4.8 Another open problem

Feige [Fei05] posed the following remarkable conjecture (see also [Sam66, Sam69, Sam68])

Conjecture 4.33 Given n independent random variables X_1, \ldots, X_n s.t., for all $i, X_i \ge 0$ and $\mathbb{E}X_i = 1$ we have

$$\operatorname{Prob}\left(\sum_{i=1}^{n} X_i \ge n+1\right) \le 1 - e^{-1}$$

Note that, if X_i are i.i.d. and $X_i = n + 1$ with probability 1/(n + 1) and $X_i = 0$ otherwise, then $\operatorname{Prob}\left(\sum_{i=1}^n X_i \ge n + 1\right) = 1 - \left(\frac{n}{n+1}\right)^n \approx 1 - e^{-1}$.

Open Problem 4.6 Prove or disprove Conjecture 4.33.²¹

References

- [Fei05] U. Feige. On sums of independent random variables with unbounded variance, and estimating the average degree in a graph. 2005.
- [Sam66] S. M. Samuels. On a chebyshev-type inequality for sums of independent random variables. Ann. Math. Statist., 1966.
- [Sam68] S. M. Samuels. More on a chebyshev-type inequality. 1968.
- [Sam69] S. M. Samuels. The markov inequality for sums of independent random variables. Ann. Math. Statist., 1969.

 $^{^{21}\}mathrm{We}$ thank Francisco Unda and Philippe Rigollet for suggesting this problem.

18.S096 Topics in Mathematics of Data Science Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.