
Lecture 17 : Stochastic Processes II

1 Continuous-time stochastic process

So far we have studied discrete-time stochastic processes. We studied the
concept of Makov chains and martingales, time series analysis, and regres-
sion analysis on discrete-time stochastic processes.

We now turn our focus to the study of continuous-time stochastic pro-
cesses. In most cases, it is difficult to exactly describe the probability dis-
tribution for continuous-time stochastic processes. This was also difficult
for discrete time stochastic processes, but for them, we described the dis-
tribution in terms of the increments Xk+1 −Xk instead; this is impossible
for continuous time stochastic processes. An alternate way which is com-
monly used is to first describe the properties satisfied by the probability
distribution, and then to show that there exists a probability distribution
satisfying the given properties. Unfortunately, the second part above, the
acutal construction, requires a non-trivial amount of work and is beyond
the scope of this class. Hence here we provide a brief introduction to the
framework, and mostly just state the properties of the stochastic processes
of interest. Interested readers can take more advanced probability courses
for deeper understanding.

To formally define a stochastic process, there needs to be an underlying
probability space (Ω,P). A stochastic process X is then a map from the
universe Ω to the space of real functions defined over [0,∞). Hence the
probability of the stochastic process taking a particular path in some set A
can be computed by computing the probability P(X−1(A)). When there
is a single stochastic process, it is more convenient to just consider Ω as
the space of all possible paths. Then P directly describes the probability
distribution of the stochastic process. The more abstract view of taking an
underlying abstract universe Ω is useful when there are several stochastic
processes under consideration (for example, when changing measure). We
use the letter ω to denote an element of Ω, or one possible path of the process
(in most cases, the two describe the same object).
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2 Standard Brownian motion

We first introduce a continuous-time analogue of the simple random walk,
known as the standard Brownian motion. It is also refered to as the Wiener
process, named after Norbert Wiener, who was a professor at MIT. The first
person who actually considered this process is Bachelier, who used Brownian
motion to evaluate stocks and options in his Ph.D thesis written in 1900 (see
[3]).

Theorem 2.1. There exists a probability distribution over the set of con-
tinuous functions B : R→ R satisfying the following conditions:

(i) B(0) = 0.
(ii) (stationary) for all 0 ≤ s < t, the distribution of B(t) − B(s) is

the normal distribution with mean 0 and variance t− s, and
(iii) (independent increment) the random variables B(ti)−B(si) are

mutually independent if the intervals [si, ti] are nonoverlapping.

We refer to a particular instance of a path chosen according to the Brow-
nian motion as a sample Brownian path.

One way to think of standard Brownian motion is as a limit of simple
random walks. To make this more precise, consider a simple random walk
{Y0, Y1, · · · , } whose increments are of mean 0 and variance 1. Let Z be a
piecewise linear function from [0, 1] to R defined as

Z

(
t
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= Yt,
n

)
for t = 0, · · · , n, and is linear at other points. As we take larger values of n,
the distribution of the path Z will get closer to that of the standard Brownian
motion. Indeed, we can check that the distribution of Z(1) converges to
the distribution of N(0, 1), by central limit theorem. More generally, the
distribution of Z(t) converges to N(0, t).

Example 2.2. (i) [From wikipedia] In 1827, the botanist Robert Brown,
looking through a microscope at particles found in pollen grains in water,
noted that the particles moved through the water but was not able to de-
termine the mechanisms that caused this motion. Atoms and molecules had
long been theorized as the constituents of matter, and many decades later,
Albert Einstein published a paper in 1905 that explained in precise detail
how the motion that Brown had observed was a result of the pollen being
moved by individual water molecules.

(ii) Stock prices can also be modelled using standard Brownian motions.
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Here are some facts about the Brownian motion:

1. Crosses the x-axis infinitely often.

2. Has a very close relation with the curve x = y2 (it does not deviate
from this curve too much).

3. Is nowhere differentiable.

Note that in real-life we can only observe the value of a stochastic process
up to some time resolution (in other words, we can only take finitely many
sample points). The fact above implies that standard Brownian motion is
a reasonable model, at least in this sense, since the real-life observation will
converge to the underlying theoretical stochastic process as we take smaller
time intervals, as long as the discrete-time observations behave like a simple
random walk.

Suppose we use the Brownian motion as a model for daily price of a
stock. What is the distribution of the days range? (the max value and min
value over a day)

Define M(t) = max0≤s B(s), and note that M(t) is well-defined since≤t
B is continuous and [0, t] is compact. (Φ(t) is the cumulative distribution
function of the normal random variable)

Proposition 2.3. The following holds:

a
P(M(t) ≥ a) = 2P(B(t) > a) = 2− 2Φ(√
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).
t

Proof. Let τa = mins{s : B(s) = a} and note that τa is a stopping time.
Note that for all 0 ≤ s < t, we have

P(B(t)−B(s) > 0) = P(B(t)−B(s) < 0).

Hence we see that

P(B(t)−B(τa) > 0 | τa < t) = P(B(t)−B(τa) < 0 | τa < t).

Here we assumed that the distribution of B(t) − B(τa) is not affected by
the fact that we conditioned on τa < t. This is called the Strong Markov
Property of the Brownian motion.

This can be rewritten as

P(B(t) > a | τa < t) = P(B(t) < a | τa < t),
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and is also known as the ‘reflection principle’.
Now observe that

P(Mt ≥ a) = P(τa < t)

= P(B(t) > a | τa < t) + P(B(t) < a | τa < t).

= 2P(B(t) > a | τa < t).

Since
P(B(t) > a | τa < t) = P(B(t) > a),

our claim follows.

The proposition above also has very interesting theoretical implication.
Using the proposition above, we can prove the following result.

Proposition 2.4. For each t ≥ 0, the Brownian motion is almost surely
not differentiable at t.

Proof. Fix a real t0 and suppose that the Brownian motionB is differentiable
at t0. Then there exist constants A and ε0 such that for all 0 < ε < ε0,
B(t)− B(t⋂0) ≤ Aε holds for all 0 < t− t0 ≤ ε. Let Eε,A denote this event,
and EA = εEε,A. Note that

P(Eε,A) = P(E(t)− E(t0) ≤ Aε for all 0 < t− t0 ≤ ε)
= P(M(ε) ≤ Aε) = 2(1− Φ(A

√
ε)),

where the right hand side tends to zero as ε goes to zero. Therefore, P(EA) =
0. By countable additivity, we see that there can be no constant A satisfying
above (it suffices to consider integer values of A).
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Dvoretsky, Erdős, and Kakutani in fact proved a stronger statment as-
serting that the Brownian motion B is nowhere differentiable with proba-
bility 1. Hence a sample Brownian path is continuous but nowhere differ-
entiable! The proof is slightly more involved and requires a lemma from
probability theory (Borel-Cantelli lemma).

Theorem 2.5. (Quadratic variation) For a partition Π = {t0, t1, · · · , tj} of
an interval [0, T ], let |Π| = maxi(ti+1− ti). A Brownian motion Bt satisfies
the following equation with probability 1:

lim (Bt −Bt )2 = T.
|Π|→

∑
i+1 i

0
i
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Proof. For simplicity, here we only consider partitions where the gaps ti+1−
ti are uniform. In this case, the sum∑

(Bti+1

i

−Bti)2

is a sum of i.i.d. random variables with mean ti+1 − ti, and finite second
moment. Therefore, by the law of large numbers, as max{ti+1 − ti} → 0 ,
we have ∑

(Bti+1

i

−Bti)2 = T

with probability 1.
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Why is this theorem interesting? Suppose that instead of a Brownian
motion, we took a function f that is continuously differentiable. Then∑(

f(ti+1) f(ti)
)2

− ≤
∑

(ti+1 − t 2
i) f

′(si)
2 max f ′(s)2

s [0,T ]
i i

≤ ·
∈

max f ′(s)2 max t t T.

∑
(ti+1 − ti)2.

i

≤ · { i+1 i
s

−
∈[0,T ] i

} ·

As max{ti+1−ti} → 0, we see that the above tends to zero. Hence this shows
that Brownian motion fluctuates a lot. The above can be summarized by
the differential equation (dB)2 = dt. As we will see in the next lecture, this
fact will have very interesting implications.

Example 2.6. (Brownian motion with drift) Let B(t) be a Brownian mo-
tion, and let µ be a fixed real. The process X(t) = B(t) + µt is called a
Brownian motion with drift µ. By definition, it follows that E[X(t)] = µt.
Question : as time passes, which term will dominate? B(t) or µt? It can be
shown that µt dominates the behavior of X(t). For example, for all fixed
ε > 0, after long enough time, the Brownian motion will always be between
the lines y = (µ− ε)t and y = (µ+ ε)t.

What is the main advantage of the continuous-world against the discrete
world? The beauty, of course, is one advantage. A more practical advan-
tage is the powerful toolbox of calculus. Unfortunately, we saw that it is
impossible to differentiate Brownian motion. Surprisingly, there exists a
theory of generalized calculus that can handle Brownian motions, and other
continuous-time stochastic processes. This will be the topic of the remaining
lectures.
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Suppose we want to go further. As discussed in previous lecture, when
modelling the price of a stock, it is more reasonable to assume that the
percentile change follows a normal distribution. This can be written in the
following differential equation:

dSt = σStdBt.

Can we write the distribution of St in terms of the distribution of Bt? Is it
S = eσBt
t ? Surprisingly, the answer is no.
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