4.7.2 k-lifts of graphs

Given a graph G, on n nodes and with max-degree Δ , and an integer $k \geq 2$ a random k lift $G^{\otimes k}$ of G is a graph on kn nodes obtained by replacing each edge of G by a random $k \times k$ bipartite matching. More precisely, the adjacency matrix $A^{\otimes k}$ of $G^{\otimes k}$ is a $nk \times nk$ matrix with $k \times k$ blocks given by

$$A_{ij}^{\otimes k} = A_{ij} \Pi_{ij},$$

where Π_{ij} is uniformly randomly drawn from the set of permutations on k elements, and all the edges are independent, except for the fact that $\Pi_{ij} = \Pi_{ji}$. In other words,

$$A^{\otimes k} = \sum_{i < j} A_{ij} \left(e_i e_j^T \otimes \Pi_{ij} + e_j e_i^T \otimes \Pi_{ij}^T \right),$$

where \otimes corresponds to the Kronecker product. Note that

$$\mathbb{E}A^{\otimes k} = A \otimes \left(\frac{1}{k}J\right),$$

where $J = \mathbf{1}\mathbf{1}^T$ is the all-ones matrix.

Open Problem 4.5 (Random *k***-lifts of graphs)** Give a tight upperbound to

$$\mathbb{E}\left\|A^{\otimes k} - \mathbb{E}A^{\otimes k}\right\|$$

Oliveira [Oli10] gives a bound that is essentially of the form $\sqrt{\Delta \log(nk)}$, while the results in [ABG12] suggest that one may expect more concentration for large k. It is worth noting that the case of k = 2 can essentially be reduced to a problem where the entries of the random matrix are independent and the results in [BvH15] can be applied to, in some case, remove the logarithmic factor.

References

- [ABG12] L. Addario-Berry and S. Griffiths. The spectrum of random lifts. *available at* arXiv:1012.4097 [math.CO], 2012.
- [BvH15] A. S. Bandeira and R. v. Handel. Sharp nonasymptotic bounds on the norm of random matrices with independent entries. *Annals of Probability, to appear*, 2015.
- [Oli10] R. I. Oliveira. The spectrum of random k-lifts of large graphs (with possibly large k). Journal of Combinatorics, 2010.

18.S096 Topics in Mathematics of Data Science Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.