# Illustration of Category Hilb with examples in Atomic and Optical Physics

M.I.T. Student Department of Physics MIT May 13, 2013

## Outline

- What is Atomic and Optical physics?
   e.g. atoms and photons
- What is Hilbert space?
- What is Category Hilb?
- Monoidal structure of Hilb
- Feynman diagram in the language of category
  - e.g. Quantum Harmonic oscillator
- Conclusions and interests

#### What is Atomic and Optical Physics about?

Physics: Quantum phenomena of particles
\*Atoms, from one to an ensemble
\*Photons, from one to a bunch, from lasers, or trapped in a cavity

\*simulate other quantum systems use optical lattice to simulate crystal use quantum double well to simulate Josephson junction

#### What is Atomic and Optical Physics about?

#### Math: Hilbert space

Def. A real or complex inner product space that is also a complete metric space with respect to the distance function induced by the inner product.

\* One atom in a harmonic trap induced by lasers

$$\begin{split} \hat{H} &= \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 \qquad E_n = (\frac{1}{2} + n)\hbar\omega \\ &x = \{\sum_i c_i | \phi_i > | c_i \in \mathbb{C}, \sum_i | c_i |^2 = 1\} \\ \text{* A cavity that trapped any number of photons} \\ \hat{H} &= \frac{1}{2}\epsilon \hat{E}^2 \qquad E_j = j\hbar\omega \\ &y = \{\sum_j c_j | j > | c_j \in \mathbb{C}, \sum_j | c_j |^2 = 1\} \end{split}$$

#### What is Atomic and Optical Physics about?

\* a single atom with two hyperfine states

$$z = \{c_s | s > +c_p | p > ||c_s|^2 + |c_p|^2 = 1\}$$

\* a single atom with two hyperfine states interacting with photons in a cavity

 $w = z \times y$ 

Content removed due to copyright restrictions.

To view definitions of category Hilb, go to: "Hilb category of Hilbert Spaces" by bc1. http://planetmath.org/sites/default/files/texpdf/41070.pdf

#### **Category Hilb**

• Ob(Hilb)

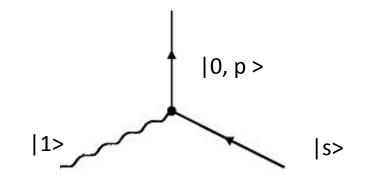
$$x = \{\sum_{i} c_{i} | \phi_{i} > | c_{i} \in \mathbb{C}, \sum_{i} | c_{i} |^{2} = 1\}$$
$$y = \{\sum_{j} c_{j} | j > | c_{j} \in \mathbb{C}, \sum_{j} | c_{j} |^{2} = 1\}$$
$$z = \{c_{s} | s > +c_{p} | p > | | c_{s} |^{2} + | c_{p} |^{2} = 1\}$$

#### $\mathcal{W}$

• Morphism Hom\_Hilb (x, x):  $\hat{x}, \hat{p}, \hat{x} + \hat{p}...$ Hom\_Hilb (y, y):  $\hat{E}, e^{\alpha \hat{E}^2}...$ Hom\_Hilb (x, y):  $\hat{m}: |\phi_i \rangle \rightarrow |i \rangle, i = 0, 1, 2...$ 

Physics: phonon – photon mapping, massless, particle – wave duality

## Category Hilb is monoidal


Physics: Interaction of two system -> joint system
 Math: tensor product
 -> monoidal category

$$*(y,z) = w$$

- Monoidal category[2]
- i) a category Hilb
- ii) a functor

 $*: Hilb \times Hilb \rightarrow Hilb$ 

Physics: morphism is as important as objects, so that we can form interaction in the Hamiltonian



$$(\hat{\sigma_{-}} \times \hat{a^{\dagger}})(|p>, |0>) = |s, 1>$$

#### Category Hilb is monoidal

iii) a unit object

 $\mathbb{C} \in Hilb$ 

iv) left unit law:  $l_a : \mathbb{C} \times a \to a$ 

right unit law:  $r_a: a \times \mathbb{C} \to a$ 

Physics: states in Hilbert space is normalized.

#### natural isomorphism called the associator:

Content removed due to copyright restrictions.

To view the diagram, go to: "Section 4. The Monoidal Category of Hilbert Spaces" by John Baez. http://math.ucr.edu/home/baez/quantum/node4.html

#### such that the following diagrams commute for all objects A, B, C, D,

#### v)

Content removed due to copyright restrictions.

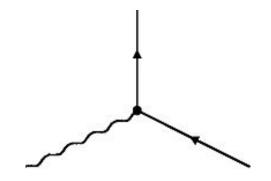
To view the diagram, go to: "Section 4. The Monoidal Category of Hilbert Spaces" by John Baez. http://math.ucr.edu/home/baez/quantum/node4.html

### Category Hilb is monoidal

#### Associator is natural in a precise sense

Content removed due to copyright restrictions.

To view the diagram, go to: "Section 4. The Monoidal Category of Hilbert Spaces" by John Baez. http://math.ucr.edu/home/baez/quantum/node4.html


Physics:

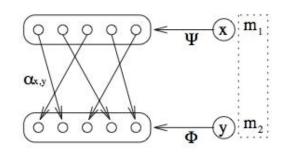
S, T, L can be viewed as base transformation.

The diagram is commute indicates that associator is defined in a baseindependent manner.

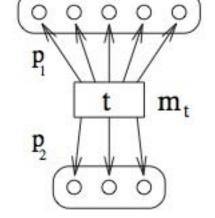
## Feynman diagram

• states processed by evolution operators Exp(-iHt) interaction operators  $(\hat{\sigma_-a^\dagger} + \hat{\sigma_+a})$ evolution operators to final states




- This is true for all Hilbert spaces.
- For one Hilbert space that has a specific interaction form, one can also categorize it alone.

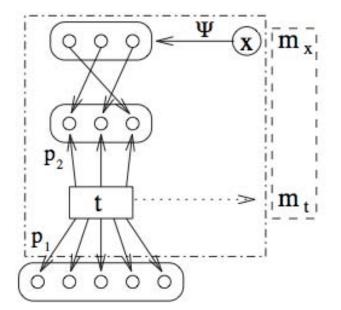
## Feynman diagram[3]

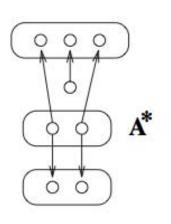

Quantum harmonic oscillator represented in Fock space.
 Categorize Fock space to FinSet\_0
 Categorize states to a functors from a Grp to FinSet\_0

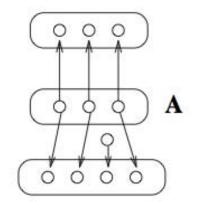


Inner Product: a Grp




Operators: a Grp with two "projection" functors into FinSet\_0.





 $\mathbf{FinSet}_{\mathbf{0}} \xleftarrow{p_1} T \xrightarrow{p_2} \mathbf{FinSet}_{\mathbf{0}}$ 

Diagrams are taken from the paper "Categorifying the Quantum Harmonic Oscillator" by Jeffrey Morton and are used by permission.

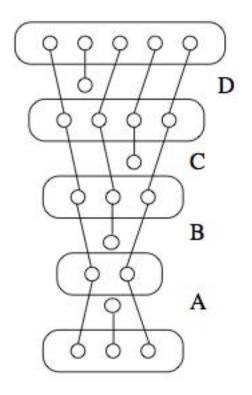
### Feynman diagram

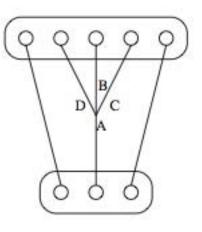






time evolution


#### phonon creation and annihilation


or

Diagrams are taken from the paper "Categorifying the Quantum Harmonic Oscillator" by Jeffrey Morton and are used by permission.

#### Feynman diagram

 $\hat{a^{\dagger}}\hat{a^{\dagger}}\hat{a}\hat{a}$  : atom-atom short range interaction in our lab





Diagrams are taken from the paper "Categorifying the Quantum Harmonic Oscillator" by Jeffrey Morton and are used by permission.

## Conclusions and interests

- Hilb has Hilbert space as objects, operators as morphisms
- Hilb is a monoidal category

Quantum systems can have interaction with each other, joining together as a new system

• More than one way to categorize quantum systems

Categorize Fock space into FinSet\_0, due to observation of its relationships with enumerative combinatorics.

• Feynman diagram can be translated to diagrams in category.

\* Non-trivial morphism from finite Hilbert space to an infinite one or vice versa?

\* Benefit of Feynman diagram in category language?

\* Similarity of nCob and Hilb[4], relation of general relativity and quantum mechanics? Physics predication?

\* Topological field theory, quantum gravity...

## Bibliography

[1] bci1, Hilb category of Hilbert spaces

http://planetmath.org/sites/default/files/texpdf/41070.pdf

[2] John Baez, The Monoidal Category of Hilbert Spaces, 2004

http://math.ucr.edu/home/baez/quantum/node4.html

[3] Jeffrey Morton, Categorifying the Quantum Harmonic Oscillator, 2006

http://math.ucr.edu/home/baez/morton\_ct06talk.ps

[4] John Baez, Quantum Quandaries: A Category -Theoretic Perspective, 2004 http://arxiv.org/abs/quant-ph/0404040v2

[5] David Spivak, Category Theory for Scientists, 2013 http://arxiv.org/pdf/1302.6946.pdf

[6] Bob Coecke, Kindergarten Quantum Mechanics, 2005

http://arxiv.org/abs/quant-ph/0510032

[7] John Baez, James Dolan, From Finite Sets to Feynman Diagrams, 2000 http://arxiv.org/abs/math/0004133

## Bibliography

[8] John Baez, Mike Stay, Physics, Topology, Logic and Computation: A Rosetta Stone, 2009

http://arxiv.org/pdf/0903.0340v3.pdf

[9] Chris Heunen, Categorical quantum models and logics, 2010 http://books.google.com/books? id=nsd8EExdKIwC&printsec=frontcover#v=onepage&q&f=false
[10] nLab

http://ncatlab.org/nlab/show/HomePage

## Thank you!

MIT OpenCourseWare http://ocw.mit.edu

#### 6 & DVHU RU 7 KHRU IRU6 FLHQMW 6 SUQJ 201

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.