
8 Approximation Algorithms and Max-Cut

8.1 The Max-Cut problem

Unless the widely believed P 6= NP conjecture is false, there is no polynomial algorithm that can
solve all instances of an NP-hard problem. Thus, when faced with an NP-hard problem (such as the
Max-Cut problem discussed below) one has three options: to use an exponential type algorithm that
solves exactly the problem in all instances, to design polynomial time algorithms that only work for
some of the instances (hopefully the typical ones!), or to design polynomial algorithms that, in any
instance, produce guaranteed approximate solutions. This section is about the third option. The
second is discussed in later in the course, in the context of community detection.

The Max-Cut problem is the following: Given a graph G = (V,E) with non-negative weights wij on
the edges, find a set S ⊂ V for which cut(S) is maximal. Goemans and Williamson [GW95] introduced
an approximation algorithm that runs in polynomial time and has a randomized component to it, and
is able to obtain a cut whose expected value is guaranteed to be no smaller than a particular constant
αGW times the optimum cut. The constant αGW is referred to as the approximation ratio.

Let V = {1, . . . , n}. One can restate Max-Cut as

max 1
i2

∑
i<j wij(1− y yj) (66)

s.t. |yi| = 1

The yi’s are binary variables that indicate set membership, i.e., yi = 1 if i ∈ S and yi = −1 otherwise.
Consider the following relaxation of this problem:

max 1 w2

∑
i<j ij(1− uTi uj)

s.t. ui ∈ Rn (67)
, ‖ui‖ = 1.

This is in fact a relaxation because if we restrict ui to be a multiple of e1, the first element of the
canonical basis, then (77) is equivalent to (66). For this to be a useful approach, the following two
properties should hold:

(a) Problem (77) needs to be easy to solve.

(b) The solution of (77) needs to be, in some way, related to the solution of (66).

Definition 8.1 Given a graph G, we define MaxCut(G) as the optimal value of (66) and RMaxCut(G)
as the optimal value of (77).

We start with property (a). Set X to be the Gram matrix of u1, . . . , un, that is, X = UTU where
the i’th column of U is ui. We can rewrite the objective function of the relaxed problem as

1
ij

2

∑
wij(1 X

i<j

− )

One can exploit the fact that X having a decomposition of the form X = Y TY is equivalent to being
positive semidefinite, denoted X � 0. The set of PSD matrices is a convex set. Also, the constraint
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‖ui‖ = 1 can be expressed as Xii = 1. This means that the relaxed problem is equivalent to the
following semidefinite program (SDP):

max 1 X2

∑
i<j wij(1− ij)

(68)
s.t. X � 0 and Xii = 1, i = 1, . . . , n.

This SDP can be solved (up to ε accuracy) in time polynomial on the input size and log(ε−1)[VB96].
There is an alternative way of viewing (68) as a relaxation of (66). By taking X = yyT one can

formulate a problem equivalent to (66)

max 1
ij2

∑
i<j wij(1−X )

(69)
s.t. X � 0 , Xii = 1, i = 1, . . . , n, and rank(X) = 1.

The SDP (68) can be regarded as a relaxation of (69) obtained by removing the non-convex rank
constraint. In fact, this is how we will later formulate a similar relaxation for the minimum bisection
problem.

We now turn to property (b), and consider the problem of forming a solution to (66) from a
solution to (68). From the solution {ui}i=1,...,n of the relaxed problem (68), we produce a cut subset
S′ by randomly picking a vector r ∈ Rn from the uniform distribution on the unit sphere and setting

S′ = {i|rTui ≥ 0}

In other words, we separate the vectors u1, . . . , un by a random hyperplane (perpendicular to r). We
will show that the cut given by the set S′ is comparable to the optimal one.

Figure 20: θ = arccos(uTi uj)

Let W be the value of the cut produced by the procedure described above. Note that W is a
random variable, whose expectation is easily seen (see Figure 20) to be given by

E[W ] =
∑

wij Pr sign(rTui) = sign(rTuj)
i<j

6

∑ 1

{ }
= wij

i<j

arccos(uT
π i uj).
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If we define αGW as
1

αGW = min
−1≤x≤1

π arccos(x)
1
2(1− x)

,

it can be shown that αGW > 0.87.
It is then clear that

1
E[W ] =

∑
wij arccos(uT

1
i uj) α

π
≥ GW

2
i<j

∑
wij(1− uTi uj). (70)

i<j

Let MaxCut(G) be the maximum cut of G, meaning the maximum of the original problem (66).
Naturally, the optimal value of (77) is larger or equal than MaxCut(G). Hence, an algorithm that
solves (77) and uses the random rounding procedure described above produces a cut W satisfying

1
MaxCut(G) ≥ E[W ] ≥ αGW

∑
wij(1− uTi uj)2

i<j

≥ αGWMaxCut(G), (71)

thus having an approximation ratio (in expectation) of αGW . Note that one can run the randomized
rounding procedure several times and select the best cut.

Note that the above gives

MaxCut(G) ≥ E[W ] ≥ αGWRMaxCut(G) ≥ αGWMaxCut(G)

8.2 Can αGW be improved?

A natural question is to ask whether there exists a polynomial time algorithm that has an approxi-
mation ratio better than αGW .

Figure 21: The Unique Games Problem

The unique games problem (as depicted in Figure 21) is the following: Given a graph and a set
of k colors, and, for each edge, a matching between the colors, the goal in the unique games problem
is to color the vertices as to agree with as high of a fraction of the edge matchings as possible. For
example, in Figure 21 the coloring agrees with 3 of the edge constraints, and it is easy to see that one4
cannot do better.

The Unique Games Conjecture of Khot [Kho02], has played a major role in hardness of approxi-
mation results.
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Conjecture 8.2 For any ε > 0, the problem of distinguishing whether an instance of the Unique
Games Problem is such that it is possible to agree with a ≥ 1 − ε fraction of the constraints or it is
not possible to even agree with a ε fraction of them, is NP-hard.

There is a sub-exponential time algorithm capable of distinguishing such instances of the unique
games problem [ABS10], however no polynomial time algorithm has been found so far. At the moment
one of the strongest candidates to break the Unique Games Conjecture is a relaxation based on the
Sum-of-squares hierarchy that we will discuss below.

Open Problem 8.1 Is the Unique Games conjecture true? In particular, can it be refuted by a
constant degree Sum-of-squares relaxation?

Remarkably, approximating Max-Cut with an approximation ratio better than αGW is has hard
as refuting the Unique Games Conjecture (UG-hard) [KKMO05]. More generality, if the Unique
Games Conjecture is true, the semidefinite programming approach described above produces optimal
approximation ratios for a large class of problems [Rag08].

Not depending on the Unique Games Conjecture, there is a NP-hardness of approximation of 16
17

for Max-Cut [Has02].

Remark 8.3 Note that a simple greedy method that assigns membership to each vertex as to maximize
the number of edges cut involving vertices already assigned achieves an approximation ratio of 1

2 (even
of 1 of the total number of edges, not just of the optimal cut).2

8.3 A Sums-of-Squares interpretation

We now give a different interpretation to the approximation ratio obtained above. Let us first slightly
reformulate the problem (recall that wii = 0).

1
max
yi=±1 2

∑
i<j

wij(1− yiyj) = max
yi=±1

1

4

∑
i,j

wij(1− yiyj)

1 i j
= max wij − yiyj

yi=±1 4 2
i,j

1
= max

−∑ 1
w y y + w y2 1
ij i j ij + wij y2

yi=±1 4 2 j

i,j j

[
i

i

 ∑ ∑ 
2

∑
j

∑
i

] 

1


= max

yi=±1 4

 

1

−∑ 1
w 2
ijyiyj +

2

∑
deg(i)y2 1

i +
2

∑
deg(j)yj

i,j i j


= max w 2

ijyiyj + deg(i)yi
yi=±1 4

−∑
i,j

∑
i


1

= max yTL ,


Gy

yi=±1 4

∑ (
y2 + y2

)
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where LG = DG−W is the Laplacian matrix, DG is a diagonal matrix with (DG)ii = deg(i) =
∑

j wij
and Wij = wij .

This means that we rewrite (66) as

max 1yTLGy4 (72)
yi = ±1, i = 1, . . . , n.

Similarly, (68) can be written (by taking X = yyT ) as

max 1 Tr (LGX)4
s.t. X � 0 (73)

Xii = 1, i = 1, . . . , n.

Indeed, given
Next lecture we derive the formulation of the dual program to (73) in the context of recovery in

the Stochastic Block Model. Here we will simply show weak duality. The dual is given by

min Tr (D)
s.t. D is a diagonal matrix

D − 1
4LG � 0.

(74)

Indeed, if X is a feasible solution to (73) and D a feasible solution to (74) then, since X and
D − 1LG are both positive semidefinite Tr4

[
X
(
D − 1

4LG
)]
≥ 0 which gives

0 ≤ Tr

[
X

(
D − 1

4
LG

)]
= Tr(XD)− 1

4
Tr (LGX) = Tr(D)− 1

Tr (LGX) ,
4

since D is diagonal and Xii = 1. This shows weak duality, the fact that the value of (74) is larger
than the one of (73).

If certain conditions, the so called Slater conditions [VB04, VB96], are satisfied then the optimal
values of both programs are known to coincide, this is known as strong duality. In this case, the
Slater conditions ask whether there is a matrix strictly positive definite that is feasible for (73) and
the identity is such a matrix. This means that there exists D\ feasible for (74) such that

Tr(D\) = RMaxCut.

Hence, for any y ∈ Rn we have

1

4
yTLGy = RMaxCut− yT

(
D\ − 1

D
4

)T n

LG +
∑

ii

i=1

(
y2
i − 1

)
. (75)

Note that (75) certifies that no cut of G is larger than RMaxCut. Indeed, if y ∈ {±1}2 then y2
i = 1

and so
1RMaxCut−
4
yTLGy = yT

(
D\ − 1

4
LG

)T
.
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Since D\ − 1
4LG � 0, there exists V such that D\ − 1LG = V V T with the columns of V denoted by4

v1, . . . , vn. This means that meaning that yT
(
D\ − 1

4LG
)T

=
∥∥V T y

∥∥2
=
∑n

k=1(vTk y)2. This means
that, for y ∈ {±1}2,

RMaxCut− 1

1

∑n
yTLGy = (vT

4 k y)2.
k=1

In other words, RMaxCut − yTLGy is, in the hypercube (y 1 2) a sum-of-squares of degree 2.4 ∈ {± }
This is known as a sum-of-squares certificate [BS14, Bar14, Par00, Las01, Sho87, Nes00]; indeed, if a
polynomial is a sum-of-squares naturally it is non-negative.

Note that, by definition, MaxCut− 1yTLGy is always non-negative on the hypercube. This does4
not mean, however, that it needs to be a sum-of-squares33 of degree 2.

(A Disclaimer: the next couple of paragraphs are a bit hand-wavy, they contain some of intuition
for the Sum-of-squares hierarchy but for details and actual formulations, please see the references.)

The remarkable fact is that, if one bounds the degree of the sum-of-squares certificate, it can be
found using Semidefinite programming [Par00, Las01]. In fact, SDPs (74) and (74) are finding the
smallest real number Λ such that Λ − 1yTLGy is a sum-of-squares of degree 2 over the hypercube,4
the dual SDP is finding a certificate as in (75) and the primal is constraining the moments of degree
2 of y of the form Xij = yiyj (see [Bar14] for some nice lecture notes on Sum-of-Squares, see also
Remark 8.4). This raises a natural question of whether, by allowing a sum-of-squares certificate of
degree 4 (which corresponds to another, larger, SDP that involves all monomials of degree ≤ 4 [Bar14])
one can improve the approximation of αGW to Max-Cut. Remarkably this is open.

Open Problem 8.2 1. What is the approximation ratio achieved by (or the integrality gap of) the
Sum-of-squares degree 4 relaxation of the Max-Cut problem?

2. The relaxation described above (of degree 2) (74) is also known to produce a cut of 1 − O (
√
ε)

when a cut of 1− ε exists. Can the degree 4 relaxation improve over this?

3. What about other (constant) degree relaxations?

Remark 8.4 (triangular inequalities and Sum of squares level 4) A (simpler) natural ques-
tion is wether the relaxation of degree 4 is actually strictly tighter than the one of degree 2 for Max-Cut
(in the sense of forcing extra constraints). What follows is an interesting set of inequalities that degree
4 enforces and that degree 2 doesn’t, known as triangular inequalities.

Since yi ∈ {±1} we naturally have that, for all i, j, k

yiyj + yjyk + ykyi ≥ −1,

this would mean that, for Xij = yiyj we would have,

Xij +Xjk +Xik ≥ −1,

however it is not difficult to see that the SDP (73) of degree 2 is only able to constraint

3
Xij +Xjk +Xik ≥ −

2
,

33This is related with Hilbert’s 17th problem [Sch12] and Stengle’s Positivstellensatz [Ste74]
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which is considerably weaker. There are a few different ways of thinking about this, one is that the
three vector ui, uj , uk in the relaxation may be at an angle of 120 degrees with each other. Another way
of thinking about this is that the inequality yiyj +y y 3

j k+ykyi ≥ −2 can be proven using sum-of-squares
proof with degree 2:

(yi + yj + yk)
2 ≥ 0 ⇒ yiyj + yjyk + ykyi ≥ −

3

2

However, the stronger constraint cannot.
On the other hand, if degree 4 monomials are involved, (let’s say XS =

∏
s S ys, note that X = 1∈ ∅

and XijXik = Xjk) then the constraint
X∅
Xij

 T
X 1 X X  ∅ ij jk Xki Xij

   Xij 1 Xik X


 jk= 0
Xjk Xjk Xjk Xik 1 Xij

�

Xki


Xki

 
Xki Xjk Xij 1


implies X


ij +Xjk +Xik ≥ −1 just by taking

1 X ij Xjk Xki

1T  X ij 1 Xik Xjk 1 0.
Xjk Xik 1 Xij


≥

Xki Xjk Xij 1



Also, note that the inequality yiyj + yjyk + ykyi ≥ −1 can inde


ed be proven using sum-of-squares proof

with degree 4 (recall that y2
i = 1):

(1 + yiyj + yjyk + ykyi)
2 ≥ 0 ⇒ yiyj + yjyk + ykyi ≥ −1.

Interestingly, it is known [KV13] that these extra inequalities alone will not increase the approximation
power (in the worst case) of (68).

8.4 The Grothendieck Constant

There is a somewhat similar remarkable problem, known as the Grothendieck problem [AN04, AMMN05].
Given a matrix A ∈ Rn×m the goal is to maximize

max xTAy
s.t. xi = ±, ∀i (76)
s.t. yj = ±, ∀j

Note that this is similar to problem (66). In fact, if A � 0 it is not difficult to see that the optimal
solution of (76) satisfies y = x and so if A = LG, since LG � 0, (76) reduces to (66). In fact, when
A � 0 this problem is known as the little Grothendieck problem [AN04, CW04, BKS13a].

Even when A is not positive semidefinite, one can take zT = [xT yT ] and the objective can be
written as

zT
[

0 A
AT 0

]
z.
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Similarly to the approximation ratio in Max-Cut, the Grothendieck constant [Pis11] KG is the
maximum ratio (over all matrices A) between the SDP relaxation

max
∑

ij Aiju
T
i vj

s.t. ui ∈ Rn+m, (77)
n

‖ui‖ = 1,
vj ∈ R +m, ‖vj‖ = 1

and 76, and its exact value is still unknown, the best known bounds are available here [] and are 1.676 <
KG <

π
2 log(1+

√ . See also page 21 here [F+14]. There is also a complex valued analogue [Haa87].
2)

Open Problem 8.3 What is the real Grothendieck constant KG?

8.5 The Paley Graph

Let p be a prime such that p ∼= 1 mod 4. The Paley graph of order p is a graph on p nodes (each
node associated with an element of Zp) where (i, j) is an edge if i − j is a quadratic residue modulo
p. In other words, (i, j) is an edge is there exists a such that a2 ∼= i− j mod p. Let ω(p) denote the
clique number of the Paley graph of order p, meaning the size of its largest clique. It is conjectured
that ω(p) . pollywog(n) but the best known bound is ω(p)

√≤ p (which can be easily obtained). The
only improvement to date is that, infinitely often, ω(p) ≤ √p− 1, see [BRM13].

The theta function of a graph is a Semidefinite programming based relaxation of the independence
number [Lov79] (which is the clique number of the complement graph). As such, it provides an upper
bound on the clique number. In fact, this upper bound for Paley graph matches ω(p)

√≤ p.
Similarly to the situation above, one can define a degree 4 sum-of-squares analogue to θ(G) that, in

principle, has the potential to giving better upper bounds. Indeed, numerical experiments in [GLV07]
seem to suggest that this approach has the potential to improve on the upper bound ω(p)

√≤ p

Open Problem 8.4 What are the asymptotics of the Paley Graph clique number ω(p) ? Can the the
SOS degree 4 analogue of the theta number help upper bound it? 34

Interestingly, a polynomial improvement on Open Problem 6.4. is known to imply an improvement
on this problem [BMM14].

8.6 An interesting conjecture regarding cuts and bisections

Given d and n let Greg(n, d) be a random d-regular graph on n nodes, drawn from the uniform
distribution on all such graphs. An interesting question is to understand the typical value of the
Max-Cut such a graph. The next open problem is going to involve a similar quantity, the Maximum
Bisection. Let n be even, the Maximum Bisection of a graph G on n nodes is

MaxBis(G) = max
S: |S|=n

cut(S),
2

and the related Minimum Bisection (which will play an important role in next lectures), is given by

MinBis(G) = min
S: |S|=n

2

cut(S),

34The author thanks Dustin G. Mixon for suggesting this problem.
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A typical bisection will cut half the edges, meaning dn. It is not surprising that, for large n,4
MaxBis(G) and MinBis(G) will both fluctuate around this value, the amazing conjecture [ZB09] is
that their fluctuations are the same.

Conjecture 8.5 ([ZB09]) Let G ∼ Greg(n, d), then for all d, as n grows

1

n
(MaxBis(G) + MinBis(G)) =

d
+ o(1),

2

where o(1) is a term that goes to zero with n.

Open Problem 8.5 Prove or disprove Conjecture 8.5.

Recently, it was shown that the conjecture holds up to o(
√
d) terms [DMS15]. We also point the

reader to this paper [Lyo14], that contains bounds that are meaningful already for d = 3.
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