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Abstract 
For programmers, Monads are a well-known way to represent an abstract data 

structure, but without knowing its true nature. Admittedly, the definition of Monads 
in Category Theory is too subtle and obscure so makes people to avoid from trying 
to understand them. In this paper, we attempt to explore popular Monads in a purely 
functional programming language, Haskell, with a Category-theoretic mindset. 
Starting from the definition of Monads, we describe how they are defined and 
implemented in Haskell. In particular, we classify Monads by their implementation 
style, and it turns out that a common fallacy of using Monad metaphors can be 
understood in this vein. Also, we explain why IO Monad is particularly important in 
Haskell and what its role is, in a programmer’s perspective. Furthermore, we design 
a new Monad, called S Monad, in order to represent the system call abstractions, 
and shed light on a future Haskell OS using S Monad to represent the system call 
abstractions. 

1 Introduction 
Monads are too subtle to grasp their true meaning. To explain Monads, people proposed 
various metaphors like composable computations [3, 6], boxes [2], convey belts [11], or 
even burrito [19] and lemonade [14]. Those metaphors seem to help in understanding 
one aspect of Monads, especially for beginners. Alas, when they start using Monads in 
depth, what they understood via metaphors contradicts to each other, and even doesn’t 
make sense anymore. In this perspective, some people consider using metaphors in 
teaching Monads as a bad practice [17], or even as a common fallacy [19]. 

After learning the basics of Category Theory, I want to write down own interpretation 
of Monads for working programmers, so they can understand the heart of Monads. In 
this paper, we won’t use metaphors to explain Monads; that makes people construct an 
abstract concept from example metaphors. Instead, this paper starts from an abstract 
knowledge and applies it to the concrete use cases. The main reason is as follows. 
Suppose you are learning about ducks. You might first want to find some species of 
ducks 1. After researching what they eat, where they live, and how they look like, you 
might have an idea of how they differ from each other and be able to explain what duck 
is. Suddenly, you might wonder about swans and geese, whether they are duck or not? 
or what are the differences from birds? In fact, duck is nothing but a name of animals 
who walk and quark like a duck! 
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(a) Wild Duck (b) Mandarin Duck (c) Pacific Black Duck 

Figure 1: If an object walks like a duck and quacks like a duck, we say it is a duck. 
Likewise, if a data type follows Monad rules, the data type is an instance of the Monad 
type class. 

The Monad is a term of abstractions that satisfy certain, but general, rules. Since 
rules are so general, Monads in fact are not very interesting until you describe a specific 
instance of Monads, say Maybe or State Monad for example. As you can distinguish 
ducks from tigers (tigers do not walk like a duck nor quack like a duck, for sure), you 
can differentiate Monads from Set (yes, apples and oranges!). Also, it doesn’t help in 
understanding Monads in details. In this paper, we rather admit the Monad as an abstract 
structure first and then dive into the specific instances of them. Then, what are the rules 
and constituents for Monads? They at least give you a sense of “not weird”, “non-sense” 
and so “natural”, as a user. However, it is always fun to see how each Monad satisfies 
those rules and what are the constituents, as we will discuss in §2. 

Outlilne This paper consists of three parts. First, we provide a way of understanding 
Monads, especially for system programmers, so hope to bridge some gaps between 
Category Theory and a practice in Haskell (§2). Second, we articulate the necessity of 
IO Monad in Haskell (§3). Last, but most importantly, we propose a new Monad, called 
S Monad, to solve specific (yet practical) problems in the operating system, representing 
the system call abstractions (§4). 

2 Monads 
For programmers, a Monad is a consistent way of giving a semantic representation to 
an abstraction. We say “consistent” because a Monad consists of certain constituents 
and follow specific rules, “semantic” because each Monad has own goal in handing 
situations such as uncertainty and side-effects, and “abstraction” because Monads (more 
precisely, the Kleisli category of a Monad) abstract the idea of composition from users. 
In other words, Monads generalize the idea by encapsulating the internal detail; an 
interface as a simple term. Let’s first see its definition in Category Theory [18] and 
compare it with the realized code in Haskell. 

Image (a) Wild Duck appears courtesy of Kitkatcrazy. Source: Wikimedia Commons.
Image (b) Mandarin Duck appears courtesy of Arpingstone. Source: Wikimedia Commons.
Image (c) Pacific Black Duck appears courtesy of Fir0002/Flagstaffotos. Source: Wikimedia Commons.
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1 -- Monad type class: ‘m’ is a specific instance of Monads, like Maybe and State 
2 class Monad m where 
3 return :: a -> m a -- unit: construct a Monad 
4 (>>=) :: m a -> (a -> m b) -> m b -- bind: bind a Monad to a function 
5 

6 -- useful functions (not strictly follow the definition of Monads in CT) 
7 (>>) :: m a -> m b -> m b -- weaving two instances of Monads 
8 fail :: String -> m a -- plan for failures of Monads 

Figure 2: Definition of the Monad type constructor in Haskell. In addition to unit 
and bind, the Monad class provides two more functions, a fail to escape out of the 
composed computations, and » to enforce orders. In particular, » can be implemented as 
ma » mb = ma »= λ → mb in any Monad. Note that each Monad, m, should first be an 
instance of the Functor class in Haskell. 

2.1 Definition
 
Definition 1. A Monad on Set consists of three constituents (A. fuctor, B. unit map,  
C. multiplication map) conforming to two laws (1. unit laws, 2. associativity laws) as 
follows: 

A. a functor T : Set → Set 
B. a natural transformation η : idSet → T 
C. a natural transformation µ : T ◦ T → T  

(See. two commutative diagrams for unit laws and associativity laws in the book [18])  

A functor First of all, Haskell is a category, called Hask in the literature [5]: objects 
are types (small sets per se) and homomorphisms are functions in Haskell. Interestingly 
enough, a polymorphic data type (kinds of ∗ → ∗ in Haskell) can be considered as a 
functor 1 For example, the Maybe and State are functors (in fact, they are instances of 
the Functor class in Haskell), so we can use both for the first constituent of a Monad, 
trivially. 

Two natural transformations Second, given a functor, we still need to provide two 
more constituents to make it as a Monad. Here is the place where two functions, return 
(unit) and »= (bind) in the Figure 2 play a role. In the Category-theoretic definition, 
there is no bind function, rather it has a multiplication map, called join in Haskell. 
Although they are equivalent [13], we found a few reasons why Haskell prefers to use 
bind instead; free variables in Haskell’s do-notation can be constructed by passing 
them as arguments for subsequently composed functions; the implementation of bind 
is shorter than the one of join (we don’t have to unwrap Monads for join); and some 
Monads such as the State Monad and the Cont Monad do not fit into the definitions 
of join very well. Note that Maybe and Exception Monads align to the definition of 
join because threading two Monads is a good analogy in understanding Maybe and 
Exception. However, the State and Cont Monads are, in fact, a function so threading 
two functions is possible, but it is hard to get it intuitively. 

1Disclaimer. This is my personal opinion so it might be controversial or even incorrect. 
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Monad Semantics T A Describtion 

Identity Identity A Return as it is, useful in Monad Transformers. 
Maybe 
Error 

Partiality 
Exception 

A + {⊥}
A + E 

Return may not contain a value. 
Return may contain some errors. 

List Non-determinism P (A) Return can be one of multiple values. 

Reader Input C ∗ + A Computations can read shared input. 
Writer Output C ∗ × A Computations can write some output. 
Cont Continuation R(RA) Computations can be interrupted. 
State Side-effects (A × S)S Computations maintain state. 

IO Realworld State (A × S)S Computations maintain IO state. 

A = Object P = Power-set E = Exceptions C = Set of characters S = Set of states 

Table 1: Short summary of example Monads available in the mtl Haskell library [1] 
with their Category Theoretic semantics [15]. Monads are ordered based on their 
implementation styles of the composition code, which we described in §2.2 more 
details. 

Monad Laws Third, Haskell doesn’t have any safe mechanism (verification in compile 
time) to catch violations of Monad laws. If a Monad instance syntactically provides all 
constituents, Haskell considers it as a Monad. By convention, however, all Monads in 
the standard libraries conform to the Monad laws, and also programmers expect it from 
any custom Monad as well. 

1. Left identity law: return x »= f == f x 
2. Right identity law: c »= return == c 
3. Associativity law: c »= ( λ x → f x »= g) == (c »= f) »= g 

Left and right identity laws are basically the unit law in Category Theory. Those 
rules are trivially satisfied in most of “sane” data structures that represent an abstraction 
for actual uses. Then, what do the rules mean for programmers in Haskell? It means 
that the data type does not work weirdly when using it as a do-notation. 

2.2 Examples 
Each Monad is deserved for a few pages of an explanation, but in this paper, we will 
explore Monads in terms of their implementation structures. In particular, metaphors of 
one type of structures never fit well into the other types of structures, and importantly we 
believe this is the reason why people think using metaphors in understanding Monads is 
a common fallacy to learn Monads. 

In Table 1, we classified Monads based on their implementation styles of the bind 
function. The first type of Monads, from Identity to List, implements the composition 
as a value (kinds of ∗ → ∗ in Haskell), and the second type of Monads, from Reader 
to IO, implements them as a function (kinds of ∗ → ∗ → ∗ in Haskell). For example, 
the constructor of the Maybe Monad (Maybe a in Figure 3(a)) abstracts a type a as a 
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value, the State Monad (State s a in Figure 3(b)) embeds a type a in a function getting 
a state s as an argument, even though its type signature is just State s a 2. 

1 data Maybe a = Nothing | Just a 1 data State s a = State (s -> (a, s))  
2 2
 

3 instance Monad Maybe where 3 instance Monad (State s) where  
4 return = Just 4 return x = State $ \s -> (x, s)  
5 ... 5 ...  

(a) Maybe Monad (b) State Monad 

Figure 3: Maybe and State Monad in Haskell (simplified for clarity). 

Why do I differentiate two types of Monads? It enables somewhat subtle implemen
tation tricks. The first type of Monads uses a composition logic to combine two values, 
Monad instances, but the second type utilizes a composition logic to enforce orders. 
The latter purpose becomes particularly important in IO Monad that we will see in the 
next section, §3. 

3 IO Monad 
Among various interesting features in Haskell, one that is remarkably different from 
other program languages is IO Monad. In fact, IO Monad is exactly same as the State 
Monad that enables computations to maintain state in the Monad compositions. Then, 
why Haskell has the definition of the IO Monad separately from the State Monad? 
Answering this question is one of our goals in this section, and we will conclude it at 
the end. Before going further, let’s understand the role of the IO Monad in Haskell. 

Haskell is a purely functional programming language, in which there are no side-
effects allowed. However, purely functional programs are useless in the real world; they 
can not print out the computed results at all. For this reason, Haskell uses the IO Monad 
to interact with the real world, where there are full of dirty side-effects. A common 
way to understand benefits of using the IO Monad is with a tagging metaphor, thereby 
enforcing the clear separation of pure functions from the real world. With the IO Monad, 
all inputs and outputs from the real world are tagged with the IO type constructor. For 
example, 

1 getLine :: IO String 

getLine() inputs a line from a user and returns the line with the IO tag attached, 
IO String instead of String along. Since there is no way to drop the IO tag and extract 
the actual String value, Haskell programs that want to access the String inside the 
IO String should use the standard Monad interfaces, »= (bind) and return (unit). In 
other words, without using the Monad interfaces, functions can not interact with the 
external worlds, and thus can maintain their pure functions that are separated from the 
real world. 

IO Monad as tagging is not an incorrect way of describing its useful properties in 
general, but it does not answer an important question, why IO Monad is particularly 

2For the purpose of juxtaposing two Monads, I simplified the code a lot because Haskell libraries implement 
each Monad by using a corresponding Monad Transformer with the Identity Monad. 
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1 -- IO data constructor  
2 data IO a = IO (RealWorld -> (RealWorld, a))  
3
 

4 -- IO Monad instance  
5 instance Monad IO where  
6 -- unit: return the state with the input  
7 return x = IO $ \s -> (s, x)  
8
 

9 -- bind: run the first computation and return the next one  
10 (>>=) (IO m) f = IO $ \s -> 
11 case m s of (s’, a) -> 
12 unIO (f a) s’ 

Figure 4: The implementation of IO Monad in Haskell (simplified for clarity). 

useful, or even required, in Haskell. As we stated before, Haskell is purely functional 
so there are no side-effects allowed. Since every function does not have side-effects, it 
should have the same return value whenever we call it with the same input arguments. 
Then, how can we implement the getLine() function in Haskell? getLine() might 
return different values whenever we call, depending on what users typed. The magic 
behind the getLine() function is its type signature, IO String. 

As we discussed in §2, the IO Monad is the second type as we classified, returning a 
function in its composition, so the return type, IO String, of getLine(), is a function. 
In fact, given an argument (none!), getLine() consistently returns the same output 
value, the function, IO String. In other words, if we run getLine() with a state of the 
real world, it will return one line that the user typed, along with the state of another 
world. Let’s see the actual implementation of the IO Monad in §3. In fact, the definition 
is exactly same as the one of the State Monad in Figure 3(b), except the IO Monad gets 
RealWorld instead of State as a state argument. 

What is RealWorld and how it differs from State? Surprisingly, unlike the State 
type contains an arbitrary type s, the RealWorld type is nothing but its name, imple
mented as below: 

1 data RealWorld 

This kind of types is called a phantom type because it contains nothing, and used 
to enforce evaluation orders in the IO Monad. Since Haskell is a lazy (non-strict) 
language, it never evaluates expressions until they are actually used. The laziness 
enables Haskell programs to skip unused expressions and thus gives some performance 
benefits. However, it makes a programmer embarrassingly hard to write an imperative 
code, which is, sadly, often required in system software programs. 

How does Haskell enforce orders with the execution of Monads? Suppose we 
are implementing a function, three(), adding two return values of one() and two() 
functions, as in Figure 5(a) and Figure 5(d). Both implementations are clean and pure, 
but for some reasons, we want to switch the evaluation orders of one() and two(). In C, 
the program runs as written down in code (imperative), so swapping both statements 
directly changes the invocation orders, as in Figure 5(b). In Haskell, however, we need 
to use a Monad to thread the sequence of two computations (declarative and functional). 
In Figure 5(e), the IO Monad of two() depends on the RealWorld state returned by the 
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1 int one(void) { 1 int one(void) { 1 int one(void) { 
2 return 1; 2 return 1; 2 printf("1"); return 1; 
3 } 3 } 3 } 
4 int two(void) { 4 int two(void) { 4 int two(void) { 
5 return 2; 5 return 2; 5 printf("2"); return 2; 
6 } 6 } 6 } 
7 int three(void) { 7 int three(void) { 7 int three(void) { 
8 int a = one(); 8 int b = two(); 8 int a = one(); 
9 int b = two(); 9 int a = one(); 9 int b = two(); 

10 return a + b; 10 return a + b; 10 return a + b; 
11 } 11 } 11 } 

(a) Pure functions (b) Enforced orders (c) Side-effects (IO) 

1 one = 1 1 one = return 1 1 one = print 1 >> return 1 
2 two = 2 2 two = return 2 2 two = print 2 >> return 2 
3 three = a + b 3 three = do 3 three = do 
4 where a = one 4 b <- two 4 a < one 
5 b = two 5 a < one 5 b < two 

6 return (a + b) 6 return (a + b) 

(d) Pure functions (e) Enforced orders (f) Side-effects (IO) 

Figure 5: Examples of code in C and Haskell to demonstrate three constructions; 
composing pure functions in (a) and (d); enforcing orders in (b) and (e); and embedding 
side-effects in (c) and (f). In all examples, three() invoke one() and two(), and returns 
the sum of their return values. 

IO Monad of one(), and thus the sequence of invocations is enforced. In other worlds, 
all of the IO Monads are threaded via the RealWorld state that each Monad gets as an 
argument and returns as an output, thereby keeping the sequence of side-effects in the 
Haskell program, Figure 5(f). 

In summary, the IO Monad is nothing but the State Monad but composing with the 
shared RealWorld state. Whereas the State can change its internal state, RealWorld 
doesn’t have an interface to change its state. Therefore, IO Monad can separate the 
pure functions from the real world. In fact, RealWorld of the IO Monad is nothing (a 
phantom type) but to enforce the execution orders in a lazy language. 

4 S Monad 
Since Haskell has been defined and used for nearly 30 years now, there are a variety of 
attempts to use Haskell for writing system software programs: x86 assembler [4], web 
framework [7, 8], even OSes [9] or embedded systems [12]. All system programs use 
Monads, one way or another, to enable imperative style programmings in the purely 
functional and lazy Haskell programming language [16]. 

However, their main purpose of using Monads is to make them easy to translate a 
already-written imperative program to a working piece of Haskell code. For example, 
HouseOS [9], whose large body of the kernel logic is written in Haskell, defines H 
Monad to access hardware such as memory and registers in the x86 machine, but its 
body in fact is just the IO Monad. Although H provides a proof of the memory safety, 
ensuring that all memory operations never corrupt the Haskell heap, it was failed to 
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escape the traditional interfaces that every commodity OSes strictly follows, the system 
call abstraction. 

The main purpose of using the system call abstraction in OSes is to provide the clear 
separation of privileges between user processes (ring 3) and the kernel (ring 0), thereby 
protecting the system from the failures of the user processes. In other words, the system 
call abstraction is an interface to interact with the operating system. In the perspective 
of user programs, it is nothing but a list of available APIs that they can freely invoke. 
Here is a running example that we will explore in this section. 

4.1 Motivation 

1 // exit if file is not writable  
2 if (access("file", W_OK) != 0) {  
3 err(1, "access");  
4 }  
5
 

6 // open file and write buf to the file  
7 fd = open("file", O_WRONLY);  
8 write(fd, "hello world", 12);  
9 close(fd);  

Figure 6: A code snippet to open a file and write a string to it, if the file is writable. 

The example code invokes four system calls in order; access() to check if a file 
path is writable; open() to create a corresponding file descriptor; write() to write a 
string buffer to a filesystem; and finally close() to close the opened file descriptor. This 
is a very simple code snippet, but there are a few interesting properties to be explained 
before going further. 

First of all, any system call can fail; they are dealing with a fragile hardware for 
us. For example, access() can fail if the path is not writable, and write() can also 
fail if the disk is full. In the above code, the error condition of access() is properly 
handled, but the code is still vulnerable to the failures of open(), write() and close(). 
It is common to ignore error checking in software programs, because humans are lazy 
and importantly it rarely occurs in practice, like out-of-memory or lack of disk storage 
for example. 

Second, those system calls encode error conditions inconsistently: access() returns 
−1 on errors, and open() returns a negative integer on errors. It is hardly consistent 
in embedding a failure (called a bottom condition, ⊥) in the return type, Int, of each 
system call, so they use a special global variable errno to inform user programs. For 
example, errno of open() can contain EEXIST if a file already exists, and ENOMEM if the 
OS is out of system resources. 

Third, the system state can change during the execution of a user program, thereby 
making it vulnerable to the time-of-check-to-time-of-use (TOCTOU) attacks. The above 
code, in fact, is insecure, so should not be used in a production code. For example, if an 
attacker can interleave between access() and open() system calls, and link a private 
file to the one that this program is going to overwrite, then the attacker can successfully 
delete any user’s private file, without acquiring user’s permission. 

8 



4.2 Properties 

1 main = do 
2 err <- runS $ do 
3 access "file" W_OK 
4 fd <- open "file" O_WRONLY 
5 write fd "hello world" 

Figure 7: An ideal implementation of the running example in Haskell. 

Suppose we have an imaginary Monad to solve above problems, and call it the S 
Monad. Using the S Monad, the example code becomes simple and clean—the second 
do block runs S Monad and returns err to abstract possible errors. In the syntax wise, 
we at least need neither trivial error handling, nor manual de-allocation of the opened 
file descriptor in the S Monad. Here is a list of benefits that we expect from the S 
Monad. 

Unified error handling. The S Monad should abstract the possible failures in system 
calls, by using an Error Monad Transformer, ErrorT e m a. To handle errors uniformly, 
all system calls should return ErrorT SysErr S a, where SysErr represents an error 
type when it fails, and a represents a return type of the system call, like a file descriptor. 
Since we embed the S Monad in the context of ErrorT, all computations stop imme
diately after any failure, unless programmers explicitly check errors from the system 
calls. 

Privileged execution. When executing the S Monad with runS, it changes its privilege 
from the user mode (ring 3) to the kernel mode (ring 0), and unwraps the Monad with 
two states, OSState and UProcState. In other words, the composed S Monads executes in 
the context of the kernel mode (ring 0), and thus can avoid the cost of context switching 
between privileged code and the user space. Since the S Monad is well-managed and 
all errors immediately short-circuit to the user mode, user programs can not exploit the 
privileged execution at any moment. 

Transactional execution. The S Monad executes as a single unit, whether all succeed 
or all fail (as one transaction). By using the S Monad, we can avoid the TOCTOU 
security problem. If one of system calls failed, OSState is restored to the previous state 
in which runS initiated, like Software Transcational Memory (STM) [10]. If the whole 
S Monad succeed, OSState will be updated atomically, so other user processes will see 
OSState after that. 

Automatically de-allocating resources. Instead of de-allocating the opened file de
scriptors in C code, the S Monad should manage the life time of resources that the 
current process created. This technique has been explored in terms of region-based 
analysis, meaning that the life time of each resource is same as the life time of the 
region it allocate that resource. By keeping track of the ownership of each resource 
and corresponding regions, the S Monad can automatically de-allocate process-specific 
resources like file descriptors [12]. 
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4.3 Toward implementation 
First two properties are immediately achievable with minor modifications in the Haskell 
standard library, because ErrorT provides a standard way to lift a Monad for handling 
errors and MonadIO allows any computation to embed IO with liftIO. However, last two 
properties require to combine two discrete projects, namely Position [12] for reclaiming 
resources and STM [10] for enabling the transactional execution. In particular, Position 
encodes a number into the type as a type label (tagging), which is not known widely 
but deserved to emphasize its importance. To adopt its structure in the S Monad, 
we first need to verify what Position proposed can be applied in managing multiple 
resources simultaneously in the OS context. In addition, we need to verify that all of data 
structures that STM provides, such as TArray and TQueue, are enough for constructing 
basic primitives to represent OSState too. Here are the type signatures of the S Monad 
and related data structures that I expected from S Monad. 

1 -- types for system IO and return value  
2 data SysIO a = StateT (UProcState, OSState) IO a  
3 data SysRet a = ErrorT SysErr (SysIO a) a  
4
 

5 -- S Monad  
6 data S a = S {unS :: STM SysRet a}  
7
 

8 -- types definitions of each system call  
9 access :: Path -> IOMode -> SysRet Bool  

10 open :: Path -> IOMode -> SysRet Handle 
11 write :: Handle -> Path -> SysRet Int 
12 

13 -- run S Monad atomically 
14 runS :: S a -> SysRet a 
15 runS m = atomically $ unS m 

Figure 8: The S Monad and related data types. 

This paper never tells you about how to implement them, but realizing the idea of 
the S Monad is my next project; it probably takes longer than a half year. Over the 
course of this journey, it was a great opportunity for me to formalize the goals, benefits, 
and possibility of the S Monad. 

5 Summary 
Starting from the Category-theoretic definition of Monads, we explored how they are 
implemented in a purely functional programming language, Haskell. We also classified 
Monads by their implementation styles and it turns out that a common fallacy of using 
metaphors for teaching Monads can be understood in this vein. Furthermore, we have 
figured out why the IO Monad is particularly important in Haskell and what its roles 
are. Lastly, we proposed a new Monad, the S Monad, to represent the system call 
abstractions, and shed some light on the possibility in implementing a new Haskell OS 
in the future. 
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