4.7.2 k-lifts of graphs

Given a graph G, on n nodes and with max-degree Δ, and an integer $k \geq 2$ a random k lift $G^{\otimes k}$ of G is a graph on $k n$ nodes obtained by replacing each edge of G by a random $k \times k$ bipartite matching. More precisely, the adjacency matrix $A^{\otimes k}$ of $G^{\otimes k}$ is a $n k \times n k$ matrix with $k \times k$ blocks given by

$$
A_{i j}^{\otimes k}=A_{i j} \Pi_{i j},
$$

where $\Pi_{i j}$ is uniformly randomly drawn from the set of permutations on k elements, and all the edges are independent, except for the fact that $\Pi_{i j}=\Pi_{j i}$. In other words,

$$
A^{\otimes k}=\sum_{i<j} A_{i j}\left(e_{i} e_{j}^{T} \otimes \Pi_{i j}+e_{j} e_{i}^{T} \otimes \Pi_{i j}^{T}\right),
$$

where \otimes corresponds to the Kronecker product. Note that

$$
\mathbb{E} A^{\otimes k}=A \otimes\left(\frac{1}{k} J\right),
$$

where $J=\mathbf{1 1}^{T}$ is the all-ones matrix.

Open Problem 4.5 (Random k-lifts of graphs) Give a tight upperbound to

$$
\mathbb{E}\left\|A^{\otimes k}-\mathbb{E} A^{\otimes k}\right\|
$$

Oliveira [Oli10] gives a bound that is essentially of the form $\sqrt{\Delta \log (n k)}$, while the results in [ABG12] suggest that one may expect more concentration for large k. It is worth noting that the case of $k=2$ can essentially be reduced to a problem where the entries of the random matrix are independent and the results in $[\mathrm{BvH} 15]$ can be applied to, in some case, remove the logarithmic factor.

References

[ABG12] L. Addario-Berry and S. Griffiths. The spectrum of random lifts. available at arXiv:1012.4097 [math.CO], 2012.
[BvH15] A. S. Bandeira and R. v. Handel. Sharp nonasymptotic bounds on the norm of random matrices with independent entries. Annals of Probability, to appear, 2015.
[Oli10] R. I. Oliveira. The spectrum of random k-lifts of large graphs (with possibly large k). Journal of Combinatorics, 2010.

MIT OpenCourseWare
http://ocw.mit.edu

18.S096 Topics in Mathematics of Data Science

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

