8.5 The Paley Graph

Let p be a prime such that $p \cong 1 \mod 4$. The Paley graph of order p is a graph on p nodes (each node associated with an element of \mathbb{Z}_p) where (i, j) is an edge if i - j is a quadratic residue modulo p. In other words, (i, j) is an edge is there exists a such that $a^2 \cong i - j \mod p$. Let $\omega(p)$ denote the clique number of the Paley graph of order p, meaning the size of its largest clique. It is conjectured that $\omega(p) \leq \text{pollywog}(n)$ but the best known bound is $\omega(p) \leq \sqrt{p}$ (which can be easily obtained). The only improvement to date is that, infinitely often, $\omega(p) \leq \sqrt{p} - 1$, see [BRM13].

The theta function of a graph is a Semidefinite programming based relaxation of the independence number [Lov79] (which is the clique number of the complement graph). As such, it provides an upper bound on the clique number. In fact, this upper bound for Paley graph matches $\omega(p) \leq \sqrt{p}$.

Similarly to the situation above, one can define a degree 4 sum-of-squares analogue to $\theta(G)$ that, in principle, has the potential to giving better upper bounds. Indeed, numerical experiments in [GLV07] seem to suggest that this approach has the potential to improve on the upper bound $\omega(p) \leq \sqrt{p}$

Open Problem 8.4 What are the asymptotics of the Paley Graph clique number $\omega(p)$? Can the the SOS degree 4 analogue of the theta number help upper bound it?³⁴

Interestingly, a polynomial improvement on Open Problem 6.4. is known to imply an improvement on this problem [BMM14].

References

- [BMM14] A. S. Bandeira, D. G. Mixon, and J. Moreira. A conditional construction of restricted isometries. *Available online at arXiv:1410.6457 [math.FA]*, 2014.
- [BRM13] C. Bachoc, I. Z. Ruzsa, and M. Matolcsi. Squares and difference sets in finite fields. Available online at arXiv:1305.0577 [math.CO], 2013.
- [GLV07] N. Gvozdenovic, M. Laurent, and F. Vallentin. Block-diagonal semidefinite programming hierarchies for 0/1 programming. Available online at arXiv:0712.3079 [math.OC], 2007.
- [Lov79] L. Lovasz. On the shannon capacity of a graph. *IEEE Trans. Inf. Theor.*, 25(1):1–7, 1979.

³⁴The author thanks Dustin G. Mixon for suggesting this problem.

18.S096 Topics in Mathematics of Data Science Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.