## 18.S66 PROBLEMS \#5

Spring 2003

Let us define the $n$th Catalan number $C_{n}$ by

$$
\begin{equation*}
C_{n}=\frac{1}{n+1}\binom{2 n}{n}, \quad n \geq 0 \tag{5}
\end{equation*}
$$

Thus $\left(C_{0}, C_{1}, \ldots\right)=(1,1,2,5,14,42,132,429, \ldots)$. There are a huge number of combinatorial interpretations of these numbers; 66 appear in Exercise 6.19 of R. Stanley, Enumerative Combinatorics, vol. 2. This exercise (as well as some related ones) is available at www-math.mit.edu/~rstan/ec, and an addendum with many more interpretations may be found at the same website. We give here a subset of these interpretations that are the most fundamental or most interesting. Problem 143 is perhaps the easiest one to show bijectively is counted by (5). All your other proofs should be bijections with previously shown "Catalan sets." Each interpretation is illustrated by the case $n=3$, which hopefully will make any undefined terms clear. Needless to say, you should not hand in a problem whose solution you have obtained from an outside source (except reasonable collaboration with other students in the course).
132. [1.5] triangulations of a convex $(n+2)$-gon into $n$ triangles by $n-1$ diagonals that do not intersect in their interiors

133. [1.5] binary parenthesizations of a string of $n+1$ letters

$$
(x x \cdot x) x \quad x(x x \cdot x) \quad(x \cdot x x) x \quad x(x \cdot x x) \quad x x \cdot x x
$$

134. binary trees with $n$ vertices

135. [1.5] plane binary trees with $2 n+1$ vertices (or $n+1$ endpoints) (A plane binary tree is a binary tree for which every vertex is either an endpoint or has two children.)

136. [2] plane trees with $n+1$ vertices (A plane tree is a rooted tree for which the subtrees of every vertex are linearly ordered from left to right.)

137. [1.5] lattice paths from $(0,0)$ to $(n, n)$ with steps $(0,1)$ or $(1,0)$, never rising above the line $y=x$

138. [1] Dyck paths from $(0,0)$ to $(2 n, 0)$, i.e., lattice paths with steps $(1,1)$ and $(1,-1)$, never falling below the $x$-axis

139. [2.5] (unordered) pairs of lattice paths with $n+1$ steps each, starting at $(0,0)$, using steps $(1,0)$ or $(0,1)$, ending at the same point, and only intersecting at the beginning and end

140. [1.5] $n$ nonintersecting chords joining $2 n$ points on the circumference of a circle

141. [2] ways of drawing in the plane $n+1$ points lying on a horizontal line $L$ and $n$ arcs connecting them such that $(\alpha)$ the arcs do not pass below $L,(\beta)$ the graph thus formed is a tree, $(\gamma)$ no two arcs intersect in their interiors (i.e., the arcs are noncrossing), and ( $\delta$ ) at every vertex, all the arcs exit in the same direction (left or right)

142. [2.5] ways of drawing in the plane $n+1$ points lying on a horizontal line $L$ and $n$ arcs connecting them such that $(\alpha)$ the arcs do not pass below $L,(\beta)$ the graph thus formed is a tree, $(\gamma)$ no arc (including its endpoints) lies strictly below another arc, and ( $\delta$ ) at every vertex, all the arcs exit in the same direction (left or right)

143. [1] sequences of $n 1$ 's and $n-1$ 's such that every partial sum is nonnegative (with -1 denoted simply as - below)

$$
111---\quad 11-1--\quad 11--1-\quad 1-11--\quad 1-1-1-
$$

144. [1] sequences $1 \leq a_{1} \leq \cdots \leq a_{n}$ of integers with $a_{i} \leq i$

$$
\begin{array}{lllll}
111 & 112 & 113 & 122 & 123
\end{array}
$$

145. [2] sequences $a_{1}, a_{2}, \ldots, a_{n}$ of integers such that $a_{1}=0$ and $0 \leq a_{i+1} \leq$ $a_{i}+1$

$$
\begin{array}{lllll}
000 & 001 & 010 & 011 & 012
\end{array}
$$

146. [1.5] sequences $a_{1}, a_{2}, \ldots, a_{n-1}$ of integers such that $a_{i} \leq 1$ and all partial sums are nonnegative

$$
0,0 \quad 0,1 \quad 1,-1 \quad 1,0 \quad 1,1
$$

147. [1.5] sequences $a_{1}, a_{2}, \ldots, a_{n}$ of integers such that $a_{i} \geq-1$, all partial sums are nonnegative, and $a_{1}+a_{2}+\cdots+a_{n}=0$

$$
0,0,0 \quad 0,1,-1 \quad 1,0,-1 \quad 1,-1,0 \quad 2,-1,-1
$$

148. [1.5] Sequences of $n-1$ 1's and any number of -1 's such that every partial sum is nonnegative

$$
1,1 \quad 1,1,-1 \quad 1,-1,1 \quad 1,1,-1,-1 \quad 1,-1,1,-1
$$

149. [2.5] Sequences $a_{1} a_{2} \cdots a_{n}$ of nonnegative integers such that $a_{j}=\#\{i$ : $\left.i<j, a_{i}<a_{j}\right\}$ for $1 \leq j \leq n$

$$
\begin{array}{lllll}
000 & 002 & 010 & 011 & 012
\end{array}
$$

150. [2.5] Pairs $(\alpha, \beta)$ of compositions of $n$ with the same number of parts, such that $\alpha \geq \beta$ (dominance order, i.e., $\alpha_{1}+\cdots+\alpha_{i} \geq \beta_{1}+\cdots+\beta_{i}$ for all $i$ )
151. [2] permutations $a_{1} a_{2} \cdots a_{2 n}$ of the multiset $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$ such that: (i) the first occurrences of $1,2, \ldots, n$ appear in increasing order, and (ii) there is no subsequence of the form $\alpha \beta \alpha \beta$

$$
\begin{array}{lllll}
112233 & 112332 & 122331 & 123321 & 122133
\end{array}
$$

152. [2.5] permutations $a_{1} a_{2} \cdots a_{n}$ of [ $n$ ] with longest decreasing subsequence of length at most two (i.e., there does not exist $i<j<k, a_{i}>a_{j}>a_{k}$ ), called 321-avoiding permutations

$$
\begin{array}{lllll}
123 & 213 & 132 & 312 & 231
\end{array}
$$

153. [2] permutations $a_{1} a_{2} \cdots a_{n}$ of [ $n$ ] for which there does not exist $i<$ $j<k$ and $a_{j}<a_{k}<a_{i}$ (called 312-avoiding permutations)

$$
\begin{array}{lllll}
123 & 132 & 213 & 231 & 321
\end{array}
$$

154. [2] permutations $w$ of [2n] with $n$ cycles of length two, such that the product $(1,2, \ldots, 2 n) \cdot w$ has $n+1$ cycles

$$
\begin{aligned}
(1,2,3,4,5,6)(1,2)(3,4)(5,6) & =(1)(2,4,6)(3)(5) \\
(1,2,3,4,5,6)(1,2)(3,6)(4,5) & =(1)(2,6)(3,5)(4) \\
(1,2,3,4,5,6)(1,4)(2,3)(5,6) & =(1,3)(2)(4,6)(5) \\
(1,2,3,4,5,6)(1,6)(2,3)(4,5) & =(1,3,5)(2)(4)(6) \\
(1,2,3,4,5,6)(1,6)(2,5)(3,4) & =(1,5)(2,4)(3)(6)
\end{aligned}
$$

155. [2.5] pairs $(u, v)$ of permutations of $[n]$ such that $u$ and $v$ have a total of $n+1$ cycles, and $u v=(1,2, \ldots, n)$

$$
\begin{gathered}
(1)(2)(3) \cdot(1,2,3) \quad(1,2,3) \cdot(1)(2)(3) \quad(1,2)(3) \cdot(1,3)(2) \\
(1,3)(2) \cdot(1)(2,3) \quad(1)(2,3) \cdot(1,2)(3)
\end{gathered}
$$

156. [2] noncrossing partitions of [ $n$ ], i.e., partitions of [ $n$ ] such that if $a, c$ appear in a block $B$ and $b, d$ appear in a block $B^{\prime}$, where $a<b<c<d$, then $B=B^{\prime}$

$$
123 \quad 12-3 \quad 13-2 \quad 23-1 \quad 1-2-3
$$

(The unique partition of [4] that isn't noncrossing is 13-24.)
157. [2.5] noncrossing partitions of [ $2 n+1]$ into $n+1$ blocks, such that no block contains two consecutive integers
$137-46-2-5 \quad 1357-2-4-6 \quad 157-24-3-6 \quad 17-246-3-5 \quad 17-26-35-4$
158. [2.5] nonnesting partitions of [ $n$ ], i.e., partitions of $[n]$ such that if $a, e$ appear in a block $B$ and $b, d$ appear in a different block $B^{\prime}$ where $a<b<d<e$, then there is a $c \in B$ satisfying $b<c<d$

$$
123 \quad 12-3 \quad 13-2 \quad 23-1 \quad 1-2-3
$$

(The unique partition of [4] that isn't nonnesting is 14-23.)
159. [2.5] nonisomorphic $n$-element posets (i.e., partially ordered sets) with no induced subposet isomorphic to $\mathbf{2}+\mathbf{2}$ or $\mathbf{3}+\mathbf{1}$, where $\mathbf{a}+\mathbf{b}$ denotes the disjoint union of an $a$-element chain and a $b$-element chain

160. [2] relations $R$ on [ $n$ ] that are reflexive ( $i R i$ ), symmetric ( $i R j \Rightarrow j R i$ ), and such that if $1 \leq i<j<k \leq n$ and $i R k$, then $i R j$ and $j R k$ (in the example below we write $i j$ for the pair $(i, j)$, and we omit the pairs $i i)$

$$
\emptyset\{12,21\} \quad\{23,32\} \quad\{12,21,23,32\} \quad\{12,21,13,31,23,32\}
$$

161. [1.5] ways to stack coins in the plane, the bottom row consisting of $n$ consecutive coins

162. [2.5] $n$-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of integers $a_{i} \geq 2$ such that in the sequence $1 a_{1} a_{2} \cdots a_{n} 1$, each $a_{i}$ divides the sum of its two neighbors

$$
\begin{array}{lllll}
14321 & 13521 & 13231 & 12531 & 12341
\end{array}
$$

163. [3] $n$-element subsets $S$ of $\mathbb{N} \times \mathbb{N}$ such that if $(i, j) \in S$ then $i \geq j$ and there is a lattice path from $(0,0)$ to $(i, j)$ with steps $(0,1),(1,0)$, and $(1,1)$ that lies entirely inside $S$

$$
\begin{gathered}
\{(0,0),(1,0),(2,0)\} \quad\{(0,0),(1,0),(1,1)\} \quad\{(0,0),(1,0),(2,1)\} \\
\{(0,0),(1,1),(2,1)\} \quad\{(0,0),(1,1),(2,2)\}
\end{gathered}
$$

164. [3] positive integer sequences $a_{1}, a_{2}, \ldots, a_{n+2}$ for which there exists an


Figure 1: The frieze pattern corresponding to the sequence $(1,3,2,1,5,1,2,3)$

$$
\begin{array}{ccccccccccccccccc}
\text { integer array (necessarily with } n+1 \text { rows) } \\
1 & 1 & 1 & & \ldots & & 1 & & 1 & & 1 & & \ldots & & 1 & \\
& a_{1} & & a_{2} & & a_{3} & & \ldots & & a_{n+2} & & a_{1} & & a_{2} & & \ldots &  \tag{6}\\
& b_{1} & & b_{2} & & b_{3} & & \ldots & & b_{n+2} & & b_{1} & & \ldots & & a_{n-1} & \\
& & & & & & \vdots & & & & & & & & \\
& & & r_{1} & & r_{2} & & r_{3} & & \ldots & & r_{n+2} & & r_{1} & & & \\
& & & & 1 & & 1 & & 1 & & \ldots & & 1 & & &
\end{array}
$$

such that any four neighboring entries in the configuration ${ }_{s}^{r} t$ satisfy $s t=r u+1$ (an example of such an array for $\left(a_{1}, \ldots, a_{8}\right)=$ $(1,3,2,1,5,1,2,3)$ (necessarily unique) is given by Figure 1 ):

$$
\begin{array}{lllll}
12213 & 22131 & 21312 & 13122 & 31221
\end{array}
$$

165. [3] $n$-tuples $\left(a_{1}, \ldots a_{n}\right)$ of positive integers such that the tridiagonal matrix

$$
\left[\begin{array}{ccccccccc}
a_{1} & 1 & 0 & 0 & \cdot & \cdot & \cdot & 0 & 0 \\
1 & a_{2} & 1 & 0 & \cdot & \cdot & \cdot & 0 & 0 \\
0 & 1 & a_{3} & 1 & \cdot & \cdot & \cdot & 0 & 0 \\
& & & & & \cdot & & & \\
& & & & & \cdot & & & \\
0 & 0 & 0 & 0 & \cdot & \cdot & \cdot & a_{n-1} & 1 \\
0 & 0 & 0 & 0 & \cdot & \cdot & \cdot & 1 & a_{n}
\end{array}\right]
$$

is positive definite with determinant one
Note. A real matrix $A$ is positive definite if it is symmetric and every eigenvalue is positive; equivalently, $A$ is symmetric and every leading principal minor is positive. A leading principal minor is the determinant of a square submatrix that fits into the upper left-hand corner of $A$.

$$
\begin{array}{lllll}
131 & 122 & 221 & 213 & 312
\end{array}
$$

166. [2] Vertices of height $n-1$ of the tree $T$ defined by the property that the root has degree 2, and if the vertex $x$ has degree $k$, then the children of $x$ have degrees $2,3, \ldots, k+1$

167. [2.5] Subsets $S$ of $\mathbb{N}$ such that $0 \in S$ and such that if $i \in S$ then $i+n, i+n+1 \in S$

$$
\mathbb{N}, \quad \mathbb{N}-\{1\}, \quad \mathbb{N}-\{2\}, \quad \mathbb{N}-\{1,2\}, \quad \mathbb{N}-\{1,2,5\}
$$

168. [2] Ways to write $(1,1, \ldots, 1,-n) \in \mathbb{Z}^{n+1}$ as a sum of vectors $e_{i}-$ $e_{i+1}$ and $e_{j}-e_{n+1}$, without regard to order, where $e_{k}$ is the $k$ th unit coordinate vector in $\mathbb{Z}^{n+1}$ :

$$
\begin{gathered}
(1,-1,0,0)+2(0,1,-1,0)+3(0,0,1,-1) \\
(1,0,0,-1)+(0,1,-1,0)+2(0,0,1,-1) \\
(1,-1,0,0)+(0,1,-1,0)+(0,1,0,-1)+2(0,0,1,-1) \\
(1,-1,0,0)+2(0,1,0,-1)+(0,0,1,-1) \\
(1,0,0,-1)+(0,1,0,-1)+(0,0,1,-1)
\end{gathered}
$$

169. [1.5] tilings of the staircase shape $(n, n-1, \ldots, 1)$ with $n$ rectangles such that each rectangle contains a square at the end of some row

170. [2] $n \times n \mathbb{N}$-matrices $M=\left(m_{i j}\right)$ where $m_{i j}=0$ unless $i=n$ or $i=j$ or $i=j-1$, with row and column sum vector $(1,2, \ldots, n)$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 2
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 2 \\
0 & 2 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
1 & 1 & 1
\end{array}\right]
$$

This concludes the list of objects counted by Catalan numbers. A few more problems related to Catalan numbers are the following.
171. (*) We have

$$
\sum_{k=0}^{n} C_{2 k} C_{2(n-k)}=4^{n} C_{n}
$$

172. $\left(^{*}\right)$ An intriguing variation of Problem 170 above is the following. A bijective proof would be of great interest. Let $g(n)$ denote the number of $n \times n \mathbb{N}$-matrices $M=\left(m_{i j}\right)$ where $m_{i j}=0$ if $i>j+1$, with row and column sum vector $\left(1,3,6, \ldots,\binom{n+1}{2}\right)$. For instance, when $n=2$ there are the two matrices

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right] .
$$

Then $g(n)=C_{1} C_{2} \cdots C_{n}$.
173. [2] (compare with Problem 168) Let $f(n)$ be the number of ways to write the vector

$$
\left(1,2,3, \ldots, n,-\binom{n+1}{2}\right) \in \mathbb{Z}^{n+1}
$$

as a sum of vectors $e_{i}-e_{j}, 1 \leq i<j \leq n+1$, without regard to order, where $e_{k}$ is the $k$ th unit coordinate vector in $\mathbb{Z}^{n+1}$. For instance, when $n=2$ there are the two ways $(1,2,-3)=(1,0,-1)+$ $2(0,1,-1)=(1,-1,0)+3(0,1,-1)$. Assuming Problem 172, show that $f(n)=C_{1} C_{2} \cdots C_{n}$.
174. [2.5] The Narayana numbers $N(n, k)$ are defined by

$$
N(n, k)=\frac{1}{n}\binom{n}{k}\binom{n}{k-1} .
$$

Let $X_{n k}$ be the set of all sequences $w=w_{1} w_{2} \cdots w_{2 n}$ of $n$ 1's and $n$ -1 's with all partial sums nonnegative, such that

$$
k=\#\left\{j: w_{j}=1, w_{j+1}=-1\right\} .
$$

Show that $N(n, k)=\# X_{n k}$. Hence by Problem 143, there follows

$$
\sum_{k=1}^{n} N(n, k)=C_{n}
$$

One therefore says that the Narayana numbers are a refinement of the Catalan numbers. There are many other interesting refinements of Catalan numbers, but we won't consider them here.

