And, of course,
you've heard Stephen
say that matrix
multiplication is associative,
and so you can go left to
right or right to left,
but it matters what
order you go in terms
of the complexity
of the computation.
That one order might be
an n cubed computation,
and another order might be
an n squared computation.
And so you saw an
example of that.
And in some
fundamental sense, that
describes the entire story
of forward and reverse mode.
But in a way, I feel like it
hides more than it reveals.
And the story is--
in some sense, the entire
story can be reduced to that.
But I feel like that's not
enough to fully understand.
And so I put together this
example that I used in my class
last semester.
And I'm just going
to pull it all out.
I'm just going to grab a
simple example from calculus
and show you what's
really going on.
And so I want to take
this simple example.
There's nothing
special about it.
I just randomly came
up with it, where
I'm going to just
input an x and $a y$.
And I'm going to have
three lines of code.
So to speak, where
three computations
that are going to happen.
I'm going to take
a to be sine x--
no reason whatsoever.
I'm going to take to b
to the a, divided by y.
And then I like
x and y going in,
and z, being the last letter,
being the final output.
So z, I'll have it be b plus x.
You could see how that kind of
looks like a computer program.
It feels more like
a computer program
than mathematics, where
you're writing an equality.
It looks like a
sequence of steps,
where at every
step, you at least--
you have the variables
that came before.
What is a computer
program in the end?
It's a formula, where
on the right-hand side,
you know the value
of everything.
And so on the left-hand side,
you can define the thing.
That's what a computer
program basically is.
And one could have
a problem, like one
could create this problem, which
is, say, find the derivatives.
Like find $d z, d x$,
or find $d z, d y$.

101 And this is pretty simple.
102 You all know how to do it.

111 So this is a over y plus x
Let's just-- let's just
start with the basics.
So how might we do this?
Well, let's see.
So z is b plus x.
Let's just figure out
what's going on here.
B is a over y.
Because you want to
get everything in terms
of the x's and y's.
A is sine x.
So we have sine
x over y, plus x.
And then, now that we have
everything in terms of x
and y's-- we're all
very good at this--
dz, bx, of course--
the actual answer is
cosine x over y, plus 1.
And then $d z$, by is--
what is it?
It's a minus sine
x over y squared.
No controversy to this.
All simple stuff.
If my colleagues caught me doing
this to you advanced students,
they would make fun of me.
This is just baby stuff.
But let's establish
a little bit--
let's take a good look
at what we just did.
Let's take a close look
at this sort of thing.
And let me introduce
a computational graph.
Let me try to draw a picture
of the computation we just
did with a computational graph.
So let's write that--
computational graph.
And by the way, these
notes are online.
I'll put a pointer up.
It's a terrible
handwritten version.
One day I'll type
this up better.
But we'll have a
computational graph.
The graph will be a DAG, if
you know what that word means--
Directed Acyclic
Graph, which basically
means that there are arrows
on all the edges and there
are no cycles.
That's what a
computer program is.
It's how do you
build a next variable
from a previous variable.
And if you ever look
leftward, all the data
is available to you so that
you don't get an error.
And so I like to-- people
are not completely standard
as to how they draw
computational graphs.
It drives me crazy.
I'm going to take the
convention that I'm
going to put the variables at--
the variable names as nodes.
So my input nodes are x and y.
And let's see, if I look
at step one over there,
the first thing I'm
going to calculate is a.
So that's going to be
a vertex or a node.
And while I'm at it, I'm going
to draw this arrow right here.
And what I'm going to put
on that arrow is not--
I'm not going to put the--
you could draw the
computation, the sine,
but what I'm going
to do is actually
And so I'm going--
on the arrow, I'm

```
2 0 1 ~ g o i n g ~ t o ~ p u t ~ t h e
202 function, cosine x.
2 0 3 ~ S o ~ t h e ~ d e r i v a t i v e ~ o f - - ~
2 0 4 ~ o h , ~ i t ' s ~ j u s t ~ t h i s .
205 The derivative--
2 0 6 ~ t h e ~ w a y ~ t o ~ r e a d ~ t h i s
207 is the derivative
2 0 8 ~ o f ~ a ~ w i t h ~ r e s p e c t
2 0 9 ~ t o ~ x ~ i s ~ w h a t ' s ~ o n ~ t h i s ~ a r r o w . ~
210 So this is ba, bx.
2 1 1 ~ S o ~ l e t ' s ~ g o ~ a n o t h e r ~ s t e p .
2 1 2 ~ B ~ i s ~ a ~ o v e r ~ y . ~
213 So I think you've got the idea
2 1 4 \text { now that b going to be my node.}
215 And I'm going to
216 calculate db, da.
2 1 7 \text { What is db, da?}
2 1 8 \text { What should I put}
2 1 9 \text { here as the function?}
2 2 0 ~ I ~ w a n t ~ d b , ~ d a .
221 I want the derivative--
2 2 2 ~ I ~ a l w a y s ~ w a n t ~ t h e
2 2 3 ~ o n e - s t e p ~ d e r i v a t i v e
2 2 4 ~ b e t w e e n ~ t h i s ~ v a r i a b l e
225 and this variable.
2 2 6 ~ S o ~ I ~ w a n t ~ t h e - - ~ i f ~ I ~
2 2 7 \text { vary a little bit, what}
2 2 8 ~ d o ~ I ~ m u l t i p l y ~ b y ?
2 2 9 ~ W h a t ' s ~ d b , ~ d a ?
230 STUDENT: [INAUDIBLE]
2 3 1 ~ P R O F E S S O R : ~ 1 ~ o v e r ~ y - - ~ g o o d . ~
232 Right.
2 3 3 ~ T h a t ' s ~ j u s t - - ~ I ~
2 3 4 ~ s t a r t e d ~ w i t h ~ a ~ o v e r ~ y ,
2 3 9 ~ B u t ~ w e ~ a l s o ~ h a v e ~ a ~ d b , ~ d y . ~
2 4 0 \text { So let's put an arrow like that.}
241 And what's db, dy?
2 4 2 ~ A g a i n , ~ s i m p l e ~ q u e s t i o n s , ~ b u t ~
2 4 3 \text { got to keep you guys awake,}
2 4 4 ~ k e e p ~ m e ~ a w a k e .
2 4 5 ~ W h a t ' s ~ d b , ~ d y ?
246 STUDENT: Negative
2 4 7 ~ a ~ o v e r ~ y ~ s q u a r e d .
248 PROFESSOR: Negative
2 4 9 ~ a ~ o v e r ~ y ~ s q u a r e d .
2 5 0 ~ G o o d .
```

251	And finally, we have a z.
252	And z depends on b.
253	And it also depends on f.
254	So we have a dependence
255	that goes back
256	to the beginning with z.
257	And so let's see, what
258	are dz, db, and dz, bx?
259	They're kind of the
268	same answer to both.
261	What's dz, db,
262	and what's dz, bx?
263	Come on, first grade
264	question, really.
265	STUDENT: 1?
266	PROFESSOR: Right,
267	they're both 1.
268	Dz, db is 1.
269	Db, zx is one.
270	Because z is just b plus x.
271	So derivatives on the edges--
272	you get the point
273	that the derivative
274	is labeled on the edges.
275	Derivatives on edges, just
276	to write that down for you.
277	And it's just--
278	I like to think of this
279	as a one-step derivative.
288	So it's like-- it's a
281	derivative of one line of code,
282	if you like.
283	I'm not putting in the--
284	I'm not putting in the
285	full long-range derivative.
286	I'm just putting in the
287	one-step derivative.
288	So in other words, I'm
289	not putting in this thing,
298	which is the full derivative.
291	It's just the one step
292	that I'm putting in.
293	I wanted to put on the
294	graph what we just did to--
295	well, let's get the answer now.
296	So I claim that one way
297	to get the actual answer
298	is to think of it graphically,
299	that you could start over here,
300	at x, and we want to head to z.
la	

00 at x, and we want to head to z.

301 And we're going to
302 look at all the paths
303 that will take us from x to z.
304 There's one path
305 that goes like this.
306 And then there's another
307 path that goes like this.
308 So there's two paths
309 that'll take us from x to z.

310

And what I'd like to do is, basically, walk along the path and then write down the derivative I see as I go.
And I'm going to write it--
I'm going to write
it right to left.
So let me start walking
from x to a along this path.
When I go from x to a,
I pick up a cosine x.
So this is step one.
I pick up a cosine x.
Then I have to step
over from a to b.
So I pick up 1 over y.
So that's my step two.
And then finally, when I go from
b to z, I have a factor of 1.
So that's my step three.
I have another path
I have to cross.
I have to take all
possible paths.
So my next path is the
one that goes from x to z.
And so I add the 1 over here.
There's only one step to that.
And so that's the
answer, actually--
1 over y cosine x plus 1 is
the answer for derivative z
with respect to x.
So you can view it in that
way as all possible paths,
from input to output.
And then just
multiply as you go.
And, of course, with
scalars, I could
have multiplied in any order.

351 But you can imagine--
352 I hope you can understand why
353 I went from right to left.
354 I didn't really need
355 it for this problem.
356 But I wanted to set up a good
357 plan for when these are not

358
359
360
calars, but these are vectors
or matrix valued functions.
And then the order matters.
And so the matrix multiply
has to go from right to left.
In this case, it
wouldn't have mattered.
So this is the correct
answer for $d b, z x$.
And dz, dy, similarly--
at the first step, we have
minus a over y squared.
That's step one.
Step two is to multiply that by
1, which doesn't do anything.
And you see, the answer is--
what is the answer?
The answer is minus--
minus a over y squared,
which you could substitute.
The computer wouldn't care.
If the computer-- the
computer has the value of a.
And a is sine x.
But you might like to
see it in that format.
So this is forward mode,
automatic differentiation.
This is basically what was
going on in the algorithm
that I just showed you with
the Babylonian algorithm.
This is maybe the better
way to look at it,
where what's happening is as you
traverse through the computer
program, in that
order, you can actually
calculate each of these
things in order as well.
And, thereby, you can actually
accumulate the derivatives
as you go.

So this is the forward mode
view of differentiations.
And like I said, there's
nothing magic about everything
being a scalar here.
Every one of these
could be a function,
like you've seen in this class.
For example, it could have
been that x was a matrix
and a was the square function
or the inverse function
of a matrix.
This could have
been a determinant
or this could have
been a matrix and this
could have been a determinant.
And then in this case,
you've got the gradient
of the determinant, with respect
to the matrix, the very thing I
showed you earlier,
with the aggregate.
So the only thing that's
required is the associativity.
And the only thing
that matters is
that if you ever
bring things together,
you have to add the answers.
So you can imagine
a computer program
where there's all
sorts of arrows coming from left to right.
And as long as more
than one arrow comes in, you just add the answers. Because that's how derivatives work.
So that's forward mode of differentiation.
There is a backward mode where you follow the paths backwards.
So when you follow
it backwards--
so let me just see.
Here's where-- OK, I'm
not going to transpose it.
Here's where I'm
actually using--
I'm going to use the fact
that it's scalars now.
So this whole calculation I
just showed you was forward.
So this and this
is forward mode.
I'm going to reverse
modes to scalars.
When we get to matrices, we
might have to transpose things.
But let me just show you
reverse mode for scalars just
to get that correct.
So reverse mode
for scalars says,
OK, let's start not
on the left end,
but let's start
on the right end.
And you might
remember a week ago,
I said when had
sine of x squared--
how many of you--
I asked the question,
how many of you would--
the derivative would be the
cosine of x squared times
$2 x$, and how many would
have said $2 x$ times
the cosine of x squared?
It's a matter of going
inside out or outside in.
And you can go either way.
So for the reverse
mode, what we're
going to do is we're
going to follow
our way from the z to the x.
And, of course, there's
two ways to do that.
And if you do that--
I'm going to, again, write
it from right to left.
I'm going to start--
I'll take that first--
that horizontal path.
And I'm just going to go--

501 I'm going to write down the
502 one, as the first thing I do.
503 And then the second
504 thing I'm going to do
505 is write down the 1 over y.
506 And then the third
507 thing I'm going to do
508 is write down the cosine x.
509 But every time, when
510 I go right to left,
511 when the path splits like
512 that, I also have to add it.
513 So I'm also going to
514 have to add a 1 as well.
515

I don't know when
you're going to do that,
but I'll just say you can
do that on step one as well.
And so that's-- and here,
again, you're going to do the 1
on the first step.
And the minus a over
y squared we're now
going to do in the second step.
And either way, we're going to
get the solution to $d z, b x d z$, by.
And in a sense, every
calculation in the world
can be looked at as a DAG.
And it could be looked at as operations.
And you could think of it as basically following paths like this.
So to emphasize
this, in a way, you
can embed all this in matrices,
but I feel like it hides.
Without seeing the
graph structure,
you don't really get
the full feel, I think,
of what-- oh, yes?
STUDENT: I was
wondering, I don't
know if you're recording
the [INAUDIBLE]..
PROFESSOR: Oh, my gosh.

551 I don't know-- yeah, good point.
552 I forgot to put on the mic.
553 Thank you for catching that.
554 I don't know how well it
555 will work, probably badly.
556 Were you able to
557 hear me, Stephen?
558 Maybe the Zoom
559 recording is not so bad.
560 AUDIENCE: I can hear you.
561 PROFESSOR: So we
562 actually have a backup
563 if we know how to splice it in.
564 But I'm going to put it on now.
565 Thank you for catching that.
566 Any questions about

568
non-technical stuff,
but forward and reverse--
not the audio visual stuff?
So let's delve in a little
bit about how does one
think about this.
So there's a graph theory
way and an implementation way
of thinking about
this a little bit.
So the graph theory way
of thinking about this
is to think about the fact
that what we want to do
is really calculate the sum
of all the path products
from inputs to outputs.
So I just gave you a term.
I'm going to define
a path product.
I'll define it loosely.
I hope this will be good enough.
The path product will be the
product of the edge weights.
The product has to
be in the right order
if it's associative,
but not commutative.
But product of edge weights
as you traverse a path.
So the path products
are-- so cosine x over y
is one path product,
with that length 3 path.

601 One is just that length 1 path.
602 And so those are the
603 two path products.
604 And then what
605 we're interested in
606 is, one way or
607 another, calculating
608 the sum of path products
609 from inputs to outputs.
610 That's kind of the real
611 goal of doing that.
612 And it doesn't really
613 matter whether you
614 go from the end of the path and
615 move your way to the other end,
616 or if you start at the beginning
617 of the path and go to the end.
618 And so when you
619 see it that way, I

620
think reverse mode and forward
mode don't seem so mysterious.
I think it's pretty clear, if you stand back here, the world doesn't care if you go cosine x times 1
over y, times 1, or if you go 1
times 1 over y, times cosine x.
And the only issue is
if these were matrices,
how would you do it?
But I think you all get the
idea that if the path products--
like, if this was A, B,
and C-- if these were--
I'm using capital letters
to have matrices--
then the world
doesn't really care
if you were to calculate--
if you traverse this way,
and you saw the A first.
And then when you multiply by
B, and then you see the C last,
or if you went backwards,
and you pick up the C first,
and you then multiply
by B on the left,
and then finally, A on the left.
As long as you have an
associative system, right

651 it doesn't matter which way
652 you do those multiplies.
653 So as long as you can
654 traverse the paths,
655 either from forward to
656 back, or back to forward.
657 Or by the way, you can--
658 not that this happens very much,
659 but you could even traverse
660 paths from the middle outward.
661 And as long as you put the
there's no rule of
the universe that
says you have to go from the beginning to the end or the end to the beginning, or you can't go middle outward. The beauty of associativity is these path products will work just any which way you do it. So that's one way to look at automatic differentiation, both forward and reverse, is to think of it
in terms of these path products that really don't care how you go. Now as far as implementations are concerned--
so one thing I'll
do is I'll move
the laptop over a little bit so that Stephen has a chance of seeing what we're doing. It might be a weird angle. But you know what, let's do a little better. Let's move the whole laptop so Stephen can see it a little bit better if I use these boards here. So let's-- so let's take a little bit of a closer view of implementation of forward mode now that we have this understanding of what it is we're trying to do. So how would we
implement this thing?
So how are we going to do this?
Well, let me focus on
being in the middle.
So suppose we have a lot
of stuff have happened.
I don't know what's going on.
And we're at the point
in time where we're here,
and what we want to do--
let me call this--
I'll call this x.
Just it's not an input
at the beginning.
It's just x is
somewhere in the middle.
And we're going to
calculate an output.
We're going to calculate f of x.
And so whatever
comes in here, we're
going to somehow have it go--
we're taking a path product.
And so we've come up to here.
And if you just kind think--
I don't know, is this
recursive thinking?
Or is this just how one should
think about any computer
program?
But one way or another,
you've gotten to here.
And you have the path
product up until here.
So we start out, like maybe we
call it an inductive hypothesis
or whatever you'd like to say.
We know the path
product up to here.
So if I knew the path
product up to here,
and I going forward mode,
what's the next path product?
Suppose I know
this path product.
Let's call it P for product. What's the path product here? STUDENT: [INAUDIBLE]
PROFESSOR: Exactly.
It's just-- what is it the that?

STUDENT: F prime.
PROFESSOR: Right, f prime, times the previous-- exactly.
So one way or another, I
need a data structure that--
I need a data structure that
will take the value here
and the path product--
the path product,
and it'll give me--
it'll give me f of the
value if I want to run--
if I just want to
run the algorithm--
and I need the path
product times f prime.
And I want to multiply
in this order.
And so in some sense, this
is what the whole dual number
system thing is doing.
This is another way to
look at the dual numbers.
So there's lots and lots of
ways to understand what I just
showed you with dual numbers.
But it's really nothing more
than taking your path products
with the value.
And you could see--
the reason why I'm showing
you this way is that
if you're executing
a computer program,
where you want to--
literally, you want--
the main thing the computer
program was meant to do
is to calculate f of x.
And now this additional extra
thing we want it to do--
maybe we're doing gradient
descent, and machine learning,
or who knows what we're doing.
We want the derivative to
happen at the same time.
Then all we have to do
is overload our program
that was already happy to
calculate the f of the value,

801 and then tack along
802 the path product,
803 and append the path product
804 with this extra multiply.
805 And so this is how--
806

807
808
809
810
this is one way of looking as
to how the whole dual number
thing is actually working.
And so in symbols,
if I had x, comma, p,
then on the next step, I'm going
to have f of x, and f prime
of x, times P. And so that's how
we can carry forward this path
product idea.
And now let's talk about how
to start this whole thing.
So this was in the middle.
How should we start?
So x, comma-- what
should I put here so
that the first step just works?
Is it obvious what we
should just start with?
Or another way to say
it is, what should be--
what should be the path
product of a path of length 0 ?
Do people ever think
about these things?
Like, if I asked you what is
the sum of the empty vector,
and I told you, there's only
one right answer to that,
what's the right answer of
the sum of an empty vector,
a vector of length 0?
$0-$ it's the identity element.
It's the only thing
that makes sense.
Why?
Because you always want the
sum from I equals 1 to k
plus 1 of xi to equal xk
plus 1, plus the sum from I
equals 1 to k.
And if you make this work
for k equals 0, it's perfect.
And what's the empty product?
It's 1, right?

851 Determinant of a 0 by 0
852 matrix also should be 1.
853 And then the Laplace
854 expansion works.
855 So what's the empty

So how should we--
in effect, how--
when you sum, if you're summing up a vector, you initialize
the variable to 0 , and then you start adding in numbers. So what's the empty-what's the empty start?
1, exactly.
So there are a number of
ways to interpret this.
You could think of this
as the slope being--
but this is not a bad
way to think about it.
Again, you could think
of it in multiple ways.
But you start with x, comma,
1 to see the operation.
And then at every
step, you do this.
And at the very end,
you get the derivatives
that you're looking for.
So that's forward mode.
And it works just great.
A quick check, though.
Suppose I had f of x
as a constant, like 2 .
And then, so I feed it in x,
comma P , what's the output?
What are the two numbers
that would come out
if anywhere in the middle of my
calculation, I started with xP
and I applied this
constant function?
2, 0 .
It doesn't even matter what the input is.
That's right, because it's a constant function.

901 It doesn't care.
902 So this is the one arrow
903 case in forward mode.
904 Maybe it's worthwhile to quickly
905 talk about the multiple arrow
906 case.

907
908
909
910
911
o for example, suppose I have--
let's say I had ap and bq.
And let's say I had
two arrows going in.
And I had z is some
function of two variables,
like I did over there, maybe the
sum, or the product, or divide,
or any function
of two variables.
So this will be the one
step derivative, of course.
This will be dz, da.
And this will be--
I don't know what the
best way to write this is,
but dz, da, dz, db is
probably as good a way as any.
So now I'm not thinking
of a and b as numbers,
but I'm thinking of them
as symbols for the moment.
Or I'm imagining that
one way or another,
I know the derivative of this--
at least one way or another,
I know the derivative of
this function with respect
to this variable somehow.
Just to give you a quick
example that this is not
so complicated.
If f was the plus function--
if this is a plus b,
what would I put here and here?
Again, simple question.
1 and 1.
And slightly more
complicated, but not by much,
if this was the product
function, a times b,
what would I put here and
what would I put here?
STUDENT: [INAUDIBLE]

951 PROFESSOR: Say that again.

STUDENT: B and a?
B and a, perfect.
So the point is for
lots of basic functions, it's very easy to know what to put here.
And so you've got these multiple arrows going in. And-- yeah, you have these multiple arrows in, and, of course, what we're just going to do
is we're just going
to add the results.
And so did I write it out?
In effect, yes.
So let me just say that if
this goes in, what we really
want to come out is the z, which
is, of course, f of a and b.
And then what we want to do
is to continue the paths--
let's see, we had--
did I write this correctly?
Let me get this right.
So let's see.
So if I started with this,
then what-- oh, yeah, what I have to do is take--
is this right?
I have to take P-yeah, p times dz, za, plus q times-yeah, that's right-- dz, db. And that's the right thing
to do to carry forward the derivative.
And so this is the--
because this is exactly what the derivative would be over here.
Or if you like, you
could just think of this
as combining the paths,
the path products.
So you could think of this
from a calculus point of view, that the derivative--
so the calculus viewpoint
is that the derivative

```
1001 of this, with respect to that,
1002 plus the derivative of this,
1003 either the first variable,
1004 then times the second variable.
1005 But the pathway, which I
1006 think is almost easier to--
1 0 0 7 \text { it all depends on whether you}
1008 like to think calculus first
1009 or you like to
1010 think paths first.
1011 But it's really
1 0 1 2 ~ j u s t ~ d i f f e r e n t ~ w o r d s
1 0 1 3 \text { for what in mathematics}
1014 is the same thing,
1015 that we're taking this path
1020 the one you saw here,
1 0 2 1 ~ y o u ~ j u s t ~ a d d ~ t h e m .
1022 OK, well, I've run out of time.
1023 I've got a whole bunch of
1024 more notes on reverse mode,
1025 on how do you do the same
1026 thing with reverse mode.
1027 But I don't know whether--
1028 I'm not going to see you
1029 before next week today.
1 0 3 0 ~ S o ~ y o u ~ m i g h t ~ s e e ~
1031 some version of this
1032 from Chris, or from Gaurav,
1 0 3 3 \text { or maybe from Stephen.}
1034 Or otherwise, I'll
1035 give you my own version
1036
1037 All right, so I'll wish
1038 you all a good weekend.
1039 And you'll be in
1040 good hands next week.
1041
```

