
Chapter 1

Introduction

The title page of this book contains a graphic that we reproduce here.

an	  observa*on	  

a	  predic*on	  

an	  experiment	  

analyzed	  by	  a	  
person	  yields	  

analyzed	  by	  a	  
person	  produces	  

mo*vates	  the	  
specifica*on	  of	  

when	  executed	  
results	  in	  

a	  hypothesis	  

(1.1)

It is intended to evoke thoughts of the scientific method.

A hypothesis analyzed by a person produces a prediction, which motivates the
specification of an experiment, which when executed results in an observation,
which analyzed by a person yields a hypothesis.

This sounds valid, and a good graphic can be exceptionally useful for leading a reader
through the story that the author wishes to tell.

Interestingly, a graphic has the power to evoke feelings of understanding, without
really meaning much. The same is true for text: it is possible to use a language such as
English to express ideas that are never made rigorous or clear. When someone says “I
believe in free will,” what does she believe in? We may all have some concept of what
she’s saying—something we can conceptually work with and discuss or argue about. But
to what extent are we all discussing the same thing, the thing she intended to convey?

Science is about agreement. When we supply a convincing argument, the result of
this convincing is agreement. When, in an experiment, the observation matches the
hypothesis—success!—that is agreement. When my methods make sense to you, that is
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agreement. When practice does not agree with theory, that is disagreement. Agreement
is the good stuff in science; it’s the high fives.

But it is easy to think we’re in agreement, when really we’re not. Modeling our
thoughts on heuristics and pictures may be convenient for quick travel down the road,
but we’re liable to miss our turnoff at the first mile. The danger is in mistaking our
convenient conceptualizations for what’s actually there. It is imperative that we have
the ability at any time to ground out in reality. What does that mean?

Data. Hard evidence. The physical world. It is here that science touches down and
heuristics evaporate. So let’s look again at the diagram on the cover. It is intended
to evoke an idea of how science is performed. Is there hard evidence and data to back
this theory up? Can we set up an experiment to find out whether science is actually
performed according to such a protocol? To do so we have to shake off the stupor evoked
by the diagram and ask the question: “what does this diagram intend to communicate?”

In this course I will use a mathematical tool called ologs, or ontology logs, to give
some structure to the kinds of ideas that are often communicated in pictures like the
one on the cover. Each olog inherently offers a framework in which to record data about
the subject. More precisely it encompasses a database schema, which means a system of
interconnected tables that are initially empty but into which data can be entered. For
example consider the olog below

a mass
an object of mass
m held at height h
above the ground

has as massoo

when dropped has
as number of sec-
onds till hitting the
ground

&&

has as height
in meters

��

a real number h

?

?
2h˜9.8

// a real number

This olog represents a framework in which to record data about objects held above the
ground, their mass, their height, and a comparison (the ?-mark in the middle) between
the number of seconds till they hit the ground and a certain real-valued function of their
height. We will discuss ologs in detail throughout this course.

The picture in (1.1) looks like an olog, but it does not conform to the rules that
we lay out for ologs in Section 2.3. In an olog, every arrow is intended to represent a
mathematical function. It is difficult to imagine a function that takes in predictions and
outputs experiments, but such a function is necessary in order for the arrow

a prediction motivates the specification of
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ an experiment

in (1.1) to make sense. To produce an experiment design from a prediction probably
requires an expert, and even then the expert may be motivated to specify a different
experiment on Tuesday than he is on Monday. But perhaps our criticism has led to a
way forward: if we say that every arrow represents a function when in the context of
a specific expert who is actually doing the science at a specific time, then Figure (1.1)
begins to make sense. In fact, we will return to the figure in Section 5.3 (specifically
Example 5.3.3.10), where background methodological context is discussed in earnest.
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This course is an attempt to extol the virtues of a new branch of mathematics,
called category theory, which was invented for powerful communication of ideas between
different fields and subfields within mathematics. By powerful communication of ideas I
actually mean something precise. Different branches of mathematics can be formalized
into categories. These categories can then be connected together by functors. And the
sense in which these functors provide powerful communication of ideas is that facts and
theorems proven in one category can be transferred through a connecting functor to
yield proofs of analogous theorems in another category. A functor is like a conductor of
mathematical truth.

I believe that the language and toolset of category theory can be useful throughout
science. We build scientific understanding by developing models, and category theory is
the study of basic conceptual building blocks and how they cleanly fit together to make
such models. Certain structures and conceptual frameworks show up again and again in
our understanding of reality. No one would dispute that vector spaces are ubiquitous.
But so are hierarchies, symmetries, actions of agents on objects, data models, global
behavior emerging as the aggregate of local behavior, self-similarity, and the effect of
methodological context.

Some ideas are so common that our use of them goes virtually undetected, such as set-
theoretic intersections. For example, when we speak of a material that is both lightweight
and ductile, we are intersecting two sets. But what is the use of even mentioning this
set-theoretic fact? The answer is that when we formalize our ideas, our understanding
is almost always clarified. Our ability to communicate with others is enhanced, and the
possibility for developing new insights expands. And if we are ever to get to the point
that we can input our ideas into computers, we will need to be able to formalize these
ideas first.

It is my hope that this course will offer scientists a new vocabulary in which to think
and communicate, and a new pipeline to the vast array of theorems that exist and are
considered immensely powerful within mathematics. These theorems have not made their
way out into the world of science, but they are directly applicable there. Hierarchies are
partial orders, symmetries are group elements, data models are categories, agent actions
are monoid actions, local-to-global principles are sheaves, self-similarity is modeled by
operads, context can be modeled by monads.

1.1 A brief history of category theory
The paradigm shift brought on by Einstein’s theory of relativity brought on the real-
ization that there is no single perspective from which to view the world. There is no
background framework that we need to find; there are infinitely many different frame-
works and perspectives, and the real power lies in being able to translate between them.
It is in this historical context that category theory got its start. 1

Category theory was invented in the early 1940s by Samuel Eilenberg and Saunders
Mac Lane. It was specifically designed to bridge what may appear to be two quite
different fields: topology and algebra. Topology is the study of abstract shapes such as
7-dimensional spheres; algebra is the study of abstract equations such as y2z “ x3´xz2.
People had already created important and useful links (e.g. cohomology theory) between
these fields, but Eilenberg and Mac Lane needed to precisely compare different links with

1The following history of category theory is far too brief, and perhaps reflects more of the author’s
aesthetic than any kind of objective truth, whatever that may mean. Here are some much better
references: [Kro], [Mar1], [LM].
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one another. To do so they first needed to boil down and extract the fundamental nature
of these two fields. But the ideas they worked out amounted to a framework that fit not
only topology and algebra, but many other mathematical disciplines as well.

At first category theory was little more than a deeply clarifying language for existing
difficult mathematical ideas. However, in 1957 Alexander Grothendieck used category
theory to build new mathematical machinery (new cohomology theories) that granted
unprecedented insight into the behavior of algebraic equations. Since that time, cat-
egories have been built specifically to zoom in on particular features of mathematical
subjects and study them with a level of acuity that is simply unavailable elsewhere.

Bill Lawvere saw category theory as a new foundation for all mathematical thought.
Mathematicians had been searching for foundations in the 19th century and were reason-
ably satisfied with set theory as the foundation. But Lawvere showed that the category
of sets is simply a category with certain nice properties, not necessarily the center of
the mathematical universe. He explained how whole algebraic theories can be viewed
as examples of a single system. He and others went on to show that higher order logic
was beautifully captured in the setting of category theory (more specifically toposes).
It is here also that Grothendieck and his school worked out major results in algebraic
geometry.

In 1980 Joachim Lambek showed that the types and programs used in computer
science form a specific kind of category. This provided a new semantics for talking about
programs, allowing people to investigate how programs combine and compose to create
other programs, without caring about the specifics of implementation. Eugenio Moggi
brought the category theoretic notion of monads into computer science to encapsulate
ideas that up to that point were considered outside the realm of such theory.

It is difficult to explain the clarity and beauty brought to category theory by people
like Daniel Kan and André Joyal. They have each repeatedly extracted the essence of a
whole mathematical subject to reveal and formalize a stunningly simple yet extremely
powerful pattern of thinking, revolutionizing how mathematics is done.

All this time, however, category theory was consistently seen by much of the mathe-
matical community as ridiculously abstract. But in the 21st century it has finally come
to find healthy respect within the larger community of pure mathematics. It is the lan-
guage of choice for graduate-level algebra and topology courses, and in my opinion will
continue to establish itself as the basic framework in which mathematics is done.

As mentioned above category theory has branched out into certain areas of science
as well. Baez and Dolan have shown its value in making sense of quantum physics, it
is well established in computer science, and it has found proponents in several other
fields as well. But to my mind, we are the very beginning of its venture into scientific
methodology. Category theory was invented as a bridge and it will continue to serve in
that role.

1.2 Intention of this book
The world of applied mathematics is much smaller than the world of applicable math-
ematics. As alluded to above, this course is intended to create a bridge between the
vast array of mathematical concepts that are used daily by mathematicians to describe
all manner of phenomena that arise in our studies, and the models and frameworks of
scientific disciplines such as physics, computation, and neuroscience.

To the pure mathematician I’ll try to prove that concepts such as categories, func-
tors, natural transformations, limits, colimits, functor categories, sheaves, monads, and
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operads—concepts that are often considered too abstract for even math majors—can
be communicated to scientists with no math background beyond linear algebra. If this
material is as teachable as I think, it means that category theory is not esoteric but
somehow well-aligned with ideas that already make sense to the scientific mind. Note,
however, that this book is example-based rather than proof-based, so it may not be
suitable as a reference for students of pure mathematics.

To the scientist I’ll try to prove the claim that category theory includes a formal
treatment of conceptual structures that the scientist sees often, perhaps without realizing
that there is well-oiled mathematical machinery to be employed. We will work on the
structure of information; how data is made meaningful by its connections, both internal
and outreaching, to other data. Note, however, that this book should most certainly
not be taken as a reference on scientific matters themselves. One should assume that
any account of physics, materials science, chemistry, etc. has been oversimplified. The
intention is to give a flavor of how category theory may help us model scientific ideas,
not to explain these ideas in a serious way.

Data gathering is ubiquitous in science. Giant databases are currently being mined
for unknown patterns, but in fact there are many (many) known patterns that simply
have not been catalogued. Consider the well-known case of medical records. A patient’s
medical history is often known by various individual doctor-offices but quite inadequately
shared between them. Sharing medical records often means faxing a hand-written note
or a filled-in house-created form between offices.

Similarly, in science there exists substantial expertise making brilliant connections
between concepts, but it is being conveyed in silos of English prose known as journal
articles. Every scientific journal article has a methods section, but it is almost impossible
to read a methods section and subsequently repeat the experiment—the English language
is inadequate to precisely and concisely convey what is being done.

The first thing to understand in this course is that reusable methodologies can be
formalized, and that doing so is inherently valuable. Consider the following analogy.
Suppose you want to add up the area of a region in space (or the area under a curve).
You break the region down into small squares, each of which you know has area A; then
you count the number of squares, say n, and the result is that the region has an area of
about nA. If you want a more precise and accurate result you repeat the process with
half-size squares. This methodology can be used for any area-finding problem (of which
there are more than a first-year calculus student generally realizes) and thus it deserves
to be formalized. But once we have formalized this methodology, it can be taken to its
limit and out comes integration by Riemann sums.

I intend to show that category theory is incredibly efficient as a language for exper-
imental design patterns, introducing formality while remaining flexible. It forms a rich
and tightly woven conceptual fabric that will allow the scientist to maneuver between
different perspectives whenever the need arises. Once one builds that fabric for oneself,
he or she has an ability to think about models in a way that simply would not occur
without it. Moreover, putting ideas into the language of category theory forces a person
to clarify their assumptions. This is highly valuable both for the researcher and for his
or her audience.

What must be recognized in order to find value in this course is that conceptual chaos
is a major problem. Creativity demands clarity of thinking, and to think clearly about a
subject requires an organized understanding of how its pieces fit together. Organization
and clarity also lead to better communication with others. Academics often say they are
paid to think and understand, but that is not true. They are paid to think, understand,
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and communicate their findings. Universal languages for science—languages such as
calculus and differential equations, matrices, or simply graphs and pie-charts—already
exist, and they grant us a cohesiveness that makes scientific research worthwhile. In this
book I will attempt to show that category theory can be similarly useful in describing
complex scientific understandings.

1.3 What is requested from the student
I will do my best to make clear the value of category theory in science, but I am not a
scientist. To that end I am asking for your help in exploring how category theory may
be useful in your specific field.

I also want you to recognize that the value of mathematics is not generally obvious
at first. A good student learning a good subject with a good teacher will see something
compelling almost immediately, but may not see how it will be useful in real life. This
will come later. I hope you will work hard to understand even without yet knowing what
its actual value in your life and research will be. Like a student of soccer is encouraged
to spend hours juggling the ball when he or she could be practicing penalty shots, it
is important to gain facility with the materials you will be using. Doing exercises is
imperative for learning mathematics.

1.4 Category theory references
I wrote this book because the available books on category theory are almost all written
for mathematicians (the rest are written for computer scientists). There is one book by
Lawvere and Schanuel, called Conceptual Mathematics [LS], that offers category theory
to a wider audience, but its style is not appropriate for this course. Still, it is very well
written and clear.

The “bible” of category theory is Categories for the working mathematician by Mac
Lane [Mac]. But as the title suggests, it was written for working mathematicians and
will be quite opaque to my target audience. However, once a person has read my book,
Mac Lane’s book may become a valuable reference.

Other good books include Steve Awodey’s book Category theory [Awo] and Barr and
Wells book Category theory for computing science, [BW]. A paper by Brown and Porter
called Category Theory: an abstract setting for analogy and comparison [BP1] is more
in line with the style of this book, only much shorter. Online, I find wikipedia and a site
called the nlab to be quite useful.

This book attempts to explain category theory by examples and exercises rather than
by theorems and proofs. I hope this approach will be valuable to the working scientist.
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