
Chapter 5

Categories at work

We have now set up an understanding of the basic notions of category theory: categories,
functors, natural transformations, and universal properties. We have discussed many
sources of examples: orders, graphs, monoids, and databases. We begin this chapter with
the notion of adjoint functors (also known as adjunctions), which are like dictionaries
that translate back and forth between different categories.

5.1 Adjoint functors
Just above, in the introduction to this chapter, I said that adjoint functors are like
dictionaries that translate back and forth between different categories. How far can we
take that analogy?

In the common understanding of dictionaries, we assume that the two languages (say
French and English) are equally expressive, and that a good dictionary will be an even
exchange of ideas. But in category theory we often have two categories that are not
on the same conceptual level. This is most clear in the case of so-called free-forgetful
adjunctions. In Section 5.1.1 we will explore the sense in which each adjunction provides
a dictionary between two categories that are not necessarily on an equal footing, so to
speak.

5.1.1 Discussion and definition
Consider the category of monoids and the category of sets. A monoid pM, e, ‹q is a set
with an identity element and a multiplication formula that is associative. A set is just
a set. A dictionary between Mon and Set should not be required to set up an even
exchange, but instead an exchange that is appropriate to the structures at hand. It will
be in the form of two functors, one we’ll denote by L : Set Ñ Mon, and one we’ll denote
by R : Mon Ñ Set. But to say what “appropriate” means requires more work.

Let’s bring it down to earth with an analogy. A one-year-old can make repeatable
noises and an adult can make repeatable noises. One might say “after all, talking is noth-
ing but making repeatable noises.” But the adult’s repeatable noises are called words,
they form sentences, and these sentences can cause nuclear wars. There is something
more in adult language than there is simply in repeatable sounds. In the same vein, a
tennis match can be viewed as physics, but you won’t see the match. So we have some-
thing analogous to two categories here: ((repeated noises)) and ((meaningful words)).

201

202 CHAPTER 5. CATEGORIES AT WORK

We are looking for adjoint functors going back and forth, serving as the appropriate sort
of dictionary.

To translate baby talk into adult language we would make every repeated noise a
kind of word, thereby granting it meaning. We don’t know what a given repeated noise
should mean, but we give it a slot in our conceptual space, always pondering “I wonder
what she means by Konnen..” On the other hand, to translate from meaningful words to
repeatable noises is easy. We just hear the word as a repeated noise, which is how the
baby probably hears it.

Adjoint functors often come in the form of “free” and “forgetful”. Here we freely
add Konnen to our conceptual space without having any idea how it adheres to the
rest of the child’s noises or feelings. But it doesn’t act like a sound to us, it acts like
a word; we don’t know what it means but we figure it means something. Conversely,
the translation going the other way is “forgetful”, forgetting the meaning of our words
and just hearing them as sounds. The baby hears our words and accepts them as mere
sounds, not knowing that there is anything extra to get.

Back to sets and monoids, the sets are like the babies from our story: they are
simple objects full of unconnected dots. The monoids are like adults, forming words and
performing actions. In the monoid, each element means something and combines with
other elements in some way. There are lots of different sets and lots of different monoids,
just as there are many babies and many adults, but there are patterns to the behavior
of each kind and we put them in different categories.

Applying free functor L : Set Ñ Mon to a set X makes every element x P X a word,
and these words can be strung together to form more complex words. (We discussed
the free functor in Section 3.1.1.12.) Since a set such as X carries no information about
the meaning or structure of its various elements, the free monoid F pXq does not relate
different words in any way. To apply the forgetful functor R : Mon Ñ Set to a monoid,
even a structured one, is to simply forget that its elements are anything but mere elements
of a set. It sends a monoid pM, 1, ‹q to the set M .

The analogy is complete. However, this is all just ideas. Let’s give a definition, then
return to our sets, monoids, sounds, and words.

Definition 5.1.1.1. Let B and A be categories. 1 An adjunction between B and A is a
pair of functors

L : B Ñ A and R : AÑ B

together with a natural isomorphism 2 whose component for any objects A P ObpAq and
B P ObpBq is:

αB,A : HomApLpBq, Aq
–

ÝÝÝÑ HomBpB,RpAqq. (5.1)

This isomorphism is called the adjunction isomorphism for the pL,Rq adjunction, and
for any morphism f : LpBq Ñ A in A, we refer to αB,Apfq : B Ñ RpAq as the adjunct of
f . 3

1Throughout this definition, notice that B’s come before A’s, especially in (5.1), which might be
confusing. It was a stylistic choice to match with the Babies and Adults discussion above and below
this definition.

2The natural isomorphism α (see Lemma 4.3.2.12) is between two functors Bop ˆA Ñ Set, namely
the functor pB,Aq ÞÑ HomApLpBq, Aq and the functor pB,Aq ÞÑ HomBpB,RpAqq.

3Conversely, for any g : B Ñ RpAq in B we refer to α´1
B,Apgq : LpBq Ñ A as the adjunct of g.

5.1. ADJOINT FUNCTORS 203

The functor L is called the left adjoint and the functor R is called the right adjoint.
We may say that L is the left adjoint of R or that R is the right adjoint of L. 4 We
often denote this setup by

L : B // A :Roo

Proposition 5.1.1.2. Let L : Set Ñ Mon be the functor sending X P ObpSetq to the
free monoid LpXq :“ pListpXq, r s, `̀ q, as in Definition 3.1.1.15. Let R : Mon Ñ Set
be the functor sending each monoid M :“ pM, 1, ‹q to its underlying set RpMq :“ M .
Then L is left adjoint to R.

Proof. If we can find a natural isomorphism of sets

αX,M : HomMonpLpXq,Mq Ñ HomSetpX,RpMqq

we will have succeeded in showing that these functors are adjoint.
Suppose given an element f P HomMonpLpXq,Mq, i.e. a monoid homomorphism

f : ListpXq Ñ M (sending r s to 1 and list concatenation to ‹). Then in particular we
can apply f to the singleton list rxs for any x P X. This gives a function X Ñ M by
x ÞÑ fprxsq, and this is αX,Mpfq : X ÑM “ RpMq. We need only to supply an inverse
βX,M : HomSetpX,RpMqq Ñ HomMonpLpXq,Mq.

Suppose given an element g P HomSetpX,RpMqq, i.e. a function g : X ÑM . Then to
any list ` “ rx1, x2, . . . , xns P ListpXq we can assign βX,Mp`q :“ gpx1q‹gpx2q‹ ¨ ¨ ¨ ‹gpxnq
(if ` “ r s is the empty list, assign βX,Mpr sq :“ 1). We now have a function ListpXq ÑM .
It is a monoid homomorphism because it respects identity and composition. It is easy
to check that β and α are mutually inverse, completing the proof.

�

Example 5.1.1.3. We need to ground our discussion in some concrete mathematics. In
Proposition 5.1.1.2 we provided our long-awaited adjunction between sets and monoids.
A set X gets transformed into a monoid by considering lists in X; a monoid M gets
transformed into a set by forgetting the multiplication law. So we have a functor going
one way and the other,

L : Set Ñ Mon, R : Mon Ñ Set,

but an adjunction is more than that: it includes a guarantee about the relationship
between these two functors. What is the relationship between L and R? Consider an
arbitrary monoid M “ pM, 1, ˚q.

If I want to pick out 3 elements of the set M , that’s the same thing as giving a
function ta, b, cu Ñ M . But that function exists in the category of sets; in fact it is
an element of HomSetpta, b, cu,Mq. But since M “ RpMq is the underlying set of our
monoid, we can view the current paragraph in the light of our adjunction Equation (5.1)
by saying it has been about the set

HomSetpta, b, cu, RpMqq.

This set classifies all the ways to pick three elements out of the underlying set of our
monoid M. It was constructed completely from within the category Set.

4The left adjoint does not have to be called L, nor does the right adjoint have to be called R, of
course. This is suggestive.

204 CHAPTER 5. CATEGORIES AT WORK

Now we ask what Equation (5.1) means. The equation

HomMonpLpta, b, cuq,Mq – HomSetpta, b, cu, RpMqq.

tells us that somehow we can answer the same question completely from within the cat-
egory of monoids. In fact it tells us how to do so, namely as HomMonpListpt1, 2, 3u,Mq.
Exercise 5.1.1.4 looks at how that should go. The answer is “hidden” in the proof of
Proposition 5.1.1.2.
Exercise 5.1.1.4. Let X “ ta, b, cu and let M “ pN, 1, ˚q be the multiplicative monoid
of natural numbers (see Example 3.1.3.2). Let f : X Ñ N be the function given by
fpaq “ 7, fpbq “ 2, fpcq “ 2, and let βX,M : HomSetpX,RpMqq Ñ HomMonpLpXq,Mq
be as in the proof of Proposition 5.1.1.2. What is βX,Mpfqprb, b, a, csq? ♦

Let us look once more at the adjunction between adults and babies. Using the
notation of Definition 5.1.1.1 A is the “adult category” of meaningful words and B is the
“baby category” of repeated noises. The left adjoint turns every repeated sound into a
meaningful word (having “free” meaning) and the right adjoint “forgets” the meaning of
any word and considers it merely as a sound.

At the risk of taking this simple analogy too far, let’s have a go at the heart of the
issue: how to conceive of the isomorphism (5.1) of Hom’s. Once we have freely given a
slot to each of baby’s repeated sounds, we try to find a mapping from the lexicon LpBq
of these new words to our own lexicon A of meaningful words; these are mappings in
the adult category A of the form LpBq Ñ A. And (stretching it) the baby tries to find
a mapping (which we might see as emulation) from her set B of repeatable sounds to
the set RpAq of the sounds the adult seems to repeat. If there was a global system for
making these transformations that would establish (5.1) and hence the adjunction.

Note that the directionality of the adjunction makes a difference. If L : B Ñ A is left
adjoint to R : AÑ B we rarely have an isomorphism HomApA,LpBqq – HomBpRpAq, Bq.
In the case of babies and adults, we see that it would make little sense to look for a
mapping in the category of meaningful words from the adult lexicon to the wordifications
of baby-sounds, because there is unlikely to be a good candidate for most of our words.
That is, to which of our child’s repeated noises would we assign the concept “weekday”?

Again, the above is simply an analogy, and almost certainly not formalizable. The
next example shows mathematically the point we tried to make in the previous para-
graph, that the directionality of an adjunction is not arbitrary.
Example 5.1.1.5. Let L : Set Ñ Mon and R : Mon Ñ Set be the free and forgetful
functors from Proposition 5.1.1.2. We know that L is left adjoint to R; however L is not
right adjoint to R. In other words, we can show that the necessary natural isomorphism
cannot exist.

Let X “ ta, bu and let M “ pt1u, 1, !q be the trivial monoid. Then the necessary
natural isomorphism would need to give us a bijection

HomMonpM, LpXqq –? HomSetpt1u, Xq.

But the left-hand side has one element, becauseM is the initial object in Mon (see Ex-
ample 4.5.3.8), whereas the right-hand side has two elements. Therefore no isomorphism
can exist.
Example 5.1.1.6. Preorders have underlying sets, giving rise to a functor U : PrO Ñ Set.
The functor U has both a left adjoint and a right adjoint. The left adjoint of U is
D : Set Ñ PrO, sending a set X to the discrete preorder on X (the preorder with

5.1. ADJOINT FUNCTORS 205

underlying set X, having the fewest possible ď’s). The right adjoint of U is I : Set Ñ
PrO, sending a set X to the indiscrete preorder on X (the preorder with underlying set
X, having the most possible ď’s). See Example 3.4.4.5.
Exercise 5.1.1.7. Let U : Grph Ñ Set denote the functor sending a graph to its under-
lying set of vertices. This functor has both a left and a right adjoint.

a.) What functor Set Ñ Grph is the left adjoint of U?

b.) What functor Set Ñ Grph is the right adjoint of U?

♦

Example 5.1.1.8. Here are some other adjunctions:

• Ob: Cat Ñ Set has a left adjoint Set Ñ Cat given by the discrete category.

• Ob: Cat Ñ Set has a right adjoint Set Ñ Cat given by the indiscrete category.

• The underlying graph functor Cat Ñ Grph has a left adjoint Grph Ñ Cat given
by the free category.

• The functor PrO Ñ Grph, given by drawing edges for ď’s, has a left adjoint given
by existence of paths.

• The forgetful functor from posets to preorders has a left adjoint given by quotient
by isomorphism relation.

• Given a set A, the functor p´ ˆ Aq : Set Ñ Set has a right adjoint HompA,´q
(this was called currying in Section 2.7.2).

Exercise 5.1.1.9. Let F : C Ñ D and G : D Ñ C be mutually inverse equivalences of
categories (see Definition 4.3.4.1). Are they adjoint in one direction or the other? ♦

Exercise 5.1.1.10. The discrete category functor Disc : Set Ñ Cat has a left adjoint
p : Cat Ñ Set.

a.) For an arbitrary object X P ObpSetq and an arbitrary object C P ObpCatq, write
down the adjunction isomorphism.

b.) Let C be the free category on the graph G:

G :“

v
‚

f // w‚

h

??

g

 x
‚

y
‚

i �� j

 z
‚

k

__

and let X “ t1, 2, 3u. How many elements does the set HomSetpC, DiscpXqq have?

c.) What can you do to an arbitrary category C to make a set ppCq such that the
adjunction isomorphism holds? That is, how does the functor p behave on objects?

♦

206 CHAPTER 5. CATEGORIES AT WORK

The following proposition says that all adjoints to a given functor are isomorphic to
each other.

Proposition 5.1.1.11. Let C and D be categories, let F : C Ñ D be a functor, and
let G,G1 : D Ñ C also be functors. If both G and G1 are right adjoint (respectively left
adjoint) to F then there is a natural isomorphism φ : GÑ G1.

Proof. Suppose that both G and G1 are right adjoint to F (the case of G and G1 being
left adjoint is similarly proved). We first give a formula for the components of φ : GÑ G1

and its inverse ψ : G1 Ñ G. Given an object d P ObpDq, we use c “ Gpdq to obtain two
natural isomorphisms, one from each adjunction:

HomCpGpdq, Gpdqq – HomDpF pGpdqq, dq – HomCpGpdq, G
1pdqq.

The identity component idGpdq is then sent to some morphism Gpdq Ñ G1pdq, which we
take to be φd. Similarly, we use c1 “ G1pdq to obtain two natural isomorphisms, one from
each adjunction:

HomCpG
1pdq, G1pdqq – HomDpF pG

1pdqq, dq – HomCpG
1pdq, Gpdqq.

Again, the identity component idG1pdq is sent to some morphism G1pdq Ñ Gpdq, which
we take to be ψd. The naturality of the isomorphisms implies that φ and ψ are natural
transformations, and it is straightforward to check that they are mutually inverse.

�

5.1.1.12 Quantifiers as adjoints

One of the simplest but neatest places that adjoints show up is between preimages and
the logical quantifiers D and @, which we first discussed in Notation 2.1.1.1. The setting
in which to discuss this is that of sets and their power preorders. That is, if X is a set
then recall from Section 3.4.2 that the power set PpXq has a natural ordering by inclusion
of subsets.

Given a function f : X Ñ Y and a subset V Ď Y the preimage is f´1pV q :“ tx P
X | fpxq P V u. If V 1 Ď V then f´1pV 1q Ď f´1pV q, so in fact f´1 : PpY q Ñ PpXq can be
considered a functor (where of course we are thinking of preorders as categories). The
quantifiers appear as adjoints of f´1.

Let’s begin with the left adjoint of f´1 : PpY q Ñ PpXq. It is a functor Lf : PpXq Ñ
PpY q. Choose an object U Ď X in PpXq. It turns out that

Lf pUq “ ty P Y | Dx P f
´1pyq such that x P Uu.

And the right adjoint Rf : PpXq Ñ PpY q, when applied to U is

Rf pUq “ ty P Y | @x P f
´1pyq, x P Uu.

In fact, the functor Lf is generally denoted Df : PpXq Ñ PpY q, and Rf is generally
denoted @f : PpXq Ñ PpY q.

PpXq

Df

((

@f 66
PpY q.

f´1
oo

We will see in the next example why this notation is apt.

5.1. ADJOINT FUNCTORS 207

Example 5.1.1.13. In logic or computer science, the quantifiers D and @ are used to
ask whether any or all elements of a set have a certain property. For example, one
may have a set of natural numbers and want to know whether any or all are even or
odd. Let Y “ teven, oddu, and let p : N Ñ Y be the function that takes assigns to
each natural number its parity (even or odd). Because the elements of PpNq and PpY q
are ordered by “inclusion of subsets”, we can construe these orders as categories (by
Proposition 4.2.1.17). That’s all old; what’s new is that we have adjunctions between
these categories

PpNq

Dp

((

@p 66
PpY q.

p´1
oo

Given a subset U Ď N, i.e. an object U P ObpPpNqq, we investigate the objects
DppUq,@ppUq. These are both subsets of teven, oddu. The set DppUq includes the el-
ement even if there exists an even number in U ; it includes the element odd if there
exists an odd number in U . Similarly, the set @ppUq includes the element even if every
even number is in U and it includes odd if every odd number is in U . 5

We explain just one of these in terms of the definitions. Let V “ tevenu Ď Y . Then
f´1pV q Ď N is the set of even numbers, and there is a morphism f´1pV q Ñ U in PpNq
if and only if U contains all the even numbers. Therefore, the adjunction isomorphism
HomPpNqpf´1pV q, Uq – HomPpY qpV,@pUq says that V Ď @pU , i.e. @ppUq includes the
element even if and only if U contains all the even numbers, as we said above.
Exercise 5.1.1.14. The national Scout jamboree is a gathering of Boy Scouts from troops
across the US. Let X be the set of Boy Scouts in the US, and let Y be the set of Boy
Scout troops in the US. Let t : X Ñ Y be the function that assigns to each Boy Scout
his troop. Let U Ď X be the set of Boy Scouts in attendance at this years jamboree.
What is the meaning of the objects DtU and @tU? ♦

Exercise 5.1.1.15. Let X be a set and U Ď X a subset. Find a set Y and a function
f : X Ñ Y such that Df pUq somehow tells you whether U is non-empty, and such that
@f pUq somehow tells you whether U “ X. ♦

In fact, “quantifiers as adjoints” is part of a larger story. Suppose we think of elements
of a set X as bins, or storage areas. An element of PpXq can be construed as an injection
U ãÑ X, i.e. an assignment of a bin to each element of U , with at most one element of U
in each bin. Relaxing that restriction, we may consider arbitrary sets U and assignments
U Ñ X of a bin to each element u P U . Given a function f : X Ñ Y , we can generalize
Df and @f to functors denoted Σf and Πf , which will parameterize disjoint unions and
products (respectively) over y P Y . This will be discussed in Section 5.1.4.

5.1.2 Universal concepts in terms of adjoints
In this section we discuss how universal concepts, i.e. initial objects and terminal objects,
colimits and limits, are easily phrased in the language of adjoint functors. We will say
that a functor F : C Ñ D is a left adjoint if there exists a functor G : D Ñ C such that F
is a left adjoint of G. We showed in Proposition 5.1.1.11 that if F is a left adjoint of some
functor G, then it is isomorphic to every other left adjoint of G, and G is isomorphic to
every other right adjoint of F .

5It may not be clear that by this point we have also handled the question, “is every element of U
even?” One simply checks that odd is not an element of DpU .

208 CHAPTER 5. CATEGORIES AT WORK

Example 5.1.2.1. Let C be a category and t : C Ñ 1 the unique functor to the terminal
category. Then t is a left adjoint if and only if C has a terminal object, and t is a right
adjoint if and only if C has an initial object. The proofs are dual, so let’s focus on the
first.

The functor t has a right adjoint R : 1 Ñ C if and only if there is an isomorphism

HomCpc, rq – Hom1ptpcq, 1q,

where r “ Rp1q. But Hom1ptpcq, 1q has one element. Thus t has a right adjoint iff there
is a unique morphism cÑ r in C. This is the definition of r being a terminal object.

When we defined colimits and limits in Definitions 4.5.3.26 and 4.5.3.19 we did so for
individual I-shaped diagrams X : I Ñ C. Using adjoints we can define the limit of every
I-shaped diagram in C at once.

Let t : C Ñ 1 denote the unique functor to the terminal category. Given an object
c P ObpCq, consider it as a functor c : 1 Ñ C. Then c ˝ t : I Ñ C is the constant functor
at c, sending each object in I to the same C-object c, and every morphism in I to idc.
This induces a functor that we denote by ∆t : C Ñ FunpI, Cq.

Suppose we want to take the colimit or limit of X. We are given an object X of
FunpI, Cq and we want back an object of C. We could hope, and it turns out to be true,
that the adjoints of ∆t are the limit and colimit. Indeed let Σt : FunpI, Cq Ñ C be the
left adjoint of ∆t, and let Πt : FunpI, Cq Ñ C be the right adjoint of ∆t. Then Σt is the
functor that takes colimits, and Πt is the functor that takes limits.

We will work with a generalization of colimits and limits in Section 5.1.4. But for
now, let’s bring this down to earth with a concrete example.
Example 5.1.2.2. Let C “ Set, and let I “ 3. The category FunpI,Setq is the category
of t1, 2, 3u-indexed sets, e.g. pZ,N,Zq P ObpFunpI,Setqq is an object of it. The functor
∆t : Set Ñ FunpI,Setq acts as follows. Given a set c P ObpSetq, consider it as a
functor c : 1 Ñ Set, and the composite c ˝ t : I Ñ Set is the constant functor. That is,
∆tpcq : I Ñ Set is the t1, 2, 3u–indexed set pc, c, cq.

To say that ∆t has a right adjoint called Πt : FunpI,Setq Ñ Set and that it “takes
limits” should mean that if we look through the definition of right adjoint, we will see
that the formula will somehow yield the appropriate limit. Fix a functor D : I Ñ Set, so
Dp1q, Dp2q, and Dp3q are sets. The limit limD of D is the product Dp1qˆDp2qˆDp3q.
For example, if D “ pZ,N,Zq then limD “ Z ˆ N ˆ Z. How does this fact arise in the
definition of adjoint?

The definition of Πt being the right adjoint to ∆t says that there is a natural isomor-
phism of sets,

HomFunpI,Setqp∆tpcq, Dq – HomSetpc,ΠtpDqq. (5.2)

The left-hand side has elements f P HomFunpI,Setqp∆tpcq, Dq that look like the left below,
but having these three maps is equivalent to having the diagram to the right below:

c

fp1q

��

c

fp2q

��

c

fp3q

��
Dp1q Dp2q Dp3q

c

fp1q

��

fp2q

��

fp3q

��
Dp1q Dp2q Dp3q

5.1. ADJOINT FUNCTORS 209

The isomorphism in (5.2) says that choosing the three maps fp1q, fp2q, fp3q is the same
thing as choosing a function cÑ ΠtpDq. But this is very close to the universal property
of limits: there is a unique map ` : cÑ Dp1q ˆDp2q ˆDp3q, so this product serves well
as Πt as we have said. We’re not giving a formal proof here, but what is missing at
this point is the fact that certain diagrams have to commute. This comes down to the
naturality of the isomorphism (5.2). The map ` induces a naturality square

∆tpcq
∆tp`q //

f

��

∆tΠtD

π

��
D D

which says that the following diagram commutes:

c

fp1q

||

fp2q

��

fp3q

""
`

��

Dp1q Dp2q Dp3q

Dp1q ˆDp2q ˆDp3q

π1

bb

π2

OO

π3

<<

It is not hard to show that the composition of left adjoints is a left adjoint, and the
composition of right adjoints is a right adjoint. In the following example we show how
currying (as in Sections 2.7.2 and 5.1.1.8) arises out of a certain combination of data
migration functors.
Example 5.1.2.3 (Currying via ∆,Σ,Π). Let A,B, and C be sets. Consider the unique
functor a : A Ñ 1 and consider B and C as functors 1 B

ÝÝÝÑ Set and 1 C
ÝÝÝÑ Set

respectively.

A
a // 1

B
##

C

==Set

Note that 1–Set – Set, and we will elide the difference. Our goal is to see currying
arise out of the adjunction between Σa ˝∆a and Πa ˝∆a, which tells us that there is an
isomorphism

HomSetpΣa∆apBq, Cq – HomSetpB,Πa∆apCqq. (5.3)

By definition, ∆apBq : A Ñ Set assigns to each element a P A the set B. Since ΣA
takes disjoint unions, we have a bijection

Σap∆apBqq “

˜

ž

aPA

B

¸

– AˆB.

210 CHAPTER 5. CATEGORIES AT WORK

Similarly ∆apCq : A Ñ Set assigns to each element a P A the set C. Since ΠA takes
products, we have a bijection

Πap∆apCqq “

˜

ź

aPA

C

¸

– CA.

The currying isomorphism HomSetpAˆB,Cq – HomSetpB,C
Aq falls out of (5.3).

5.1.3 Preservation of colimits or limits
One useful fact about adjunctions is that left adjoints preserve all colimits and right
adjoints preserve all limits.

Proposition 5.1.3.1. Let L : B // A :Roo be an adjunction. For any indexing cate-
gory I and functor D : I Ñ B, if D has a colimit in B then there is a unique isomorphism

LpcolimDq – colimpL ˝Dq.

Similarly, for any I P ObpCatq and functor D : I Ñ A, if D has a limit in A then
there is a unique isomorphism

RplimDq – limpR ˝Dq.

Proof. The proof is simple if one knows the Yoneda lemma (Section 5.2.1.12). I have
decided to skip it to keep the book shorter. See [Mac].

�

Example 5.1.3.2. Since Ob: Cat Ñ Set is both a left adjoint and a right adjoint, it must
preserve both limits and colimits. This means that if you want to know the set of objects
in the fiber product of some categories, you can simply take the fiber product of the set
of objects in those categories,

ObpAˆC Bq – ObpAq ˆObpCq ObpBq.

While the right-hand side might look daunting, it is just a fiber product in Set which is
quite understandable.

This is greatly simplifying. If one thinks through what defines a limit in Cat, one
is dragged through notions of slice categories and terminal objects in them. These slice
categories are in Cat so they involve several categories and functors, and it gets hairy
or even hopeless to a beginner. Knowing that the objects are given by a simple fiber
product makes the search for limits in Cat much simpler.

For example, if rns is the linear order category of length n then rns ˆ rms has nm`
n`m` 1 objects because rns has n` 1 objects and rms has m` 1 objects.

Example 5.1.3.3. The “path poset” functor L : Grph Ñ PrO given by existence of paths
(see Exercise 4.1.2.11) is left adjoint to the functor R : PrO Ñ Grph given by replacing
ď’s by arrows. This means that L preserves colimits. So taking the union of graphs G
and H results in a graph whose path poset LpG\Hq is the union of the path posets of
G and H. But this is not so for products.

5.1. ADJOINT FUNCTORS 211

Let G “ H “ a
‚

f // b‚ . Then LpGq “ LpHq “ r1s, the linear order of length 1.
But the product GˆH in Grph looks like the graph

pa,aq
‚

pa,bq
‚

pb,aq
‚

pb,bq
‚

Its preorder LpG ˆHq does not have pa, aq ď pa, bq, whereas this is the case in LpGq ˆ
LpHq.

5.1.4 Data migration
As we saw in Sections 4.2.2 and 4.2.2.5, a database schema is a category C and an instance
is a functor I : C Ñ Set.

Notation 5.1.4.1. Let C be a category. Throughout this section we denote by C–Set
the category FunpC,Setq of functors from C to Set, i.e. the category of instances on C.

In this section we discuss what happens to the resulting instances when different
schemas are connected by a functor, say F : C Ñ D. It turns out that three adjoint func-
tors emerge: ∆F : D–Set Ñ C–Set, ΣF : C–Set Ñ D–Set, and ΠF : C–Set Ñ D–Set,
where ∆F is adjoint to both,

ΣF : C–Set // D–Set :∆Foo ∆F : D–Set // C–Set :ΠF .oo

It turns out that almost all the basic database operations are captured by these three
functors. For example, ∆F handles the job of duplicating or deleting tables, as well as
duplicating or deleting columns in a single table. The functor ΣF handles taking unions,
and the functor ΠF handles joining tables together, matching columns, or selecting the
rows with certain properties (e.g. everyone whose first name is Mary).

5.1.4.2 Pullback: ∆

Given a functor F : C Ñ D and a functor I : D Ñ Set, we can compose them to get a
functor I ˝F : C Ñ Set. In other words, the presence of F provides a way to convert D-
instances into C-instances. In fact this conversion is functorial, meaning that morphisms
of D-instances are sent to morphisms of C-instances. We denote the resulting functor by
∆F : D–Set Ñ C–Set and call it pullback along F .

We have seen an example of this before in Example 4.3.2.15, where we showed how a
monoid homomorphism F : M1 ÑM could add functionality to a finite state machine.
More generally, we can use pullbacks to reorganize data, copying and deleting tables and
columns.
Remark 5.1.4.3. Given a functor F : C Ñ D, which we think of as a schema translation,
the functor ∆F : D–Set Ñ C–Set “goes the opposite way”. The reasoning is simple to
any explain (composition of functors) but something about it is often very strange to
people, at first. The rough idea of this “contravariance” is captured by the role-reversal
in the following slogan:

Slogan 5.1.4.4.

212 CHAPTER 5. CATEGORIES AT WORK

“ If I get my information from you, then your information becomes my infor-
mation. ”

Consider the following functor F : C Ñ D: 6

C :“

SSN
‚

First
‚

T1
‚

FF

==

!!

T2
‚

aa

}}

��

Last
‚

Salary
‚

F
ÝÝÝÑ

SSN
‚

First
‚

T
‚

FF

>>

��

Last
‚

Salary
‚

“: D (5.4)

Let’s spend a moment recalling how to “read” schemas. In schema C there are leaf
tables SSN, First, Last, Salary, which represent different kinds of basic data. More
interestingly, there are two fact tables. The first is called T1 and it relates SSN, First,
and Last. The second is called T2 and it relates First, Last, and Salary.

The functor F : C Ñ D relates C to a schema with a single fact table relating all four
attributes: SSN, First, Last, and Salary. We are interested in ∆F : D–Set Ñ C–Set.
Suppose given the following database instance I : D Ñ Set on D:

T
ID SSN First Last Salary
XF667 115-234 Bob Smith $250
XF891 122-988 Sue Smith $300
XF221 198-877 Alice Jones $100

SSN
ID
115-234
118-334
122-988
198-877
342-164

First
ID
Adam
Alice
Bob
Carl
Sam
Sue

Last
ID
Jones
Miller
Pratt
Richards
Smith

Salary
ID
$100
$150
$200
$250
$300

How do you get the instance ∆F pIq : C Ñ Set? The formula was given above:
compose I with F . In terms of tables, it feels like duplicating table T as T1 and T2, but
deleting a column from each in accordance with the definition of C in (5.4). Here is the
result, ∆F pIq, in table form:

6This example was taken from [Sp1], http://arxiv.org/abs/1009.1166.

http://arxiv.org/abs/1009.1166

5.1. ADJOINT FUNCTORS 213

T1
ID SSN First Last
XF667 115-234 Bob Smith
XF891 122-988 Sue Smith
XF221 198-877 Alice Jones

T2
ID First Last Salary
XF221 Alice Jones $100
XF667 Bob Smith $250
XF891 Sue Smith $300

SSN
ID
115-234
118-334
122-988
198-877
342-164

First
ID
Adam
Alice
Bob
Carl
Sam
Sue

Last
ID
Jones
Miller
Pratt
Richards
Smith

Salary
ID
$100
$150
$200
$250
$300

Exercise 5.1.4.5. Let C “ pG,»q be a schema. A leaf table is an object c P ObpCq with
no outgoing arrows.

a.) Write the condition of being a “leaf table” mathematically in three different lan-
guages: that of graphs (using symbols V,A, src, tgt), that of categories (using HomC ,
etc.), and that of tables (in terms of columns, tables, rows, etc.).

b.) In the language of categories, is there a difference between a terminal object and a
leaf table? Explain.

♦

Exercise 5.1.4.6. Consider the schemas

r1s “ 0
‚

f
ÝÝÝÑ

1
‚ and r2s “ 0

‚
g

ÝÝÝÑ
1
‚

h
ÝÝÝÑ

2
‚ ,

and the functor F : r1s Ñ r2s given by sending 0 ÞÑ 0 and 1 ÞÑ 2.

a.) How many possibilities are there for F pfq?

b.) Now suppose I : r2s Ñ Set is given by the following tables.

0
ID g
Am To be verb
Baltimore Place
Carla Person
Develop Action verb
Edward Person
Foolish Adjective
Green Adjective

1
ID h
Action verb Verb
Adjective Adjective
Place Noun
Person Noun
To be verb Verb

2
ID
Adjective
Noun
Verb

Write out the two tables associated to the r1s-instance ∆F pIq : r1s Ñ Set.

♦

214 CHAPTER 5. CATEGORIES AT WORK

5.1.4.7 Left pushforward: Σ

Let F : C Ñ D be a functor. The functor ∆F : D–Set Ñ C–Set has a left adjoint,
ΣF : C–Set Ñ D–Set. The rough idea is that ΣF performs parameterized colimits.
Given an instance I : C Ñ Set, we get an instance on D that acts as follows. For each
object d P ObpDq, the set ΣF pIqpdq is the colimit (think, union) of some diagram back
home in C.

Left pushforwards (also known as left Kan extensions) are discussed at length in
[Sp1]; here we begin with some examples from that paper.

Example 5.1.4.8. We again use the functor F : C Ñ D drawn below

C :“

SSN
‚

First
‚

T1
‚

FF

==

!!

T2
‚

aa

}}

��

Last
‚

Salary
‚

F
ÝÝÝÑ

SSN
‚

First
‚

T
‚

FF

>>

��

Last
‚

Salary
‚

“: D (5.4)

We will be applying the left pushforward ΣF : C–Set Ñ D–Set to the following instance
I : C Ñ Set:

T1
ID SSN First Last
T1-001 115-234 Bob Smith
T1-002 122-988 Sue Smith
T1-003 198-877 Alice Jones

T2
ID First Last Salary
T2-001 Alice Jones $100
T2-002 Sam Miller $150
T2-004 Sue Smith $300
T2-010 Carl Pratt $200

SSN
ID
115-234
118-334
122-988
198-877
342-164

First
ID
Adam
Alice
Bob
Carl
Sam
Sue

Last
ID
Jones
Miller
Pratt
Richards
Smith

Salary
ID
$100
$150
$200
$250
$300

The functor F : C Ñ D sent both tables T1 and T2 to table T. Applying ΣF will take
the what was in T1 and T2 and put the union in T. The result ΣF I : D Ñ Set is as
follows:

5.1. ADJOINT FUNCTORS 215

T
ID SSN First Last Salary
T1-001 115-234 Bob Smith T1-001.Salary
T1-002 122-988 Sue Smith T1-002.Salary
T1-003 198-877 Alice Jones T1-003.Salary
T2-001 T2-A101.SSN Alice Jones $100
T2-002 T2-A102.SSN Sam Miller $150
T2-004 T2-004.SSN Sue Smith $300
T2-010 T2-A110.SSN Carl Pratt $200

SSN
ID
115-234
118-334
122-988
198-877
342-164
T2-001.SSN
T2-002.SSN
T2-004.SSN
T2-010.SSN

First
ID
Adam
Alice
Bob
Carl
Sam
Sue

Last
ID
Jones
Miller
Pratt
Richards
Smith

Salary
ID
$100
$150
$200
$250
$300
T1-001.Salary
T1-002-Salary
T1-003-Salary

As you can see, there was no set salary information for any data coming from table
T1 nor any set SSN information for any data coming form table T2. But the definition
of adjoint, given in Definition 5.1.1.1, yielded the universal response: freely add new
variables that take the place of missing information. It turns out that this idea already
has a name in logic, Skolem variables, and a name in database theory, labeled nulls.
Exercise 5.1.4.9. Consider the functor F : 3 Ñ 2 sending 1 ÞÑ 1, 2 ÞÑ 2, 3 ÞÑ 2.

a.) Write down an instance I : 3 Ñ Set.

b.) Given the description that “ΣF performs a parameterized colimit”, make an educated
guess about what ΣF pIq will be. Give your answer in the form of two sets that are
made up from the three sets you already wrote down.

♦

We now briefly give the actual formula for computing left pushforwards. Suppose
that F : C Ñ D is a functor and let I : C Ñ Set be a set-valued functor on C. Then
ΣF pIq : D Ñ Set is defined as follows. Given an object d P ObpDq we first form the
comma category (see Definition 4.6.4.1) for the setup

C F
ÝÑ D d

ÐÝ 1

and denote it by pF Ó dq. There is a canonical projection functor π : pF Ó dq Ñ C, which
we can compose with I : C Ñ Set to obtain a functor pF Ó dq Ñ Set. We are ready to
define ΣF pIqpdq to be its colimit,

ΣF pIqpdq :“ colim
pFÓdq

I ˝ π.

We have defined ΣF pIq : D Ñ Set on objects d P ObpDq. As for morphisms we will be
even more brief, but one can see [Sp1] for details. Given a morphism g : d Ñ d1 one

216 CHAPTER 5. CATEGORIES AT WORK

notes that there is an induced functor pF Ó gq : pF Ó dq Ñ pF Ó d1q and a commutative
diagram of categories:

pF Ó dq
pFÓgq //

π

��
I˝π

��

pF Ó d1q

π1

��
I˝π1

��

C

I

��
Set

By the universal property of colimits, this induces the required function

colim
pFÓdq

I ˝ π
ΣF pIqpgq

ÝÝÝÝÝÝÝÝÑ colim
pFÓd1q

I ˝ π1.

5.1.4.10 Right pushforward: Π

Let F : C Ñ D be a functor. We heard in Section 5.1.4.7 that the functor ∆F : D–Set Ñ
C–Set has a left adjoint. Here we explain that it has a right adjoint, ΠF : C–Set Ñ D–Set
as well. The rough idea is that ΠF performs parameterized limits. Given an instance
I : C Ñ Set, we get an instance on D that acts as follows. For each object d P ObpDq,
the set ΠF pIqpdq is the limit (think, fiber product) of some diagram back home in C.

Right pushforwards (also known as right Kan extensions) are discussed at length in
[Sp1]; here we begin with some examples from that paper.
Example 5.1.4.11. We once again use the functor F : C Ñ D from Example 5.1.4.8. We
will apply the right pushforward ΠF to instance I : C Ñ Set from that example. 7

The instance ΠF pIq will put data in all 5 tables in D. In T it will put pairs pt1, t2q
where t1 is a row in T1 and t2 is a row in T2 for which the first and last names agree.

7To repeat for convenience,

C :“

SSN
‚

First
‚

T1
‚

FF

>>

T2
‚

``

~~

��

Last
‚

Salary
‚

F
ÝÝÝÝÑ

SSN
‚

First
‚

T
‚

GG

>>

��

Last
‚

Salary
‚

“: D (5.4)

I : C Ñ Set is

T1
ID SSN First Last
T1-001 115-234 Bob Smith
T1-002 122-988 Sue Smith
T1-003 198-877 Alice Jones

T2
ID First Last Salary
T2-001 Alice Jones $100
T2-002 Sam Miller $150
T2-004 Sue Smith $300
T2-010 Carl Pratt $200

5.1. ADJOINT FUNCTORS 217

It will copy the leaf tables exactly, so we do not display them here; the following is the
table T for ΠF pIq:

T
ID SSN First Last Salary
T1-002T2-A104 122-988 Sue Smith $300
T1-003T2-A101 198-877 Alice Jones $100

Looking at T1 and T2, there were only two ways to match first and last names.
Exercise 5.1.4.12. Consider the functor F : 3 Ñ 2 sending 1 ÞÑ 1, 2 ÞÑ 2, 3 ÞÑ 2.
a.) Write down an instance I : 3 Ñ Set.

b.) Given the description that “ΠF performs a parameterized limit”, make an educated
guess about what ΠF pIq will be. Give your answer in the form of two sets that are
made up from the three sets you already wrote down.

♦

We now briefly give the actual formula for computing right pushforwards. Suppose
that F : C Ñ D is a functor and let I : C Ñ Set be a set-valued functor on C. Then
ΠF pIq : D Ñ Set is defined as follows. Given an object d P ObpDq we first form the
comma category (see Definition 4.6.4.1) for the setup

1 d
ÝÑ D F

ÐÝ C

and denote it by pd Ó F q. There is a canonical projection functor π : pd Ó F q Ñ C, which
we can compose with I : C Ñ Set to obtain a functor pd Ó F q Ñ Set. We are ready to
define ΠF pIqpdq to be its limit,

ΠF pIqpdq :“ lim
pdÓF q

I ˝ π.

We have defined ΠF pIq : D Ñ Set on objects d P ObpDq. As for morphisms we will be
even more brief, but one can see [Sp1] for details. Given a morphism g : d Ñ d1 one
notes that there is an induced functor pg Ó F q : pd1 Ó F q Ñ pd Ó F q and a commutative
diagram of categories:

pd1 Ó F q
pgÓF q //

π1

��
I˝π1

��

pd Ó F q

π

��
I˝π

��

C

I

��
Set

SSN
ID
115-234
118-334
122-988
198-877
342-164

First
ID
Adam
Alice
Bob
Carl
Sam
Sue

Last
ID
Jones
Miller
Pratt
Richards
Smith

Salary
ID
$100
$150
$200
$250
$300

218 CHAPTER 5. CATEGORIES AT WORK

By the universal property of limits, this induces the required function

lim
pdÓF q

I ˝ π
ΠF pIqpgq

ÝÝÝÝÝÝÝÝÑ lim
pd1ÓF q

I ˝ π1.

5.2 Categories of functors
For any two categories C and D, 8 we discussed the category FunpC,Dq of functors and
natural transformations between them. In this section we discuss functor categories a bit
more and give some important applications within mathematics (sheaves) that extend
to the real world.

5.2.1 Set-valued functors
Let C be a category. Then we have been writing C–Set to denote the functor category
FunpC,Setq. Here is a nice result about these categories.

Proposition 5.2.1.1. Let C be a category. The category C–Set is closed under colimits
and limits.

Sketch of proof. Let J be an indexing category and D : J Ñ C–Set a functor. For each
object c P ObpCq, we have a functor Dc : J Ñ Set defined by Dcpjq “ Dpjqpcq. Define a
functor L : C Ñ Set by Lpcq “ limJ Dc, and note that for each f : c Ñ c1 in C there is
an induced function Lpfq : Lpcq Ñ Lpc1q. One can check that L is a limit of J , because
it satisfies the relevant universal property.

The dual proof holds for colimits.
�

Application 5.2.1.2. When taking in data about a scientific subject, one often finds
that the way one thinks about the problem changes over time. We understand this
phenomenon in the language of databases in terms of a series of schemas C1, C2, . . . , Cn,
perhaps indexed chronologically. The problem is that old data is held in old schemas
and we want to see it in our current understanding. The first step is to transfer all the
old data to our new schema in the freest possible way, that is, making no assumptions
about how to fill in the new fields. If one creates functors Fi : Ci Ñ Ci`1 from each of
these schemas to the next, then we can push the data forward using ΣFi

.
Doing this we will have n datasets on D :“ Cn, namely one for each “epoch of

understanding”. Since the category D–Set has all colimits, we can take the union of
these datasets and get one. It will have many Skolem variables (see Example 5.1.4.8),
and these need to be handled in a coherent way. However, the universality of left adjoints
could be interpreted as saying that any reasonable formula for handling this old data
can be applied to our results.

♦♦

Exercise 5.2.1.3. By Proposition 5.2.1.1, the category C–Set is closed under taking limits.
By Exercises 4.5.3.21 and 4.5.3.28, this means in particular that C–Set has an initial
object and a terminal object.

a.) Let A P ObpC–Setq be the initial object, considered as a functor A : C Ñ Set. For
any c P ObpCq, what is the set Apcq?

8Technically C has to be small (see Remark 4.1.1.2), but as we said there, we are not worrying about
that distinction in this book.

http://en.wikipedia.org/wiki/Schema_evolution

5.2. CATEGORIES OF FUNCTORS 219

b.) Let Z P ObpC–Setq be the terminal object, considered as a functor Z : C Ñ Set. For
any c P ObpCq, what is the set Zpcq?

♦

Proposition 5.2.1.1 says that we can add or multiply database states together. In
fact, database states on C form what is called a topos which means that just about every
consideration we made for sets holds for instances on any schema. Perhaps the simplest
schema is C “ ‚ , on which the relevant topos is indeed Set. But schemas can be
arbitrarily complex, and it is impressive that all of these considerations make sense in
such generality. Here is a table that makes a comparison between these domains.

Dictionary between Set and C–Set
Concept in Set Concept in C–Set
Set Object in C–Set
Function Morphism in C–Set
Element Representable functor
Empty set Initial object
Natural numbers Natural numbers object
Image Image
(Co)limits (Co)limits
Exponential objects Exponential objects
“Familiar” arithmetic “Familiar” arithmetic
Power sets 2X Power objects ΩX
Characteristic functions Characteristic morphisms
Surjections, injections Epimorphisms, monomorphisms

In the above table we said that elements of a set are akin to representable functors
in C–Set, but we have not yet defined those; we do so in Section 5.2.1.6. First we briefly
discuss monomorphisms and epimorphisms in general (Definition 5.2.1.4) and then in
C–Set (Proposition 5.2.1.5).

Definition 5.2.1.4 (Monomorphism, Epimorphism). Let S be a category and let f : X Ñ

Y be a morphism. We say that f is a monomorphism if it has the following property.
For all objects A P ObpSq and morphisms g, g1 : AÑ X in S,

A

g

""

g1

==X
f // Y

if f ˝ g “ f ˝ g1 then g “ g1.
We say that f : X Ñ Y is an epimorphism if it has the following property. For all

objects B P ObpSq and morphisms h, h1 : Y Ñ B in S,

X
f // Y

h
""

h1

==B

if h ˝ f “ h1 ˝ f then h “ h1.

220 CHAPTER 5. CATEGORIES AT WORK

In the category of sets, monomorphisms are the same as injections and epimorphisms
are the same as surjections (see Proposition 2.7.5.4). The same is true in C–Set: one
can check “table by table” that a morphism of instances is mono or epi.

Proposition 5.2.1.5. Let C be a category and let X,Y : C Ñ Set be objects in C–Set
and let f : X Ñ Y be a morphism in C–Set. Then f is a monomorphism (respectively an
epimorphism) if and only if, for every object c P ObpCq, the function fpcq : Xpcq Ñ Y pcq
is injective (respectively surjective).

Sketch of proof. We first show that if f is mono (respectively epi) then so is fpcq for all
c P ObpCq. Considering c as a functor c : 1 Ñ C, this result follows from the fact that ∆c

preserves limits and colimits, hence monos and epis.
We now check that if fpcq is mono for all c P ObpCq then f is mono. Suppose that

g, g1 : AÑ X are morphisms in C–Set such that f ˝ g “ f ˝ g1. Then for every c we have
f ˝ gpcq “ f ˝ g1pcq which implies by hypothesis that gpcq “ g1pcq. But the morphisms
in C–Set are natural transformations, and if two natural transformations g, g1 have the
same components then they are the same.

A similar argument works to show the analogous result for epimorphisms.
�

5.2.1.6 Representable functors

Given a category C, there are certain functors C Ñ Set that come with the package, one
for every object in C. So if C is a database schema, then for every table c P ObpCq there
is a certain database instance associated to it. These instances, i.e. set-valued functors,
are called representable functors, and they’ll be defined in Definition ??. The idea is
that if a database schema represents a conceptual layout of types (e.g. as an olog), then
each type T has an instance associated to it, standing for “the generic thing of type T
with all its generic attributes”.

Definition 5.2.1.7. Let C be a category and let c P ObpCq be an object. The functor
HomCpc,´q : C Ñ Set, sending d P ObpCq to the set HomCpc, dq and acting similarly
on morphisms d Ñ d1, is said to be represented by c. If a functor F : C Ñ Set is
isomorphic to HomCpc,´q, we say that F is a representable functor. We sometimes write
Yc :“ HomCpc,´q for short.

Example 5.2.1.8. Given a category C and an object c P ObpCq, we get a representable
functor. If we think of C as a database schema and c as a table, then what does the
representable functor Yc : C Ñ Set look like in terms of databases? It turns out that the
following procedure will generate it.

Begin by writing a new row, say “,”, in the ID column of table c. For each foreign
key column f : cÑ c1, add a row in the ID column of table c1 called “fp,q” and record
that result (i.e. “fp,q”) in the f column of table c. Repeat as follows: for each table d,
identify all rows r that have blank cell in column g : dÑ e. Add a new row called “gprq”
to table e and record that result in the pr, gq cell of table d.

Here is a concrete example. Let C be the following schema:

A
‚

f // B‚
g1 //
g2
//

h
��

C
‚

i // D‚

E
‚

5.2. CATEGORIES OF FUNCTORS 221

Then YB : C Ñ Set is the following instance

A
ID f

B
ID g1 g2 h

, g1p,q g2p,q hp,q

C
ID i

g1p,q ipg1p,qq
g2p,q ipg2p,qq

D
ID
ipg1p,qq
ipg2p,qq

E
ID
hp,q

We began with a single element in table B and followed the arrows, putting new
entries wherever they were required. One might call this the schematically implied ref-
erence spread or SIRS of the element , in table B. Notice that the table at A is empty,
because there are no morphisms B Ñ A.

Representable functors Yc yield databases states that are as free as possible, subject
to having the initial row , in table c. We have seen things like this before (by the name
of Skolem variables) when studying the left pushforward Σ. Indeed, if c P ObpCq is an
object, we can consider it as a functor c : 1 Ñ C. A database instance on 1 is the same
thing as a set X. The left pushforward ΣcpXq has the same kinds of Skolem variables.
If X “ t,u is a one element set, then we get the representable functor Σcpt,uq – Yc.
Exercise 5.2.1.9. Consider the schema for graphs,

GrIn :“
Ar
‚

src //
tgt
//
Ve
‚

a.) Write down the representable functor YAr : GrIn Ñ Set as two tables.

b.) Write down the representable functor YVe as two tables.

♦

Exercise 5.2.1.10. Consider the loop schema

Loop :“
s
‚

f
�� .

What is the representable functor Ys : LoopÑ Set? ♦

Let B be a box in an olog, say pa personq, and recall that an aspect of B is an
outgoing arrow, such as pa personq has as height in inches

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pan integerq. The following
slogan explains representable functors in those terms.

Slogan 5.2.1.11.

“ The functor represented by pa personq simply leaves a placeholder, like
xperson’s name herey or xperson’s height herey, for every aspect of pa personq.
In general, there is a representable functor for every type in an olog. The
representable functor for type T simply encapsulates the most generic or
abstract example of type T , by leaving a placeholder for each of its attributes.
”

222 CHAPTER 5. CATEGORIES AT WORK

5.2.1.12 Yoneda’s lemma

One of the most powerful tools in category theory is Yoneda’s lemma. It is often consid-
ered by new students to be quite abstract, but grounding it in databases may help.

The idea is this. Suppose that I : C Ñ Set is a database instance, and let c P ObpCq
be an object. Because I is a functor, we know that for every row r P Ipcq in table c a
value has been recorded in the f -column, where f : c Ñ c1 is any outgoing arrow. The
value in the pr, fq-cell refers to some row in table c1. What we’re saying is that each row
in table c induces SIRS throughout the database. They may not be “Skolem”, or in any
sense “freely generated”, but they are there nonetheless. The point is that to each row
in c there is a unique mapping Yc Ñ I.

Lemma 5.2.1.13 (Yoneda’s lemma, part 1.). Let C be a category, c P ObpCq an object,
and I : C Ñ Set a set-valued functor. There is a natural bijection

HomC–SetpYc, Iq
–

ÝÝÝÝÑ Ipcq.

Proof. See [Mac].
�

Example 5.2.1.14. Consider the category C drawn below:

C :“

mother ˝ firstChild = idMother

Child
‚

mother // Mother
‚

firstChild

hh

There are two representable functors, YChild and YMother. The latter, when written as a
database instance, will consist of a single row in each table. The former, YChild : C Ñ Set
is shown here:

Child
ID mother
, mother(,)
firstChild(mother(,)) mother(,)

Mother
ID firstChild
mother(,) firstChild(mother(,))

The representable functor YChild is the freest instance possible, starting with one element
in the Child table and satisfying the constraints.

Here is another instance I : C Ñ Set:
Child

ID mother
Amy Ms. Adams
Bob Ms. Adams
Carl Ms. Jones
Deb Ms. Smith

Mother
ID firstChild
Ms. Adams Bob
Ms. Jones Carl
Ms. Smith Deb

Yoneda’s lemma (5.2.1.13) is about the set of natural transformations YChild Ñ I.
Recall from Definition 4.3.1.2 that a search for natural transformations can get a bit
tedious. Yoneda’s lemma makes the calculation quite trivial. In our case there are
exactly four such natural transformations, and they are completely determined by where
, goes. In some sense the symbol , represents child-ness in our database.

5.2. CATEGORIES OF FUNCTORS 223

Exercise 5.2.1.15. Consider the schema C and instance I : C Ñ Set from Example
5.2.1.14. Let YChild be the representable functor as above.

a.) Let α : YChild Ñ I be the natural transformation sending , to Amy. What is
αChildpfirstChild(motherp,qqq? 9

b.) Let α : YChild Ñ I be the natural transformation sending , to Bob. What is
αChildpfirstChild(motherp,qqq?

c.) Let α : YChild Ñ I be the natural transformation sending , to Carl. What is
αChildpfirstChild(motherp,qqq?

d.) Let α : YChild Ñ I be the natural transformation sending , to Deb. What is
αChildpfirstChild(motherp,qqq?

e.) Let α : YChild Ñ I be the natural transformation sending , to Amy. What is
αMotherpmotherp,qq?

♦

We saw in Section 5.2.1.6 that a representable functor is a mathematically-generated
database instance for an abstract thing of type T . It creates placeholders for every
attribute that things of type T are supposed to have.

Slogan 5.2.1.16.

“ Yoneda’s lemma says the following. Specifying an actual thing of type T is
the same as filling in all placeholders found in the generic thing of type T . ”

Yoneda’s lemma is considered by many category theory lovers to be the most im-
portant tool in the subject. While its power is probably unclear to students whose sole
background in category theory comes from this book, Yoneda’s lemma is indeed ex-
tremely useful for reasoning. It allows us to move the notion of functor application into
the realm of morphisms between functors (i.e. morphisms in C–Set, which are natural
transformations). This keeps everything in one place — it’s all in the morphisms — and
thus more interoperable.
Example 5.2.1.17. In Example 3.1.1.26, we discussed the cyclic monoidM generated by
the symbol Q and subject to the relation Q7 “ Q4. We drew a picture like this:

Q0

‚ // Q
1

‚ // Q
2

‚ // Q
3

‚ // Q
4

‚

��
Q6

‚

AA

Q5

‚oo

(5.5)

We are finally ready to give the mathematical foundation for this picture. Since M is a
category with one object, N, there is a unique representable functor (up to isomorphism)
Y :“ YN : MÑ Set. A functor MÑ Set can be thought of as a set with an M-action,
as discussed in Section 4.2.1.1. Here the required set is

Y pNq “ HomMpN,Nq – tQ
0, Q1, Q2, Q3, Q4, Q5, Q6u

9There is a lot of clutter, perhaps. Note that “firstChild(mother(,))” is a row in the Child table.
Assuming that the math follows the meaning, if , points to Amy, where should firstChild(Mother(,))
point?

224 CHAPTER 5. CATEGORIES AT WORK

and the action is pretty straightforward (it is called the principal action). We might say
that (5.5) is a picture of this principal action of M.

However, we can go one step further. Given a functor Y : M Ñ Set, we can take
its category of elements,

ş

M Y as in Section 4.6.2. The category
ş

M Y has objects
Y pNq P ObpSetq, i.e. the set of dots in (5.5), and it has a unique morphism Qi Ñ Qj for
every path of length ď 6 from Qi to Qj in that picture.
Exercise 5.2.1.18. Let c P ObpCq be an object and let I P ObpC–Setq be another object.
Consider c also as a functor c : 1 Ñ C and recall the pullback functor ∆c : C–Set Ñ Set
and its left adjoint Σc : Set Ñ C–Set from Section 5.1.4.

a.) What is the set ∆cpIq?

b.) What is HomSetpt,u,∆cpIqq?

c.) What is HomC–SetpΣcpt,uq, Iq?

d.) How does Σcpt,uq compare to Yc, the functor represented by c, as objects in C–Set?

♦

Lemma 5.2.1.19 (Yoneda’s lemma, part 2). Let C be a category. The assignment
c ÞÑ Yc from Lemma 5.2.1.13 extends to a functor Y : Cop Ñ C–Set, and this functor is
fully faithful.

In particular, if c, c1 P ObpCq are objects and there is an isomorphism Yc – Yc1 in
C–Set, then there is an isomorphism c – c1 in C.

Proof. See [Mac]. �

Exercise 5.2.1.20. The distributive law for addition of natural numbers says pa`bqˆc “
aˆ c` bˆ c. Below we will give a proof of the distributive law, using category-theoretic
reasoning. Annotate anything in red ink with a justification for why it is true.

Proposition 5.2.1.21. For any natural numbers a, b, c P N, the distributive law

pa` bqc “ ac` bc

holds.

Sketch of proof. To finish, justify red stuff.
Let A,B,C be finite sets and let X be another finite set.

HomSetppA`Bq ˆ C,Xq–HomSetpA`B,X
Cq

–HomSetpA,X
Cq ˆHomSetpB,X

Cq

–HomSetpAˆ C,Xq ˆHomSetpB ˆ C,Xq

–HomSetppAˆ Cq ` pB ˆ Cq, Xq.

By the appropriate application of Yoneda’s lemma, we see that there is an isomorphism

pA`Bq ˆ C – pAˆ Cq ` pB ˆ Cq

in Fin. The result about natural numbers follows. �

♦

5.2. CATEGORIES OF FUNCTORS 225

5.2.1.22 The subobject classifier Ω P ObpC–Setq

If C is a category then the functor category C–Set is a very nice kind of category, called
a topos. Note that when C “ 1 is the terminal category, then we have an isomorphism
C–Set – Set, so the category of sets is a special case of a topos. What is so interesting
about toposes (or topoi) is that they so nicely generalize many properties of Set. In this
short section we investigate only one such property, namely that C–Set has a subobject
classifier, denoted Ω P ObpC–Setq. In the case C “ 1, we saw back in Section 2.7.4.9
that the subobject classifier is tTrue, Falseu P ObpSetq.

As usual, we consider the matter of subobject classifiers by grounding the discussion
in terms of databases.
Definition 5.2.1.23. Let C be a category, let C–Set denote its category of instances,
and let 1 P ObpC–Setq denote the terminal object. A subobject classifier for C–Set is an
object ΩC P ObpC–Setq and a morphism t : 1 Ñ ΩC with the following property. For any
monomorphism f : X Ñ Y in C–Set, there exists a unique morphism charpfq : Y Ñ ΩC
such that the following diagram is a pullback in C–Set:

X
! //

f

��

y
1

t

��
Y

charpfq
// ΩC

In terms of databases, what this means is that for every schema C there is some special
instance ΩC P ObpC–Setq that somehow classifies sub-instances. When our schema is
the terminal category, C “ 1, instances are sets and we saw in Definition 2.7.4.9 that the
subobject classifier is Ω1 “ tTrue, Falseu. One might think that the subobject classifier
for C–Set should just consist of a two-element set table-by-table, i.e. that for every
c P ObpCq we should have ΩC “

? tTrue, Falseu, but this is not correct.
In fact, for any object c P ObpCq, it is easy to say what ΩCpcq should be. We know

by Yoneda’s lemma (Lemma 5.2.1.13) that ΩCpcq “ HomC–SetpYc,ΩCq, where Yc is the
functor represented by c. There is a bijection between HomC–SetpYc,ΩCq and the set of
sub-instances of Yc. Each morphism f : c Ñ d in C induces a morphism Yf : Yd Ñ Yc,
and the map ΩCpfq : ΩCpcq Ñ ΩCpdq sends a sub-instance A Ď Yc to the pullback

Y ´1
f pAq //

��

y
A

��
Yd

Yf

// Yc

But this is all very abstract. We now give an example of a subobject classifier.
Example 5.2.1.24. Consider the category C – r3s depicted below

C :“

X

0
‚

after 1 //

after 2

77

after 3

$$1
‚

after 1 //

after 2

77
2
‚

after 1 // 3‚
X X

226 CHAPTER 5. CATEGORIES AT WORK

To write down ΩC we need to understand the representable functors Yc P ObpC–Setq,
for c “ 0, 1, 2, 3, as well as their subobjects. Here is Y0 as an instance:

Y0p0q
ID after 1 after 2 after 3
, after 1(,) after 2(,) after 3(,)

Y0p1q
ID after 1 after 2
after 1p,q after 2p,q after 3p,q

Y0p2q
ID after 1
after 2p,q after 3p,q

Y0p3q
ID
after 3p,q

What are the sub-instances of this? There is the empty sub-instance H Ď Y0 and the
identity sub-instance Y0 Ď Y0. But there are three more as well. Note that if we want
to keep the , row of table 0 then we have to keep everything. But if we throw away the
, row of table 0 we can still keep the rest and get a sub-instance. If we want to keep
the after 1p,q row of table 1 then we have to keep its images in tables 2 and 3. But we
could throw away both the , row of table 0 and the after 1p,q row of table 1 and still
keep the rest. And so on. In other words, the subobjects of Y0 are in bijection with the
set ΩCp0q :“ tyes, in 1, in 2, in 3, neveru.

The same analysis holds for the other tables of ΩC . It looks like this:

ΩCp0q
ID after 1 after 2 after 3
yes yes yes yes
in 1 yes yes yes
in 2 in 1 yes yes
in 3 in 2 in 1 yes
never never never never

ΩCp1q
ID after 1 after 2
yes yes yes
in 1 yes yes
in 2 in 1 yes
never never never

ΩCp2q
ID after 1
yes yes
in 1 yes
never never

ΩCp3q
ID
yes
never

The morphism 1 Ñ ΩC picks out the yes row of every table.
Now that we have constructed ΩC P ObpC–Setq, we are ready to see it in action.

What makes ΩC special is that for any instance X : C Ñ Set, the subinstances if X
are in one-to-one correspondence with the morphisms X Ñ ΩC . Consider the following
arbitrary instance X, where the blue rows denote a sub-instance A Ď X.

Xp0q
ID after 1 after 2 after 3
a1 b1 c1 d1
a2 b2 c1 d1
a3 b2 c1 d1
a4 b3 c2 d2
a5 b5 c3 d1

Xp1q
ID after 1 after 2
b1 c1 d1
b2 c1 d1
b3 c2 d2
b4 c1 d1
b5 c3 d1

Xp2q
ID after 1
c1 d1
c2 d2
c3 d1

Xp3q
ID
d1
d2

(5.6)

5.2. CATEGORIES OF FUNCTORS 227

This blue sub-instance A Ď X corresponds to a map charpAq : X Ñ ΩC . That is for
each c P ObpCq the rows in the c-table of X are sent to the rows in the c-table of ΩC .
The way charpAq works is as follows. For each table i and row x P Xpiq, find the first
column f in which the entry is blue (i.e. fpxq P A), and send x to the corresponding
element of ΩCpiq. For example, charpAqp0q sends a1 to in 2 and sends a4 to never, and
charpAqp2q sends c1 to yes and sends c2 to never.
Exercise 5.2.1.25. a.) Write out the blue subinstance A Ď X shown in (5.6) as an in-

stance of C, i.e. as four tables.

b.) This subinstance A Ď X corresponds to a map ` :“ charpAq : X Ñ ΩC . For all c P
ObpCq we have a function `pcq : Xpcq Ñ ΩCpcq. With c “ 1, write out `p1q : Xp1q Ñ
ΩCp1q.

♦

Exercise 5.2.1.26. Let Loop be the loop schema

Loop “
s
‚

f
�� .

a.) What is the subobject classifier ΩLoop P ObpLoop–Setq?

b.) How does ΩLoop compare to the representable functor Ys?

♦

Exercise 5.2.1.27. Let GrIn “ Ar
‚

src //
tgt
//
Ve
‚ be the indexing category for graphs.

a.) Write down the subobject classifier ΩGrIn P ObpGrIn–Setq in tabular form, i.e. as
two tables.

b.) Draw ΩGrIn as a graph.

c.) Let G be the graph below and G1 Ď G the blue part.

w
‚

f

g
//

h
��

x
‚

y
‚

j

MM i
// z‚

Write down G P ObpGrIn–Setq in tabular form.

d.) Write down the components of the natural transformation charpG1q : GÑ ΩGrIn.

♦

5.2.2 Database instances in other categories
5.2.2.1 Representations of groups

The classical mathematical subject of representation theory is the study of FunpG,Vectq
where G is a group and Vect is the category of vector spaces (over say R). Every such

228 CHAPTER 5. CATEGORIES AT WORK

functor F : G Ñ Vect is called a representation of G. Since G is a category with one
object N, F consists of a single vector space V “ F pNq together with an action of G on
it.

We can think of this in terms of databases if we have a presentation of G in terms of
generators and relations. The schema corresponding to G has one table and this table
has a column for each generator. Giving a representation F is the same as giving an
instance on our schema, with some properties that stem from the fact that our target
category is Vect rather than Set. There are many possibilities for expressing 10 such
data.

One possibility is if we could somehow draw V , say if V is 1-, 2-, or 3-dimensional.
If so, let P be our chosen picture of V , e.g. P is the standard drawing of a Cartesian
coordinate plane. Then every column of our table would consist entirely of the picture
P instead of a set of rows. Drawing a point in the ID-column picture would result in
a point being drawn in each other column’s picture, in accordance with the G-action.
Each column would of course respect addition and scalar multiplication.

Another possibility is to use the fact that there is a functor U : Vect Ñ Set, so our
instance F : G Ñ Vect can be converted to an ordinary instance U ˝ F : G Ñ Set. We
would have an ordinary set of rows. This set would generally be infinite, but it would
be structured by addition and scalar multiplication. For example, assuming V is finite
dimensional, one could find a few rows that generated the rest.

A third possibility is to use monads, which allow the table to have only as many rows
as V has dimensions. This is a considerable savings of space. See Section 5.3.

5.2.2.2 Representations of quivers

Representation theory also studies representations of quivers. A quiver is just the free
category (see Example 4.1.2.30) on a graph. If P is a graph with free category P then a
representation of the quiver P is a functor F : P Ñ Vect. Such a representation consists
of a vector space at every vertex of P and a linear transformation for every arrow. All of
the discussion from Section 5.2.2.1 works in this setting, except that there is more than
one table.

5.2.2.3 Other target categories

One can imagine the value of using target categories other than Set or Vect for databases.
Application 5.2.2.4. Geographic data consists of maps of the earth together with various
functions on it. For example for any point on the earth one may want to know the
average temperature recorded in the past 10 years, or the precise temperature at this
moment. Earth can be considered as a topological space, E. Similarly, temperatures
on earth reside on a continuum, say the space T of real numbers r´100, 200s. Thus the
temperature record is a function E Ñ T .

Other records such as precipitation, population density, elevation, etc. can all be
considered as continuous functions from E to some space. Agencies like the US Geological
Survey hold databases of such information. By modeling them on functors C Ñ Top,
they may be able to employ mathematical tools such as persistent homology [WeS] to
find interesting invariants of the data.

♦♦

10We would use the term “representing” or ”presenting”, but they are both taken in the context of
our narrative!

http://en.wikipedia.org/wiki/Geographic_data

5.2. CATEGORIES OF FUNCTORS 229

Application 5.2.2.5. Many other scientific disciplines could use the same kind of tool. For
example, in studying the mechanics of materials, one may want to consider the material
as a topological space M and measure values such as energy as a continuous M Ñ E.
Such observations could be modeled by databases with target category Top or Vect
rather than Set.

♦♦

5.2.3 Sheaves
Let X be a topological space (see Example 4.2.3.1), such as a sphere. In Section 5.2.2.3
we discussed continuous functions out of X, and their use in science (e.g. recording
temperatures on the earth as a continuous map X Ñ r´100, 200s). Sheaves allow us to
consider the local-global nature of such maps, taking into account reparable discrepancies
in data gathering tools.
Application 5.2.3.1. Suppose that X is the topological space corresponding to the earth;
by a region we mean an open subset U Ď X. Suppose that we cover X with 10,000 regions
U1, U2, . . . , U10000, such that some of the regions overlap in a non-empty subregion (e.g.
perhaps U5 X U9 ‰ Hq. For each i, j let Ui,j “ Ui X Uj .

For each region Ui Ď X we have a temperature recording device, which gives a
function Ti : Ui Ñ r´100, 200s. If Ui X Uj ‰ H then two different recording devices
give us temperature data for the intersection Ui,j . Suppose we find that they do not give
precisely the same data, but that there is a translation formula between their results. For
example, Ti might register 3˝ warmer than Tj registers, throughout the region Ui X Uj .

A consistent system of translation formulas is called a sheaf. It does not demand a
universal “true” temperature function, but only a consistent translation system between
them.

♦♦

The following definitions (Definitions 5.2.3.2, 5.2.3.5) make the notion of sheaf precise,
but we must go slowly (because it will already feel quick to the novice). For every region
U , we can record the value of some function (say temperature) throughout U ; although
this record might consist of a mountain of data (a temperature for each point in U !),
we think of it as one thing. That is, it is one element in the set of value-assignments
throughout U . A sheaf holds the set of possible values-assignments-throughout-U ’s for
all the different regions U , as well as how a value-assignment-throughout-U restricts to
a value-assignment-throughout-V for any subset V Ď U .

Definition 5.2.3.2. Let X be a topological space, let OpenpXq denote its partial order
of open sets, and let OpenpXqop be the opposite category. A presheaf on X is a functor
O : OpenpXqop Ñ Set. For every open set U Ď X we refer to the set OpUq as the set
of values-assignments throughout U of O. If V Ď U is an open subset, it corresponds to
an arrow in OpenpXq and applying the functor O yields a function called the restriction
map from U to V and denoted ρV,U : OpUq Ñ OpV q. Given a P OpUq, we may denote
ρV,U paq by a|V ; it is called the restriction of a to V .

The category of presheaves on X is simply OpenpXqop–Set; see Definition 4.3.3.1.

Exercise 5.2.3.3.

a.) Come up with 4 overlapping open subsets that cover the square X :“ r0, 3sˆr0, 3s Ď
R2. Write down a label for each open set as well as a label for each overlap (2-fold,
3-fold, etc.); you now have labeled n open sets. For each of these open sets, draw

http://en.wikipedia.org/wiki/Strength_of_materials

230 CHAPTER 5. CATEGORIES AT WORK

a dot with the appropriate label, and then draw an arrow from one dot to another
when the first refers to an open subset of the second. This is a preorder; call it
OpenpXq. Now make up and write down formulas R1 : X Ñ R and R2 : X Ñ R with
R1 ď R2, expressing a range of temperatures R1ppq ď x ď R2ppq that an imaginary
experiment shows can exist at each point p in the square.

b.) Suppose we now tried to make our presheaf O : OpenpXqop Ñ Set as follows. For
each of your open sets, say A, we could put

OpAq :“ tf : AÑ R | R1paq ď fpaq ď R2paqu.

What are the restriction maps? Do you like the name “value-assignment throughout
A” for elements of OpAq?

c.) We can now make another presheaf O1 given the same experiment. For each of your
open sets, say A, we could put

O1pAq :“ tf : AÑ R | f is continuous, and R1paq ď fpaq ď R2paqu.

Are you comfortable with the idea that there is a morphism of presheaves O1 Ñ O?

♦

Before we define sheaves, we need to clarify the notion of covering. Suppose that U
is a region and that V1, . . . , Vn are subregions (i.e. for each 1 ď i ď n we have Vi Ď U).
Then we say that the Vi cover U if every point in U is in Vi for some i. Another way to
say this is that the natural function \iVi Ñ U is surjective.
Example 5.2.3.4. Let X “ R be the space of real numbers, and define the following open
subsets: U “ p5, 10q, V1 “ p5, 7q, V2 “ p6, 9q, V3 “ p7, 10q. 11 Then V1, V2, V3 is a cover of
U . It has overlaps V12 “ V1 X V2 “ p6, 7q, V13 “ V1 X V3 “ H, V23 “ V2 X V3 “ p7, 9q.

Given a presheaf O : OpenpXqop Ñ Set, we have sets and functions as in the following
(incomplete) diagram

OpV1q

))
OpV1 X V2q

OpUq

>>

//

OpV2q

55

))
OpV2 X V3q

OpV3q

55

A presheaf O on X tells us what value-assignments throughout U can exist for each
U . Suppose we have a value-assignment a P OpUq throughout U and another value-
assignment a1 P OpU 1q throughout U 1, and suppose that they agree as value-assignments
throughout U X U 1, i.e. a|UXU 1 “ a1|UXU 1 . In this case we should have a unique value-
assignment b P OpU Y U 1q throughout U Y U 1 that agrees on the U -part with a and
agrees on the U 1-part with a1; i.e. b|U “ a and b|U 1 “ a1. This is the sheaf condition.

11We use parentheses to denote open intervals of real numbers. For example p6, 9q denotes the set
tx P R | 6 ă x ă 9u.

5.2. CATEGORIES OF FUNCTORS 231

Definition 5.2.3.5. Let X be a topological space, let OpenpXq be its partial order of
open sets, and let O : OpenpXqop Ñ Set be a presheaf. Given an open set U Ď X and a
cover V1, . . . , Vn of U , the following condition is called the sheaf condition for that cover.

Sheaf condition Given a sequence a1, . . . , an where each is a value-assignment ai P
OpViq throughout Vi, suppose that for all i, j we have ai|ViXVj

“ aj |ViXVj
; then

there is a unique value-assignment b P OpUq such that b|Vi “ ai.

The presheaf O is called a sheaf if it satisfies the sheaf condition for every cover.

Example 5.2.3.6. Let X “ R and let U, V1, V2, V3 be the open cover given in Example
5.2.3.4. Given a measurement taken throughout V1, a measurement taken throughout
V2, and a measurement taken throughout V3, we have elements a1 P OpV1q, a2 P OpV2q,
and a3 P OpV3q. If they are in agreement on the overlap intervals, we can glue them to
give a measurement throughout U .

Remark 5.2.3.7. In Application 5.2.3.1, we said that sheaves would help us patch together
information from different sources. Even if different temperature-recording devices Ti
and Tj registered different temperatures on an overlapping region Ui X Uj , we said they
could be patched together if there was a consistent translation system between their
results. What is actually needed is a set of isomorphisms

pi,j : Ti|Ui,j

–
ÝÑ Tj |Ui,j

that translate between them, and that these pi,j ’s act in concert with one another. This
(when precisely defined,) is called descent data.. The way it interacts with our definition
of sheaf given in Definitions 5.2.3.2 and 5.2.3.5 is buried in the restriction maps ρ for the
overlaps as subsets Ui,j Ď Ui and Ui,j Ď Uj . We will not explain further here. One can
see [Gro].

Application 5.2.3.8. Consider outer space as a topological spaceX. Different astronomers
record observations. Let C “ r390, 700s denote the set of wavelengths in the visible light
spectrum (written in nanometers). Given an open subset U Ď X let OpUq denote the
set of functions U Ñ C. The presheaf O satisfies the sheaf condition; this is the taken-
for-granted fact that we can patch together different observations of space.

Below are three views of the night sky. Given a telescope position to obtain the first
view, one moves the telescope right and a little down to obtain the second and one moves
it down and left to obtain the third. 12

12Image credit: NASA, ESA, Digitized Sky Survey Consortium.

http://en.wikipedia.org/wiki/Descent_theory
http://en.wikipedia.org/wiki/Astrophotography

232 CHAPTER 5. CATEGORIES AT WORK

These are value-assignments a1 P OpV1q, a2 P OpV2q, and a3 P OpV3q throughout subsets
V1, V2, V3 Ď X (respectively). These subsets V1, V2, V3 cover some (strangely-shaped)
subset U Ď X. The sheaf condition says that these three value-assignments glue together
to form a single value-assignment throughout U :

5.2. CATEGORIES OF FUNCTORS 233

♦♦

Exercise 5.2.3.9. Find an application of sheaves in your own domain of expertise. ♦

Application 5.2.3.10. Suppose we have a sheaf for temperatures on earth. For every
region U we have a set of theoretically possible temperature-assignments throughout U .
For example we may know that if it is warm in Texas, warm in Arkansas, and warm
in Kansas, then it cannot be cold in Oklahoma. With such a sheaf O in hand, one can
use facts about the temperature in one region U to predict the temperature in another
region V .

The mathematics is as follows. Suppose given regions U, V Ď X and a subset A Ď
OpUq corresponding to what we know about the temperature assignment throughout U .
We take the following fiber product

pρU,Xq
´1pAq
y

//

��

OpXq

ρU,X

��

ρV,X // OpV q

A // OpUq

The image of the top map is a subset of OpV q telling us which temperature-assignments
are possible throughout V given our knowledge A about the temperature throughout U .

We can imagine the same type of prediction systems for other domains as well, such
as the energy of various parts of a material. ♦♦

Example 5.2.3.11. In Exercises 4.2.4.3 and 4.2.4.4 we discussed the idea of laws being
dictated or respected throughout a jurisdiction. If X is earth, to every jurisdiction
U Ď X we assign the set OpUq of laws that are dictated to hold throughout U . Given
a law on U and a law on V , we can see if they amount to the same law on U X V . For
example, on U a law might say “no hunting near rivers” and on V a law might say “no
hunting in public areas”. It just so happens that on UXV all public areas are near rivers
and vice versa, so the laws agree there. These laws patch together to form a single rule
about hunting that is enforced throughout the union UYV , respected by all jurisdictions
within it.

234 CHAPTER 5. CATEGORIES AT WORK

5.2.3.12 Sheaf of ologged concepts

Definition 5.2.3.5 defines what should be called a sheaf of sets. We can discuss sheaves
of groups or even sheaves of categories. Here is an application of the latter.

Recall the notion of simplicial complexes discussed in Section 2.7.4.3. They look like
this:

A

B

D

C

E

F

G
H

I

J

K

L

M (5.7)

Given such a simplicial complex X, we can imagine each vertex v P X0 as an entity with
a worldview (e.g. a person) and each simplex as the common worldview shared by its
vertices. To model this, we will assign to each vertex v P X an olog Opvq, corresponding
to the worldview held by that entity, and to each simplex u P Xn, we assign an olog Opuq
corresponding to a common ground worldview.. Recall that X is a subset of PpX0q; it is
a preorder and its elements (the simplices) are ordered by inclusion. If u, v are simplices
with u Ď v then we want a map of ologs (i.e. a schema morphism) Opvq Ñ Opuq
corresponding to how any idea that is shared among the people in v is shared among
the people in u. Thus we have a functor O : X Ñ Sch (where we are forgetting the
distinction between ologs and databases for notational convenience).

To every simplicial complex (indeed every ordered set) one can associate a topological
space; in fact we have a functor Alx : PrO Ñ Top, called the Alexandrov functor.
Applying AlxpXopq we have a space which we denote by X . One can visualize X as X,
but the open sets include unions of simplices. There is a unique sheaf of categories on
X that behaves like X on simplices.

How does this work in the case of our sheaf O of worldviews? For simplices such as
pAq or pCIq, the sheaf returns the olog corresponding to that person or shared worldview.
But for open sets like the union of pCIJq and pIJKq, what we get is the olog consisting
of the types shared by C, I, and J for which I and J affirm agreement with types shared
by I, J , and K.
Example 5.2.3.13. Imagine two groups of people G1 and G2 each making observations
about the world. Suppose that there is some overlap H “ G1XG2. Then it may happen
that there is a conversation including G1 and G2 and both groups are talking about
something and, although using different words, H says “you guys are talking about the

http://en.wikipedia.org/wiki/Alexandrov_topology

5.3. MONADS 235

same things, you just use different words.” In this case there is an object-assignment
throughout G1 YG2 that agrees with both those on G1 and those on G2.

5.2.3.14 Time

One can use sheaves to model objects in time; Goguen gave an approach to this in [Gog].
For another approach, let C be a database schema. The lifespan of information about the
world is generally finite; that is, what was true yesterday is not always the case today.
Thus we can associate to each interval U of time the information that we deem to hold
throughout U . This is sometimes called the valid time of the data.

If something is the case throughout U and we have a subset V Ď U then of course
it is the case throughout V . And the sheaf condition holds too: if some information
holds throughout U and some other information holds throughout U 1, and if these two
things restrict to the same information on the overlap U X V , then they can be glued to
information that holds throughout the union U Y V .

So we can model information-change over time by using a sheaf of C-sets on the
topological space R. One way to think of this is simply as an instance on the schema
C ˆ OpenpRqop. The sheaf condition is just an added property that our instances have
to obey.
Example 5.2.3.15. Consider a hospital in which babies are born. In our scenario, mothers
enter the hospital, babies are born, mothers and babies leave the hospital. Let C be the
schema

c

a baby was birthed by //
m

a mother

Consider the 8-hour intervals

Shift1 :“ pJan 1´ 00 : 00, Jan 1´ 08 : 00q,
Shift2 :“ pJan 1´ 04 : 00, Jan 1´ 12 : 00q,
Shift3 :“ pJan 1´ 8 : 00, Jan 1´ 16 : 00q.

The nurses take shifts of 8 hours, overlapping with their predecessors by 4 hours, and they
record in the database only patients that were there throughout their shift or throughout
any overlapping shift. A mother might be in the hospital throughout shift 1, arriving
before the new year. A baby is born at 05:00 on Jan 1, and thus does not make it into
the Shift1-table, but does make it into the pShift1 X Shift2q-table. The two are there
until 17:00 on Jan 1, and so they are recorded in the Shift2 and Shift3 tables.

Whether or not this implementation of the sheaf semantics is most useful in practice
is certainly debatable. But something like this could easily be useful as a semantics, i.e.
a way of thinking about, the temporal nature of data.

5.3 Monads
Monads would probably not have been invented without category theory, but they have
been quite useful in formalizing algebra, calculating invariants of topological spaces, and
imbedding non-functional operations into functional programming languages. We will
mainly discuss monads in terms of how they can help us make modeling contexts explicit,
and in so doing allow us to simplify the language we use in the model.

Much of the following material on monads is taken from [Sp3].

236 CHAPTER 5. CATEGORIES AT WORK

5.3.1 Monads formalize context
Monads can formalize assumptions about the way one will do business throughout a
domain. For example, suppose that we want to consider functions that do not have to
return a value for all inputs. Such partial functions can be composed. Indeed, given a
partial function f : AÑ B and a partial function g : B Ñ C, one gets a partial function
g ˝ f : AÑ C in an obvious way.

Here we are drawing arrows as though we are talking about functions, but there is an
implicit context in which we are actually talking about partial functions. Monads allow
us to write things in the “functional” way while holding the underlying context. What
makes them useful is that the notion of context we are using here is made formal.
Example 5.3.1.1 (Partial functions). Partial functions can be modeled by ordinary func-
tions, if we add a special “no answer” element to the codomain. That is, the set of
partial functions A Ñ B is in one-to-one correspondence with the set of ordinary func-
tions A Ñ B \ t,u. For example, suppose we want to model the partial function
fpxq :“ 1

x2´1 : RÑ R in this way, we would use the function

fpxq :“

$

’

&

’

%

1
x2´1 if x ‰ ´1 and x ‰ 1,
, if x “ ´1,
, if x “ 1.

An ordinary function f : A Ñ B can be considered a partial function because we can
compose with the inclusion

B Ñ B \ t,u (5.8)

But how do we compose two partial functions written in this way? Suppose f : AÑ
B \ t,u and g : B Ñ C \ t,u are functions. First form a new function

g1 :“ g \ t,u : B \ t,u Ñ C \ t,u \ t,u (5.9)

then compose to get pg1 ˝ fq : AÑ C\t,u\t,u, and finally send both ,’s to the same
element by composing with

C \ t,u \ t,u Ñ C \ t,u. (5.10)

What does this mean? Every element a P A is sent by f to either an element b P B
or “no answer”. If it has an answer fpaq P B, this is either sent by g to an element
gpfpaqq P C or to “no answer”. We get a partial function AÑ C by sending a to gpfpaqq
if possible or to “no answer” if it gets stopped along the way.

This monad is sometimes called the maybe monad in computer science, because a
partial function f : AÑ B takes every element of A and either outputs just an element
of B or outputs nothing; more succinctly, it outputs a “maybe B”.
Application 5.3.1.2. Experiments are supposed to be performed objectively, but suppose
we imagine that changing the person who performs the experiment, say in psychology,
may change the outcome. Let A be the set of experimenters, letX be the parameter space
for the experimental variables (e.g. X “ Age ˆ Income) and let Y be the observation
space (e.g. Y “ propensity for violence). Then whereas we want to think of such an
experiment as telling us about a function f : X Ñ Y , we may want to make some of the
context explicit by including information about who performed the experiment. That is,
we are really finding a function f : X ˆAÑ Y .

http://en.wikipedia.org/wiki/Observer-expectancy_effect

5.3. MONADS 237

However, it may be the case that even ascertaining someones age or income, which
is done by asking that person, is subject to who in A is doing the asking, and so we
again want to consider the experimenter as part of the equation. In this case, we can
use a monad to hide the fact that everything in sight is assumed to be influenced by
A. In other words, we want to announce once and for all our modeling context—that
every observable is possibly influenced by the observer—so that it can recede into the
background.

We will return to this in Examples 5.3.2.6 and 5.3.3.4.
♦♦

5.3.2 Definition and examples
What aspects of Example 5.3.1.1 are really about monads, and what aspects are just
about partial functions in particular? It is a functor and a pair of natural transformations
that showed up in (5.9), (5.8), and (5.10). In this section we will give the definition and
a few examples. We will return to our story about how monads formalize context in
Section 5.3.3.

Definition 5.3.2.1 (Monad). A monad on Set is defined as follows: One announces
some constituents (A. functor, B. unit map, C. multiplication map) and asserts that they
conform to some laws (1. unit laws, 2. associativity law). Specifically, one announces

A. a functor T : Set Ñ Set,

B. a natural transformation η : idSet Ñ T , and

C. a natural transformation µ : T ˝ T Ñ T

We sometimes refer to the functor T as though it were the whole monad; we call η the
unit map and we call µ the multiplication map. One asserts that the following laws hold:

1. The following diagrams of functors Set Ñ Set commute:

T ˝ idSet
idT ˛η //

“

%%

T ˝ T

µ

��
T

idSet ˝ T
η˛idT //

“

%%

T ˝ T

µ

��
T

2. The following diagram of functors Set Ñ Set commutes:

T ˝ T ˝ T
µ˛idT //

idT ˛µ

��

T ˝ T

µ

��
T ˝ T

µ
// T

Example 5.3.2.2 (List monad). We now go through Definition 5.3.2.1 using what is called
the List monad. The first step is to give a functor List : Set Ñ Set, which we did in
Example 4.1.2.18. Recall that if X “ tp, q, ru then ListpXq includes the empty list r s,
singleton lists, such as rps, and any other list of elements in X, such as rp, p, r, q, ps. Given

238 CHAPTER 5. CATEGORIES AT WORK

a function f : X Ñ Y , one obtains a function Listpfq : ListpXq Ñ ListpY q by entry-wise
application of f .

As a monad, the functor List comes with two natural transformations, a unit map
η and a multiplication map µ. Given a set X, the unit map ηX : X Ñ ListpXq returns
singleton lists as follows

X
ηX // ListpXq

p
� // rps

q � // rqs

r � // rrs

Given a set X, the multiplication map µX : ListpListpXqq Ñ ListpXq flattens lists of lists
as follows.

ListpListpXqq µX // ListpXq

“

rq, p, rs, rs, rq, r, p, rs, rrs
‰ � // rq, p, r, q, r, p, r, rs

The naturality of η and µ just mean that these maps work appropriately well under
term-by-term replacement by a function f : X Ñ Y . Finally the three monad laws from
Definition 5.3.2.1 can be exemplified as follows:

rp, q, qs � idList˝η //
“

rps, rqs, rqs
‰

_

µ

��
rp, q, qs

rp, q, qs � η˝idList //
“

rp, q, qs
‰

_

µ

��
rp, q, qs

”

“

rp, qs, rrs
‰

,
“

rs, rr, q, qs
‰

ı

�µ˝idList //
_

idList˝µ

��

“

rp, qs, rrs, rs, rr, q, qs
‰

_

µ

��
“

rp, q, rs, rr, q, qs
‰ �

µ
// rp, q, r, r, q, qs

Exercise 5.3.2.3. Let P : Set Ñ Set be the powerset functor, so that given a function
f : X Ñ Y the function Ppfq : PpXq Ñ PpY q is given by taking images.

a.) Make sense of the following statement: “with η defined by singleton subsets and with
µ defined by union, J :“ pP, η, µq is a monad”.

b.) With X “ ta, bu, write down the function ηX as a 2-row, 2-column table, and write
down the function µX as a 16-row, 2-column table (you can stop after 5 rows if you
fully get it).

c.) Check that you believe the monad laws from Definition 5.3.2.1.

5.3. MONADS 239

♦

Example 5.3.2.4 (Partial functions as a monad). Here is the monad for partial functions.
The functor T : Set Ñ Set sends a set X to the set X \ t,u. Clearly, given a function
f : X Ñ Y there is an induced function f \ t,u : X \ t,u Ñ Y \ t,u, so this is a
functor. The natural transformation η : id Ñ T is given on a set X by the component
function

ηX : X Ñ X \ t,u

that includes X ãÑ X \ t,u. Finally, the natural transformation µ : T ˝ T Ñ T is given
on a set X by the component function

µX : X \ t,u \ t,u ÝÑ X \ t,u

that collapses both copies of ,.
Exercise 5.3.2.5. Let E be a set, elements we will refer to as exceptions. We imagine
that a function f : X Ñ Y either outputs a value or one of these exceptions, which might
be things like “overflow!” or “division by zero!”, etc. Let T : Set Ñ Set be the functor
X ÞÑ X\E. Follow Example 5.3.2.4 and come up with a unit map η and a multiplication
map µ for which pT, η, µq is a monad. ♦

Example 5.3.2.6. Fix a setA. Let T : Set Ñ Set be given by T pXq “ XA “ HomSetpA,Xq;
this is a functor. For a set X, let ηX : X Ñ T pXq be given by the constant function,
x ÞÑ cx : AÑ X where cxpaq “ x for all a P A. To specify a function

µX : HomSetpA, T pXqq Ñ HomSetpA,Xq,

we curry and need a functionAˆHomSetpA, T pXqq Ñ X. We have an evaluation function
(see Exercise 2.7.2.5) ev : AˆHomSetpA, T pXqq Ñ T pXq, and we have an identity func-
tion idA : AÑ A, so we have a function pidAˆevq : AˆHomSetpA, T pXqq ÝÑ AˆT pXq.
Composing that with another evaluation function A ˆ HomSetpA,Xq Ñ X yields our
desired µX . Namely, for all b P A and f P HompA, T pXqq we have

µXpfqpbq “ fpbqpbq.

Remark 5.3.2.7. Monads can be defined on categories other than Set. In fact, for any
category C one can take Definition 5.3.2.1 and replace every occurrence of Set with C
and obtain the definition for monads on C. We have actually seen a monad pPaths, η, µq
on the category Grph of graphs before, namely in Examples 4.3.1.12 and 4.3.1.13. That
is, Paths : Grph Ñ Grph, which sends a graph to its paths-graph is the functor part.
The unit map η includes a graph into its paths-graph using the observation that every
arrow is a path of length 1. And the multiplication map µ concatenates paths of paths.
The Kleisli category of this monad (see Definition 5.3.3.1) is used, e.g. in (4.14) to define
morphisms of database schemas.

5.3.3 Kleisli category of a monad
Given a monad J :“ pT, η, µq, we can form a new category KlspJq.

Definition 5.3.3.1. Let J “ pT, η, µq be a monad on Set. Form a new category, called
the Kleisli category for J, denoted KlspJq, with sets as objects, ObpKlspJqq :“ ObpSetq,
and with

HomKlspJqpX,Y q :“ HomSetpX,T pY qq

240 CHAPTER 5. CATEGORIES AT WORK

for sets X,Y . The identity morphism idX : X Ñ X in KlspJq is given by η : X Ñ T pXq
in Set. The composition of morphisms f : X Ñ Y and g : Y Ñ Z in KlspJq is given as
follows. Writing them as functions, we have f : X Ñ T pY q and g : Y Ñ T pZq. The first
step is to apply the functor T to g, giving T pgq : T pY q Ñ T pT pZqq. Then compose with
f to get T pgq ˝ f : X Ñ T pT pZqq. Finally, compose with µZ : T pT pZqq Ñ T pZq to get
the required function X Ñ T pZq. The associativity of this composition formula follows
from the associativity law for monads.

Example 5.3.3.2. Recall the monad J for partial functions, T pXq “ X \ t,u, from
Example 5.3.2.4. The Kleisli category KlspJq has sets as objects, but a morphism
f : X Ñ Y means a function X Ñ Y \ t,u, i.e a partial function. Given another
morphism g : Y Ñ Z, the composition formula in KlspJq ensures that g ˝ f : X Ñ Z has
the appropriate behavior.

Note how this monad allows us to make explicit our assumption that all functions
are partial, and then hide it away from our notation.
Remark 5.3.3.3. For any monad J “ pT, η, µq on Set, there is a functor i : Set Ñ KlspJq
given as follows. On objects we have ObpKlspJqq “ ObpSetq, so take i “ idObpSetq.
Given a morphism f : X Ñ Y in Set, we need a morphism ipfq : X Ñ Y in KlspJq, i.e.
a function ipfq : X Ñ T pY q. We assign ipfq to be the composite X f

ÝÑ Y
η
ÝÑ T pY q. The

functoriality of this mapping follows from the unit law for monads.
The point is that any ordinary function (morphism in Set) has an interpretation as

a morphism in the Kleisli category of any monad. More categorically, there is a functor
Set Ñ KlspJq.
Example 5.3.3.4. In this example we return to the setting laid out by Application 5.3.1.2
where we had a set A of experimenters and assumed that the person doing the experiment
may affect the outcome. We use the monad J “ pT, η, µq from Example 5.3.2.6 and
hope that KlspJq will conform to our understanding of how to manage the affect of the
experimenter on data.

The objects of KlspJq are ordinary sets, but a map f : X Ñ Y in KlspJq is a function
X Ñ Y A. By currying this is the same as a function XˆAÑ Y , as desired. To compose
f with g : Y Ñ Z in KlspJq, we follow the formula. It turns out to be equivalent to the
following. We have a function X ˆ A Ñ Y and a function Y ˆ A Ñ Z. Modifying the
first slightly, we have a function X ˆ A Ñ Y ˆ A, by identity on A, and we can now
compose to get X ˆAÑ Z.

What does this say in terms of experimenters affecting data gathering? It says that
if we work within KlspJq then we will be able to assume that the experimenter is being
taken into account; all proposed functions X Ñ Y are actually functions A ˆX Ñ Y .
The natural way to compose these experiments is that we only consider the data from
one experiment to feed into another if the experimenter is the same in both experiments.
13

Exercise 5.3.3.5. In Exercise 5.3.2.3 we discussed the power set monad J “ pP, η, µq.

a.) Can you find a way to relate the morphisms in KlspJq to relations? That is, given
a morphism f : AÑ B in KlspJq, is there a natural way to associate to it a relation
R Ď AˆB?

13This requirement seems a bit stringent, but it can be mitigated in a variety of ways. One such way
is to notice that by Remark 5.3.3.3 that we have not added any requirement, because any old way of
doing business yields a valid new way of doing business (we just say “every experimenter would get the
same result”). Another way would be to hand off the experiment results to another person, who could
carry it forward (see Example 5.3.3.8).

5.3. MONADS 241

b.) How does the composition formula in KlspJq relate to the composition of relations
given in Definition 2.5.2.3? 14

♦

Exercise 5.3.3.6. Let J “ pP, η, µq be the power set monad. The category KlspJq is
closed under binary products, i.e. every pair of objects A,B P ObpKlspJqq have a
product in KlspJq. What is the product of A “ t1, 2, 3u and B “ ta, bu? ♦

Exercise 5.3.3.7. Let J “ pP, η, µq be the power set monad. The category KlspJq is
closed under binary coproducts, i.e. every pair of objects A,B P ObpKlspJqq have a
coproduct in KlspJq. What is the coproduct of A “ t1, 2, 3u and B “ ta, bu? ♦

Example 5.3.3.8. Let A be any preorder. We speak of A throughout this example as
though it was the linear order given by time because this is a nice case, however the
mathematics works for any A P ObpPrOq.

There is a monad J “ pT, η, µq that captures the idea that a function f : X Ñ Y
occurs in the context of time in the following sense: The output of f is determined not
only by the element x P X on which it is applied but also by the time at which it was
applied to x; and the output of f occurs at another time, which is not before the time
of input.

The functor part of the monad is given on X P ObpSetq by

T pXq “ tp : AÑ AˆX | if ppaq “ pa1, xq then a1 ě au.

The unit ηX : X Ñ T pXq sends x to the function a ÞÑ pa, xq. The multiplication map
µX : T pT pXqq Ñ T pXq is roughly described as follows. If for every a P A you have a
later element a1 ě a and a function p : A Ñ A ˆ X that takes elements of A to later
elements of A and values of X, then ppa1q is a still later element of A and a value of X,
as desired.

Morphisms in the Kleisli category KlspJq can be curried to be functions f : AˆX Ñ

Aˆ Y such that if fpa, xq “ pa1, yq then a1 ě a.

Remark 5.3.3.9. One of the most important monads in computer science is the so-called
state monad. It is used when one wants to allow a program to mutate state variables
(e.g. in the program

if x ą 4 then x :“ x` 1 else Print “done”)

x is a state variable. The state monad is a special case of the monad discussed in Example
5.3.3.8. Given any set A, the usual state monad of type A is obtained by giving A the
indiscrete preorder (see Example 3.4.4.5). More explicitly it is a monad with functor
part

X ÞÑ pAˆXqX ,

and it will be briefly discussed in Example 5.3.5.4.

Example 5.3.3.10. Here we reconsider the image from the front cover of this book, re-
produced here.

14Actually, Definition 2.5.2.3 is about composing spans, but a relation R Ď A ˆ B is a kind of span,
RÑ AˆB.

242 CHAPTER 5. CATEGORIES AT WORK

an	
 observa*on	

a	
 predic*on	

an	
 experiment	

analyzed	
 by	
 a	

person	
 yields	

analyzed	
 by	
 a	

person	
 produces	

mo*vates	
 the	

specifica*on	
 of	

when	
 executed	

results	
 in	

a	
 hypothesis	

It looks like an olog, and all ologs are database schemas (see Section 3.5.2.14). But
how is “analyzed by a person yields” a function from observations to hypotheses? The
very name belies the fact that it is an invalid aspect in the sense of Section 2.3.2.1, because
given an observation there may be more than one hypothesis yielded, corresponding to
which person is doing the observing. In fact, all of the arrows in this diagram correspond
to some hidden context involving people: the prediction is dependent on who analyzes
the hypothesis, the specification of an experiment is dependent on who is motivated to
specify it, and experiments may result in different observations by different observers.

Without monads, the model of science proposed by this olog would be difficult to
believe in. But by choosing a monad we can make explicit (and then hide from discourse)
our implicit assumption that “of course this is all dependent on which human is doing
the science”. The choice of monad is an additional modeling choice. Do we want to
incorporate the partial order of time? Do we want the scientist to be modified by each
function (i.e. the person is changed when analyzing an observation to yield a hypothesis)?
These are all interesting possibilities.

One reasonable choice would be to use the state monad of type A, where A is the
set of scientific models. This implies the following context: every morphism f : X Ñ Y
in the Kleisli category of this monad is really a morphism f : X ˆ A Ñ Y ˆ A; while
ostensibly giving a map from X to Y , it is influenced by the scientific model under which
it is performed, and its outcome yields a new scientific model.

Reading the olog in this context might look like this:

A hypothesis (in the presence of a scientific model) analyzed by a person
produces a prediction (in the presence of a scientific model), which motivates
the specification of an experiment (in the presence of a scientific model),
which when executed results in an observation (in the presence of a scientific
model), which analyzed by a person yields a hypothesis (in the presence of a
scientific model).

The parenthetical statements can be removed if we assume them to always be around,
which can be done using the monad above.

5.3. MONADS 243

5.3.3.11 Relaxing functionality constraint for ologs

In Section 2.3.2 we said that every arrow in an olog has to be English-readable as a
sentence, and it has to correspond to a function. For example, the arrow

a person has // a child (5.11)

comprises an readable sentence, but does not correspond to a function because a person
may have no children or more than one child. We’ll call olog in which every arrow
corresponds to a function (the only option proposed so far in the book) a functional
olog. Requiring that ologs be functional as we have been doing, comes with advantages
and disadvantages. The main advantage is that creating a functional olog requires more
conceptual clarity about the situation, and this has benefits for the olog-creator as well
as for anyone to whom he or she tries to explain the situation. The main disadvantage
is that creating a functional olog takes more time, and the olog takes up more space on
the page.

In the context of the power set monad (see Exercise 5.3.2.3), a morphism f : X Ñ Y
between sets X and Y becomes a binary relation on X and Y , rather than a function,
as seen in Exercise 5.3.3.5. So in that context, the arrow in (5.11) becomes valid. An
olog in which arrows correspond to mere binary relations rather than functions might be
called a relational olog.

5.3.4 Monads in databases
In this section we discuss how to record data in the presence of a monad. The idea is quite
simple. Given a schema (category) C, an ordinary instance is a functor I : C Ñ Set. But
if J “ pT, η, µq is a monad, then a Kleisli J-instance on C is a functor J : C Ñ KlspJq.
Such a functor associates to every object c P ObpCq a set Jpcq, and to every arrow
f : c Ñ c1 in C a morphism Jpfq : Jpcq Ñ Jpc1q in KlspJq. How does this look in terms
of tables?

Recall that to represent an ordinary database instance I : C Ñ Set, we use a tabular
format in which every object c P ObpCq is displayed as a table including one ID column
and an additional column for every arrow emanating from c. In the ID column of table
c were elements of the set Ipcq and in the column assigned to some arrow f : cÑ c1 the
cells were elements of the set Ipc1q.

To represent a Kleisli database instance J : C Ñ KlsJ is similar; we again use a
tabular format in which every object c P ObpCq is displayed as a table including one ID
column and an additional column for every arrow emanating from c. In the ID column
of table c are again elements of the set Jpcq; however in the column assigned to some
arrow f : cÑ c1 are not elements of Jpc1q but T -values in Jpc1q, i.e. elements of T pJpc1qq.
Example 5.3.4.1. Let J “ pT, η, µq be the monad for partial functions, as discussed in
Example 5.3.1.1. Given any schema C, we can represent a Kleisli J-instance I : C Ñ
KlspJq in tabular format. To every object c P ObpCq we’ll have a set Ipcq of rows, and
given a column c Ñ c1 every row will produce either a value in Ipc1q or fail to produce
a value; this is the essence of partial functions. We might denote the absence of a value
using ,.

Consider the schema indexing graphs

C :“ Arrow
‚

src //
tgt
//
Vertex
‚

244 CHAPTER 5. CATEGORIES AT WORK

As we discussed in Section 4.2.1.20, an ordinary instance on C represents a graph.

I :“ ‚v
f // ‚w

h

==

g

##
‚x

Arrow pIq

ID src tgt
f v w
g w x
h w x

Vertex pIq

ID
v
w
x

A Kleisli J-instance on C represents graphs in which edges can fail to have a source
vertex, fail to have a target vertex, or both.

J :“
‚v

i

��

f // ‚w

h

==

g

##
‚x

j
//

Arrow pJq

ID src tgt
f v w
g w x
h w x
i v ,
j , ,

Vertex pJq

ID
v
w
x

The context of these tables is that of partial functions, so we do not need a reference for
, in the vertex table. Mathematically, the morphism Jpsrcq : JpArrowq Ñ JpVertexq
needs to be a function JpArrowq Ñ JpVertexq \ t,u, and it is.

5.3.4.2 Probability distributions

Let r0, 1s Ď R denote the set of real numbers between 0 and 1. Let X be a set and
p : X Ñ r0, 1s a function. We say that p is a finitary probability distribution on X if
there exists a finite subset W Ď X such that

ÿ

wPW

ppwq “ 1, (5.12)

and such that ppxq ą 0 if and only if x P W . Note that W is unique if it exists; we call
it the support of p and denote it Suppppq. Note also that if X is a finite set then every
function p satisfying (5.12) is a finitary probability distribution on X.

For any set X, let DistpXq denote the set of finitary probability distributions onX. It
is easy to check that given a function f : X Ñ Y one obtains a function Distpfq : DistpXq Ñ
DistpY q by Distpfqpyq “

ř

fpxq“y ppxq. Thus we can consider Dist : Set Ñ Set as a
functor, and in fact the functor part of a monad. Its unit η : X Ñ DistpXq is given by the
Kronecker delta function x ÞÑ δx where δxpxq “ 1 and δxpx1q “ 0 for x1 ‰ x. Its multipli-
cation µ : DistpDistpXqq Ñ DistpXq is given by weighted sum: given a finitary proba-
bility distribution w : DistpXq Ñ r0, 1s and x P X, put µpwqpxq “

ř

pPSupppwq wppqppxq.

Example 5.3.4.3 (Markov chains). Let Loop be the loop schema,

Loop :“
s
‚

f
��

as in Example 3.5.2.9. A Dist-instance on Loop is equivalent to a time-homogeneous
Markov chain. To be explicit, a functor δ : LoopÑ KlsDist assigns to the unique object

5.3. MONADS 245

s P ObpLoopq a set S “ δpsq, which we call the state space, and to f : s Ñ s a function
δpfq : S Ñ DistpSq, which sends each element x P S to some probability distribution on
elements of S. For example, the table δ on the left corresponds to the Markov matrix
M on the right below:

δ :“

s
ID f
1 .5(1)+.5(2)
2 1(2)
3 .7(1)+.3(3)
4 .4(1)+.3(2)+.3(4)

M :“

¨

˚

˚

˝

0.5 0.5 0 0
0 1 0 0

0.7 0 0.3 0
0.4 0.3 0 0.3

˛

‹

‹

‚

(5.13)

As one might hope, for any natural number n P N the map fn : S Ñ DistpSq
corresponds to the matrix Mn, which sends an element in S to its probable location
after n iterations of the transition map.
Application 5.3.4.4. Every star emits a spectrum of light, which can be understood as
a distribution on the electromagnetic spectrum. Given an object B on earth, different
parts of B will absorb radiation at different rates. Thus B produces a function from the
electromagnetic spectrum to distributions of energy absorption. In the context of the
probability distributions monad, we can record data on the schema

star
‚

emits // wavelengths
‚

absorbed by B // energies
‚

The composition formula for Kleisli categories is the desired one: to each star we associate
the weighted sum of energy absorption rates over the set of wavelengths emitted by the
star.

♦♦

5.3.5 Monads and adjunctions
There is a strong connection between monads and adjunctions: every adjunction creates
a monad, and every monad “comes from” an adjunction. For example, the List monad
(Example 5.3.2.2) comes from the free-forgetful adjunction between sets and monoids

Set
F //Mon
U
oo

(see Proposition 5.1.1.2). That is, for any set X, the free monoid on X is

F pXq “ pListpXq, r s, `̀ q,

and the underlying set of that monoid is UpF pXqq “ ListpXq. Now it may seem like
there was no reason to use monoids at all—the set ListpXq was needed in order to discuss
F pXq—but it will turn out that the unit η and multiplication µ will come drop out of
the adjunction too. First, we discuss the unit and counit of an adjunction.

Definition 5.3.5.1. Let C and D be categories, and let L : C Ñ D and R : D Ñ C be
functors with adjunction isomorphism

αc,d : HomDpLpcq, dq
–

ÝÝÝÑ HomCpc,Rpdqq

http://cas.sdss.org/dr6/en/proj/basic/color/fromstars.asp
http://en.wikipedia.org/wiki/Absorption_spectroscopy

246 CHAPTER 5. CATEGORIES AT WORK

for any objects c P ObpCq and d P ObpDq. The unit η : idC Ñ R ˝ L (respectively the
counit ε : L ˝RÑ idD) are natural transformations defined as follows.

Given an object c P ObpCq, we apply α to idLpcq : Lpcq Ñ Lpcq to get

ηc : cÑ R ˝ Lpcq;

similarly given an object d P ObpDq we apply α´1 to idRpdq : Rpdq Ñ Rpdq to get

εd : L ˝Rpdq Ñ d.

Below we will show how to use the unit and counit of any adjunction to make a
monad. We first walk through the process in Example 5.3.5.2.

Example 5.3.5.2. Consider the adjunction Set
F //Mon
U
oo between sets and monoids.

Let T “ U ˝ F : Set Ñ Set; this will be the functor part of our monad, and we have
T “ List. Then the unit of the adjunction, η : idSet Ñ U ˝ F is precisely the unit of the
monad: for any set X P ObpSetq the component ηX : X Ñ ListpXq is the function that
takes x P X to the singleton list rxs P ListpXq. The monad also has a multiplication
map µX : T pT pXqq Ñ T pXq, which amounts to flattening a list of lists. This function
comes about using the counit ε, as follows

T ˝ T “ U ˝ F ˝ U ˝ F
idU˛ε˛idF

ÝÝÝÝÝÝÝÝÝÑ U ˝ F “ T.

The general procedure for extracting a monad from an adjunction is analogous to
that shown in Example 5.3.5.2. Given any adjunction

C
L //D
R
oo

We define J “ R ˝ L : C Ñ C, we define η : idC Ñ J to be the unit of the adjunction
(as in Definition 5.3.5.1), and we define µ : J ˝ J Ñ J to be the natural transformation
idR ˛ ε ˛ idL : RLRLÑ RL, obtained by applying the counit ε : LRÑ idD.

The above procedure produces monads on arbitrary categories C, whereas our def-
inition of monad (Definition 5.3.2.1) considers only the case C “ Set. However, this
definition can be generalized to arbitrary categories C by simply replacing every occur-
rence of the string Set with the string C. Similarly, our definition of Kleisli categories
(Definition 5.3.3.1) considers only the case C “ Set, but again the generalization to
arbitrary categories C is straightforward. In Proposition 5.3.5.3, it may be helpful to
again put C “ Set if one is at all disoriented.

Proposition 5.3.5.3. Let C be a category, let pJ, η, µq be a monad on C, and let K :“
KlsCpJq be the Kleisli category. Then there is an adjunction

C
L //K
R
oo

such that the monad pJ, η, µq is obtained (up to isomorphism) by the above procedure.

Sketch of proof. The functor L : C Ñ K was discussed in Remark 5.3.3.3. We define it
to be identity on objects (recall that ObpKq “ ObpCq). Given objects c, c1 P ObpCq the
function

HomCpc, c
1q

L
ÝÝÝÑ HomKpc, c

1q “ HomCpc,Jpc
1qq

5.4. OPERADS 247

is given by f ÞÑ ηc1 ˝f . The fact that this is a functor (i.e. that it preserves composition)
follows from a monad axiom.

The functor R : K Ñ C acts on objects by sending c P ObpKq “ ObpCq to Jpcq P
ObpCq. For objects c, c1 P ObpKq the function

HomCpc,Jpc
1qq “ HomKpc, c

1q
R

ÝÝÝÑ HomCpJpcq,Jpc
1qq

is given by sending the C-morphism f : cÑ Jpc1q to the composite

Jpcq
Jpfq

ÝÝÝÝÝÑ JJpc1q
µc1

ÝÝÝÝÑ Jpc1q.

Again, the functoriality follows from monad axioms.
We will not continue on to show that these are adjoint or that they produce the

monad pJ, η, µq, but see [Mac, VI.5.1] for the remainder of the proof.
�

Example 5.3.5.4. Let A P ObpSetq be a set, and recall the currying adjunction

Set
Aˆ´ //Set
´

A

oo

discussed briefly in Example 5.1.1.8. The corresponding monad StA is typically called
the state monad of type A in programming language theory. Given a set X, we have

StApXq “ pAˆXq
A.

In the Kleisli category KlspStAq a morphism from X to Y is a function of the form
X Ñ pAˆ Y qA, but this can be curried to a function AˆX Ñ Aˆ Y .

This monad is related to holding on to an internal state variable of type A. Every
morphism ostensibly from X to Y actually takes as input not only an element of X but
also the current state a P A, and it produces as output not only an element of Y but an
updated state as well.

Computer scientists in programming language theory have found monads to be very
useful ([Mog]). In much the same way, monads on Set can be useful in databases, as
discussed in Section 5.3.4. Another, totally different way to use monads in databases is by
using a mapping between schemas to produce in each one an internal model of the other.
That is, for any functor F : C Ñ D, i.e. mapping of database schemas, the adjunction
pΣF ,∆F q produces a monad on C–Set, and the adjunction p∆F ,ΠF q produces a monad
on D–Set. If one interprets the List monad as producing in Set an internal model of
the category Mon of monoids, one can similarly interpret the above monads on C–Set
and D–Set as producing internal models of each within the other.

5.4 Operads
In this section we briefly introduce operads, which are generalizations of categories.
They often are useful for speaking about self-similarity of structure. For example, we
will use them to model agents made up of smaller agents, or materials made up of smaller
materials. This association with self-similarity is not really inherent in the definition,
but it tends to emerge in our thinking about many operads used in practice.

Let me begin with a warning.

248 CHAPTER 5. CATEGORIES AT WORK

Warning 5.4.0.5. My use of the term operad is not entirely standard and conflicts with
widespread usage. The more common term for what I am calling an operad is symmetric
colored operad or a symmetric multicategory. An operad classically is a multicategory
with one object, and a colored operad is a multicategory. The analogy is that “operad is
to multicategory as monoid is to category”. The term multicategory stems from the fact
that the morphisms in a multicategory have many, rather than one, input. But there
is nothing really “multi” about the multicategory itself, only its morphisms. Probably
the real reason though is that I find the term multicategory to be clunky and the term
operad to be sleek, clocking in at half the syllables. I apologize if my break with standard
terminology causes any confusion.

This introduction to operads is quite short. One should see [Le1] for an excellent
treatment.

5.4.1 Definition and classical examples

An operad is like a category in that it has objects, morphisms, and a composition formula,
and it follows an identity law and an associativity law. The difference is that each
morphism has many inputs (and one output).

A

B

C

S f

The description of composition in an operad is a bit heavier than it is in a category, but
the idea fairly straightforward. Here is a picture of morphisms being composed.

5.4. OPERADS 249

A

B

C

S

D T

f1

f2

g
X

g ⚬ (f1,f2)
X

A

B

C

D

the arrows above compose to give

Note that S and T disappear from the composition, but this is analogous to the way the
middle object disappears from the composition of morphisms in a category

A
f

ÝÝÝÑ S
g

ÝÝÝÑ X the arrows to the left compose to give A
g˝f

ÝÝÝÝÝÑ X

Here is the definition, which we take directly from [Sp4].

Definition 5.4.1.1. An operadO is defined as follows: One announces some constituents
(A. objects, B. morphisms, C. identities, D. compositions) and asserts that they conform
to some laws (1. identity law, 2. associativity law). Specifically,

A. one announces a collection ObpOq, each element of which is called an object of
O.

B. for each object y P ObpOq, finite set n P ObpFinq, and n-indexed set of objects
x : nÑ ObpOq, one announces a set Onpx; yq P ObpSetq. Its elements are called
morphisms from x to y in O.

C. for every object x P ObpOq, one announces a specified morphism denoted idx P
O1px;xq called the identity morphism on x.

D. Let s : m Ñ n be a morphism in Fin. Let z P ObpOq be an object, let y : n Ñ
ObpOq be an n-indexed set of objects, and let x : mÑ ObpOq be an m-indexed
set of objects. For each element i P n, write mi :“ s´1piq for the pre-image of s
under i, and write xi “ x|mi

: mi Ñ ObpOq for the restriction of x to mi. Then

250 CHAPTER 5. CATEGORIES AT WORK

one announces a function

˝ : Onpy; zq ˆ
ź

iPn

Omi
pxi; ypiqq ÝÑ Ompx; zq, (5.14)

called the composition formula.

Given an n-indexed set of objects x : nÑ ObpOq and an object y P ObpOq, we sometimes
abuse notation and denote the set of morphisms from x to y by Opx1, . . . , xn; yq. 15 We
may write HomOpx1, . . . , xn; yq, in place of Opx1, . . . , xn; yq, when convenient. We can
denote a morphism φ P Onpx; yq by φ : x Ñ y or by φ : px1, . . . , xnq Ñ y; we say that
each xi is a domain object of φ and that y is the codomain object of φ. We use infix
notation for the composition formula, e.g. writing ψ ˝ pφ1, . . . , φnq.

One asserts that the following laws hold:

1. for every x1, . . . , xn, y P ObpOq and every morphism φ : px1, . . . , xnq Ñ y, we
have

φ ˝ pidx1 , . . . , idxnq “ φ and idy ˝ φ “ φ;

2. Let m s
ÝÑ n

t
ÝÑ p be composable morphisms in Fin. Let z P ObpOq be an

object, let y : p Ñ ObpOq, x : n Ñ ObpOq, and w : m Ñ ObpOq respectively
be a p-indexed, n-indexed, and m-indexed set of objects. For each i P p, write
ni “ t´1piq for the pre-image and xi : ni Ñ ObpOq for the restriction. Similarly,
for each k P n write mk “ s´1pkq and wk : mk Ñ ObpOq; for each i P p, write
mi,´ “ pt˝sq

´1piq and wi,´ : mi,´ Ñ ObpOq; for each j P ni, write mi,j :“ s´1pjq
and wi,j : mi,j Ñ ObpOq. Then the diagram below commutes:

śOppy; zq ˆ
ś

iPpOni
pxi; ypiqq ˆ

ś

iPp, jPni
Omi,j

pwi,j ;xipjqq

**tt
ś

Onpx; zq ˆ
ś

kPnOmk
pwk;xpkqq

))

śOppy; zq ˆ
ś

iPpOmi,´pwi,´; ypiqq

uu
Ompw; zq

Remark 5.4.1.2. In this remark we will discuss the abuse of notation in Definition 5.4.1.1
and how it relates to an action of a symmetric group on each morphism set in our
definition of operad. We follow the notation of Definition 5.4.1.1, especially following
the use of subscripts in the composition formula.

Suppose that O is an operad, z P ObpOq is an object, y : nÑ ObpOq is an n-indexed
set of objects, and φ : y Ñ z is a morphism. If we linearly order n, enabling us to
write φ : pyp1q, . . . , yp|n|qq Ñ z, then changing the linear ordering amounts to finding an
isomorphism of finite sets σ : m –

ÝÑ n, where |m| “ |n|. Let x “ y ˝ σ and for each i P n,
note that mi “ σ´1ptiuq “ tσ´1piqu, so xi “ x|σ´1piq “ ypiq. Taking idxi P Omipxi; ypiqq
for each i P n, and using the identity law, we find that the composition formula induces
a bijection Onpy; zq –ÝÑ Ompx; zq, which we might denote by

σ : Opyp1q, yp2q, . . . , ypnq; zq – O
`

ypσp1qq, ypσp2qq, . . . , ypσpnqq; z
˘

.

15There are three abuses of notation when writing Opx1, . . . , xn; yq, which we will fix one by one. First,
it confuses the set n P ObpFinq with its cardinality |n| P N. But rather than writing Opx1, . . . , x|n|; yq,
it would be more consistent to write Opxp1q, . . . , xp|n|q; yq, because we have assigned subscripts another
meaning in part D. But even this notation unfoundedly suggests that the set n has been endowed with
a linear ordering, which it has not. This may be seen as a more serious abuse, but see Remark 5.4.1.2.

5.4. OPERADS 251

In other words, there is an induced group action of Autpnq on Onpx; zq, where Autpnq is
the group of permutations of an n-element set.

Throughout this book, we will permit ourselves to abuse notation and speak of mor-
phisms φ : px1, x2, . . . , xnq Ñ y for a natural number n P N, without mentioning the
abuse inherent in choosing an order, so long as it is clear that permuting the order of
indices would not change anything up to canonical isomorphism.

Example 5.4.1.3. Let Sets denote the operad defined as follows. For objects we put
ObpSetsq “ ObpSetq. For a natural number n P N and sets X1, . . . , Xn, Y , put

HomSetspX1, . . . , Xn;Y q :“ HomSetpX1 ˆ ¨ ¨ ¨ ˆXn, Y q.

Given functions f1 : pX1,1 ˆ ¨ ¨ ¨ ˆX1,m1q Ñ Y1 through fn : pXn,1 ˆ ¨ ¨ ¨ ˆXn,mnq Ñ Yn
and a function Y1 ˆ ¨ ¨ ¨ ˆ Yn Ñ Z, the universal property provides us a unique function
of the form pX1,1 ˆ ¨ ¨ ¨ ˆXn,mn

q ÝÑ Z, giving rise to our composition formula.

Example 5.4.1.4 (Little squares operad). An operad commonly used in mathematics is
called the little n-cubes operad. We’ll focus on n “ 2 and talk about the little squares
operad O. Here the set of objects has only one element, which we denote by a square,
ObpOq “ t˝u. For a natural number n P N, a morphism f : p˝, ˝, . . . , ˝q ÝÑ ˝ is a
positioning of n non-overlapping squares inside of a square. Here is a picture of a
morphism pX1, X2, X3q Ñ Y , where X1 “ X2 “ X3 “ Y “ ˝.

X1

X2

X3

Y

The composition law says that given a positioning of small squares inside a large square,
and given a positioning of tiny squares inside each of those small squares, we get a
positioning of tiny squares inside a large square. A picture is shown in Figure 5.15.

252 CHAPTER 5. CATEGORIES AT WORK

X1
X2

X3

Y

X1 X2 X3

=

Y

Figure 5.15: Here we show a morphism pX1, X2, X3q Ñ Y and morphisms pW1,1,W1,2q Ñ
X1, pW2,1,W2,2,W2,3q Ñ X2, and pW3,1q Ñ X3, each of which is a positioning of squares
inside a square. The composition law scales and positions the squares in the “obvious”
way.

Hopefully, what we meant by “self-similarity” in the introduction to this section (see
page 247) is becoming clear.

Exercise 5.4.1.5. Consider an operad O like the little squares operad from Example
5.4.1.4, except with three objects: square, circle, equilateral triangle. A morphism is
again a non-overlapping positioning of shapes inside of a shape.

a.) Draw an example of a morphism f from two circles and a square to a triangle.

b.) Find three other morphisms that compose into f , and draw the composite.

♦

5.4.1.6 Operads: functors and algebras

If operads are like categories, then we can define things like functors and call them operad
functors. Before giving the definition, we give a warning.

5.4. OPERADS 253

Warning 5.4.1.7. What we call operad functors in Definition 5.4.1.8 are usually (if not
always) called operad morphisms. We thought that the terminology clash between mor-
phisms of operads and morphisms in an operad was too confusing. It is similar to what
would occur in regular category theory (e.g. Chapter 4) if we replaced the term “functor”
with the term “category morphism”.

Definition 5.4.1.8. Let O and O1 be operads. An operad functor from O to O1, denoted
F : O Ñ O1 consists of some constituents (A. on-objects part, B. on-morphisms part)
conforming to some laws (1. preservation of identities, 2. preservation of composition),
as follows:

A. There is a function ObpF q : ObpOq Ñ ObpO1q.

B. For each object y P ObpOq, finite set n P ObpFinq, and n-indexed set of objects
x : nÑ ObpOq, there is a function

Fn : Onpx; yq Ñ O1npFx;Fyq.

As in B. above, we often denote ObpF q, and also each Fn, simply by F . The laws that
govern these constituents are as follows:

1. For each object x P ObpOq, the equation F pidxq “ idFx holds.

2. Let s : m Ñ n be a morphism in Fin. Let z P ObpOq be an object, let y : n Ñ
ObpOq be an n-indexed set of objects, and let x : mÑ ObpOq be an m-indexed
set of objects. Then, with notation as in Definition 5.4.1.1, the following diagram
of sets commutes:

Onpy; zq ˆ
ś

iPnOmipxi; ypiqq
F //

˝

��

O1npFy;Fzq ˆ
ś

iPnO1mi
pFxi;Fypiqq

˝

��
Ompx; zq

F
// O1mpFx;Fzq

(5.16)

We denote the category of operads and operad functors by Oprd.

Exercise 5.4.1.9. Let O denote the little squares operad from Example 5.4.1.4 and let
O1 denote the operad you constructed in Exercise 5.4.1.5.

a.) Can you come up with an operad functor O Ñ O1?

b.) Is it possible to find an operad functor O1 Ñ O?

♦

Definition 5.4.1.10 (Operad algebra). Let O be an operad. An algebra on O is an
operad functor A : O Ñ Sets.

Remark 5.4.1.11. Every category can be construed as an operad (yes, there is a functor
Cat Ñ Oprd), by simply not including non-unary morphisms. That is, given a category
C, one makes an operad O with ObpOq :“ ObpCq and with

HomOpx1, . . . , xn; yq “
#

HomCpx1, yq if n “ 1;
H if n ‰ 1

254 CHAPTER 5. CATEGORIES AT WORK

Just like a schema is a category presentation, it is possible to discuss operad presentations
by generators and relations. Under this analogy, an algebra on an operad corresponds
to an instance on a schema.

5.4.2 Applications of operads and their algebras
Hierarchical structures may be well-modeled by operads. Describing such structures
using operads and their algebras allows one to make appropriate distinctions between
different types of thinking. For example, the allowable formations are encoded in the
operad, whereas the elements that will fit into those formations are encoded in the
algebra. Morphisms of algebras are high-level understandings of how elements of very
different types (such as materials vs. numbers) can occupy the same place in the structure
and be compared. We will give examples below.
Application 5.4.2.1. Every material is composed of constituent materials, arranged in
certain patterns. (In case the material is “pure”, we consider the material to consist
of itself as the sole constituent.) Each of these constituent materials each is itself an
arrangement of constituent materials. Thus we see a kind of self-similarity which we can
model with operads.

One material is a structured
composite of other materials,
each of which is a structured
composite of other materials.

(5.17)

For example, a tendon is made of collagen fibers that are assembled in series and
then in parallel, in a specific way. Each collagen fibre is made of collagen fibrils that are
again assembled in series and then in parallel, with slightly different specifications. We
can continue down, perhaps indefinitely, though our resolution fails at some point. A

http://en.wikipedia.org/wiki/Composite_material

5.4. OPERADS 255

collagen fibril is made up of tropocollagen collagen molecules, which are twisted ropes
of collagen molecules, etc.16

Here is how operads might be employed. We want the same operad to model both
actual materials, theoretical materials, and functional properties; that is we want more
than one algebra on the same operad.

The operad O should abstractly model the structure, but not the substance being
structured. Imagine that each of the shapes (including the background “shape”) in
Diagram (5.17) is a place-holder, saying something like “your material here”. Each
morphism (that’s what (5.17) is a picture of) represents a construction of a material out
of parts. In our picture, it appears we are only concerned with the spacial arrangements,
but there is far more flexibility than that. Whether we want to allow for additional
details beyond spacial arrangements is the kinds of choice we make in a meeting called
“what operad should we use?”

♦♦

Application 5.4.2.2. Suppose we have chosen an operad O to model the structure of
materials. Each object of O might correspond to a certain quality of material, and each
morphism corresponds to an arrangement of various qualities to form a new quality. An
algebra A : O Ñ Sets on O forces us to choose what substances will fill in for these
qualities. For every object x P ObpOq, we want a set Apxq which will be the set of
materials with that quality. For every arrangement, i.e. morphism, f : px1, . . . , xnq Ñ y,
and every choice a1 P Apx1q, . . . , an P Apxnq of materials, we need to understand what
material a1 “ Apfqpa1, . . . , anq P Apyq will emerge when these materials are arranged in
accordance with f . We are really pinning ourselves down here.

But there may be more than one interesting algebra onO. Suppose thatB : O Ñ Sets
is an algebra of strengths rather than materials. For each object x P ObpOq, which
represents some quality, we let Bpxq be the set of possible strengths that something of
quality x can have. Then for each arrangement, i.e. morphism, f : px1, . . . , xnq Ñ y,
and every choice b1 P Bpx1q, . . . , bn P Bpxnq of strengths, we need to understand what
strength b1 “ Bpfqpb1, . . . , bnq P Bpyq will emerge when these strengths are arranged in
accordance with f . Certainly an impressive achievement!

Finally, a morphism of algebras S : A Ñ B would consist of a coherent system for
assigning to each material a P ApXq of a given quality x a specific strength Spaq P BpXq,
in such a way that morphisms behaved appropriately. In this language we have stated a
very precise goal for the field of material mechanics.

♦♦

Exercise 5.4.2.3. Consider again the little squares operad O from Example 5.4.1.4. Sup-
pose we wanted to use this operad to describe those photographic mosaics.

a.) Come up with an algebra P : O Ñ Sets that sends the square to the set of all photos
that can be pasted into that square. What does P do on morphisms in O?

b.) Come up with an algebra C : O Ñ Sets that sends each square to the set of all colors
(visible frequencies of light). In other words, Cp˝q is the set of colors, not the set of
ways to color the square. What does C do on morphisms in O. Hint: use some kind
of averaging scheme for the morphisms.

c.) Guess: if someone were to appropriately define morphisms of O-algebras (something
akin to natural transformations between functors O Ñ Sets), do you think there

16Thanks to Professor Sandra Shefelbine for explaining the hierarchical nature of collagen to me. Any
errors are my own.

http://en.wikipedia.org/wiki/Photographic_mosaic

256 CHAPTER 5. CATEGORIES AT WORK

would some a morphism of algebras P Ñ C?

♦

5.4.2.4 Wiring diagrams

Example 5.4.2.5. Here we describe an operad of relations, which we will denote by R.
The objects are sets, ObpRq “ ObpSetq. A morphism f : px1, x2, . . . , xnq ÝÑ x1 in R is
a diagram in Set of the form

R

f1

ww
f2

{{
¨¨¨ fn

��

f 1

x1 x2 ¨ ¨ ¨ xn x1

(5.18)

such that the induced function R ÝÑ px1 ˆ x2 ˆ ¨ ¨ ¨ ˆ xn ˆ x
1q is an injection.

We use a composition formula similar to that in Definition 2.5.2.3. Namely, we form
a fiber product

FP

""yy
ś

iPnRi

ww $$

S

}} ��ś

iPn

ś

jPmi
xi,j

ś

iPn yi z

One can show that the induces function FP ÝÑ
´

ś

iPn

ś

jPmi
xi

¯

ˆ y is an injection, so
we have a valid composition formula. Finally, the associativity and identity laws hold.
17

Application 5.4.2.6. Suppose we are trying to model life in the following way. We define
an entity as a set of phenomena, but in order to use colloquial language we say the entity
is able to experience that set of phenomena. We also want to be able to put entities
together to form a super-entity, so we have a notion of morphism f : pe1, . . . , enq ÝÑ e1

defined as a relation as in (5.18). The idea is that the morphism f is a way of translating
between the phenomena that may be experienced by the sub-entities and the phenomena
that may be experienced by the super-entity.

The operadR from Example 5.4.2.5 becomes useful as a language for discussing issues
in this domain. ♦♦

Example 5.4.2.7. Let R be the operad of relations from Example 5.4.2.5. Consider the
algebra S : R Ñ Sets given by Spxq “ Ppxq. Given a morphism

ś

i xi Ð R Ñ y and
subsets x1i Ď xi, we have a subset

ś

i x
1
i Ď

ś

i xi. We take the fiber product

FP //

{{

R

|| ��ś

i x
1
i

//ś
i xi y

17Technically we need to use isomorphism classes of cone points, but we don’t worry about this here.

http://en.wikipedia.org/wiki/Life

5.4. OPERADS 257

and the image of FP Ñ y is a subset of y.

Application 5.4.2.8. Following Application 5.4.2.6 we can use Example 5.4.2.7 as a model
of survival. Each entity survives only for a subset of the phenomena that it can expe-
rience. Under this interpretation, the algebra from Example 5.4.2.7 defines survival as
the survival of all parts. That is, suppose that we understand how a super-entity is
composed of sub-entities in the sense that we have a translation between the set of phe-
nomena that may be experienced across the sub-entities and the set of phenomena that
may be experienced by the super-entity. Then the super-entity will survive exactly those
phenomena which translate to phenomena for which each sub-entity desires.

Perhaps a better term than survival would be “allowance”. A bureaucracy consists of
a set of smaller bureaucracies, each of which allows certain phenomena to pass; the whole
bureaucracy allows something to pass if and only if, when translated to the perspective
of each sub-bureaucracy, it is allowed to pass there.

♦♦

Example 5.4.2.9. In this example we discuss wiring diagrams that look like this:

E is composed of
E1, E2, and E3

in the following way:

E

E1

E2 E3

The operad in question will be denoted W; it is discussed in greater detail in [Sp4]. The
objects of W are pairs pC, sq where C is a finite set and v : C Ñ ObpSetq is a function.
Think of such an object as a circle with C-many cables sticking out of it; each cable c is
assigned a set vpcq corresponding to the set of values that can be carried on that cable.
For example E2 “ pC, vq where |C| “ 11 and we consider v to be specified by declaring
that black wires carry Z and red wires carry tsweet, sour, salty, bitter, umamiu.

The morphisms in W will be pictures as above, formalized as follows. Given ob-
jects pC1, v1q, . . . , pCn, vnq, pD,wq, a morphism F : ppC1, v1q, . . . , pCn, vnqq ÝÑ pD,wq is

258 CHAPTER 5. CATEGORIES AT WORK

a commutative diagram of sets 18

Ů

iPn Ci

\ivi
%%

i // G

x

��

D
joo

w
{{

ObpSetq

such that i and j are jointly surjective.
Composition of morphisms is easily understood in pictures: given wiring diagrams

inside of wiring diagrams, we can throw away the intermediary circles. In terms of sets,
we perform a pushout.

There is an operad functor W Ñ S given by sending pC, vq to
ś

cPC vpcq. The idea is
that to an entity defined as having a bunch of cables carrying variables, a phenomenon is
the same thing as a choice of value on each cable. A wiring diagram translates between
values experienced locally and values experienced globally.
Application 5.4.2.10. In cognitive neuroscience or in industrial economics, it may be that
we want to understand the behavior of an entity such as a mind, a society, or a business
in terms of its structure. Knowing the connection pattern (connectome, supply chain) of
sub-entities should help us understand how big changes are generated from small ones.

Under the functorW Ñ S the algebra S Ñ Sets from Application 5.4.2.8 becomes an
algebraW Ñ Sets. To each entity we now associate some subset of the value-assignments
it can carry. ♦♦

Application 5.4.2.11. In [RS], Radul and Sussman discuss propagator networks. These
can presumably be understood in terms of wiring diagrams and their algebra of relations.

♦♦

18If one is concerned with cardinality issues, fix a cardinality κ and replace ObpSetq everywhere with
ObpSetăκq.

http://en.wikipedia.org/wiki/Connectome
http://en.wikipedia.org/wiki/Supply_chain
http://dspace.mit.edu/bitstream/handle/1721.1/44215/MIT-CSAIL-TR-2009-002.pdf?sequence=1

Index

a category
Cat, 126
FLin, 115
Fin, 113, 160
Grp, 113
Grpd, 137
Grph, 115
Mon, 113
PrO, 113
Prop, 138
Sch, 165
Set, 113
Starn, 178
Top, 136
Vect, 136, 225
∆, 160, 191
C–Set, 155
sSet, 191
GrIn, 132
terminal, 127

a functor
Disc : Set Ñ Cat, 127, 150
Disc : Set Ñ Grph, 127
Ind : Set Ñ Cat, 196
Cat Ñ Grph, 127, 202
Cat Ñ Sch, 166
FLin Ñ PrO, 121
Grp Ñ Cat, 129
Grp Ñ Grpd, 137
Grp Ñ Mon, 120
Grpd Ñ Cat, 137
Grph Ñ Cat, 126, 202
Grph Ñ PrO, 122
Grph Ñ Set, 122, 149, 202
List : Set Ñ Set, 142
Mon Ñ Cat, 128
Mon Ñ Set, 119, 199
Ob: Cat Ñ Set, 127, 150, 202
Paths : Grph Ñ Grph, 125, 126, 148,

164

Π1 : Top Ñ Grpd, 138
PrO Ñ Cat, 131, 132, 159, 171, 175
PrO Ñ Grph, 121, 132, 202
PrO Ñ Set, 122, 202
PrO Ñ Top, 231
Sch Ñ Cat, 166
Set Ñ Mon, 123, 199
Set Ñ PrO, 202
Top Ñ PrOop, 136
Top Ñ Set, 136
VectR Ñ Grp, 136
VectR Ñ PrO, 137
VectR Ñ Top, 137
∆ Ñ FLin, 160

a group
E3, 81
GL3, 81
Up1q, 82
ΣX , 83

a monad
Paths, 236
exceptions, 236
List, 234
maybe, 233
partial functions, 233

a schema
Loop, 170, 241
department store, 102
indexing graphs, 156

a symbol
pF Ó Gq, 196
X{ „, 48
rns, 92
Fun, 150
HomSet, 16
HomC , 112
N, 13
Ob, 112
Ω, 59
P, 58

259

260 INDEX

Path, 87
R, 32
Z, 13
ü, 72
˝, 16, 112
colim, 186
˛, 154
H, 13
D, 14, 203
D!, 14
@, 14, 203
idX , 17
ş

, 192
–, 17
Ÿ, 178
lim, 184
y, 39
ÞÑ, 15
Cop, 191
C{X , 184
CX{, 186
`̀ , 70
Ź, 179
„, 48
», 28, 159
\, 35
ˆ, 31
p, 51
f´1, 42
:=, 14

a warning
“set” of objects in a category, 112
different worldviews, 23
misuse of the, 180
notation for composition, 28
operad functors, 249
operads vs. multicategories, 245
oversimplified science, 9

action
left, 72
of a group, 82
of a monoid, 72
orbit of, 83
right, 72

action table, 76
adjoint functors, 199
adjunct, 200
adjunction, 200

adjunction isomorphism, 200

analogy: babies and adults, 199
counit, 242
unit, 242

algebra
operad, 250

an operad
Sets, 248
little n-cubes, 248
little squares, 248

appropriate comparison, 77, 88, 97, 112,
119

arrow, 84

Baez, John, 8
biological classification, 98

canonical, 18
cardinality, 19
category, 112

arithmetic of, 198
as equivalent to schema, 163
cartesian closed, 140
comma, 196
coslice, 186
discrete, 127
equivalence of, 159
free category, 126, 225
Kleisli, 236
non-example, 113, 114
of elements, 192
opposite, 191
presentation, 134
slice, 184
small, 112
underlying graph of, 126

CCCs, 140
characteristic function, 60
coequalizer, 54
colimit, 186
common ground, 231
commuting diagram, 20
component, 142
composition

classical order, 28
diagrammatic order, 28
of functions, 16
of morphisms, 112

concatenation
of lists, 70
of paths, 88

INDEX 261

cone
left, 178
right, 179

congruence, 104
context, 233
coproduct

inclusion functions, 35
coproducts, 172

of sets, 35
universal property of, 36

correspondence
one-to-one, 17

coslice, 186
cospan, 175
currying, 54

as adjunction, 202
via data migration functors, 207

data, 101
valid time, 232

data migration, 208
left pushforward Σ, 211
pullback ∆, 209
right pushforward Π, 213

database
business rules, 102
category of instances on, 155
foreign key, 102
instance, 108, 135
Kleisli, 240
primary key, 102
schema, 103, 105
tables, 101

descent data, 228
diagam

commutes, 20
diagram, 176

in Set, 20
Dolan, James, 8
dynamical system

continuous, 136
discrete, 106

Eilenberg, Samuel, 7
Englishification, 29
Englishifiication, 109
entry

in list, 69
epimorphism, 217

in Set, 60

equalizer, 47, 185
equivalence relation, 48

as partition, 48
equivalence classes, 48
generated, 49
quotient by, 48

exceptions, 236
exponentials

evaluation of, 55
exponentials

in Set, 55

fiber product, 39
fiber sum, 50
finite state machine, 74, 195
function, 14

bijection, 60
codomain, 14
composition, 16
domain, 14
equality of, 16
identity, 17
injection, 60
inverse, 17
isomorphism, 17
surjection, 60

functor, 119
adjoint, 200
constant, 205
contravariant, 190
covariant, 190
faithful, 162
full, 162
representable, 218

gateway, 170
geography, 100, 226
graph, 84

as functor, 132
bipartite, 46
chain, 86
converting to a preorder, 93
free category on, 126, 225
homomorphism, 88
paths, 87
paths-graph, 124, 236
symmetric, 133

graph homomorphism
as functor, 156

Grothendieck, 192

262 INDEX

construction, 191
expanding universes, 112
in history, 8

group, 80
action, 82
as category, 129
homomorphism of, 83
of automorphisms, 130

groupoid, 137
fundamental, 137
of material states, 137

hierarchy, 106
hom-set, 112

iff, 50
image, 16

in olog, 30
inclusion functions, 35
indexed set, 64, 65

as functor, 156
indexing category, 176
induced function, 34
infix notation, 68
information theory, 141
initial object, 179

in C–Set, 216
instance, 108, 135

Kleisli, 240
isomorphism, 116

of sets, 17

join, 95
Joyal, André, 8

Kan extension
left, 211
right, 213

Kan, Daniel, 8
Kleisli category, 236

labeled null, 212
Lambek, Joachim, 8
Lawvere, William, 8
leaf table, 210
limit, 184
linear order

finite, 92
list, 69, 234

as functor, 124

concatenation, 70
local-to-global, 7

Mac Lane, Saunders, 7
Markov chain, 241
materials

force extension curves, 54
force-extension curves, 15

meet, 95
Moggi, Eugenio, 8
monad, 232, 234

formalizing context, 233
Kleisli category of, 236
on Grph, 236
on Set, 234
on arbitrary category, 243

monoid, 67
action, 72
additive natural numbers, 68
as category, 128
commutative, 69
cyclic, 71
free, 70, 123
homomorphism, 77
identity element of, 68
initial, 181
inverse of an element in, 80
multiplication formula, 68
of endomorphisms, 130
olog of, 74
presented, 70
terminal, 181
trivial, 69
trivial homomorphism, 78

monomorphism, 217
in Set, 60

morphism, 112
inverse, 116

multicategory, 245
multiset, 63

natural isomorphism, 152
natural transformation, 142

as functor, 185
as refinement of model, 146
for adding functionality, 153
horizontal composition of, 154
interchange, 154
vertical composition of, 150
whiskering of, 154

INDEX 263

olog, 21
as database schema, 107
aspects, 22
facts, 27
facts in English, 28
images, 30
invalid aspects, 23
path in, 27
relational, 240
rules, 22, 26, 105
sheaf of, 231
types, 21
underlying graph, 85

one-to-one correspondence, 17
open cover, 227
operad

algebra of, 250
colored, 245
morphism of, 250

orbit, 83
rotating earth, 82

order, 91
linear order, 91
morphism, 97
opposite, 97
partial order, 91
preorder, 91
tree, 96

partial function, 233
partial functions, 233
path, 87
PED, 104
permutation, 81
power set, 58

as poset, 94
preimage, 42, 203
preorder

as category, 130
clique in, 94
converting to graph, 93
discrete, 98
generated, 94
indiscrete, 98
join, 95
meet, 95

presheaf, 226
product

as grid, 31

projection functions, 31
products, 168, 170, 182

as not always existing, 171
of sets, 31
universal property of, 32

projection functions, 31
pullback, 184

of sets, 39
pushout, 186

of topological spaces, 189

RDF, 192
as category of elements, 193

relation
binary, 90
equivalence, 48
graph of, 90

relative set, 64
as slice category, 186

representable functor, 218
representation theory, 225
restriction of scalars, 79
retraction, 54
RNA transcription, 17

schema, 105
as category presentation, 134
as equivalent to category, 163
as syntax, 134
congruence, 104
fact table, 209
leaf table, 103, 209
morphism, 164
of a database, 103
Path equivalence declaration (PED),

104
schematically implied reference spread, 219
security, 99
set, 13

arithmetic of, 56
Lawvere’s description of, 140
permutation of, 81
set builder notation, 14

sheaf
condition, 228
descent data, 228
glueing, 228

sheaves, 226
simplex, 58
simplicial complex, 58, 231

264 INDEX

simplicial set, 191
skeleton, 161
Skolem, 219
Skolem variable, 212
slice, 184
space, 99, 135

topological, 135
space group, 81
span, 45

composite, 45
subcategory

full, 115, 195
subobject classifier

in C–Set, 222
in Set, 59

subset, 13
as function, 15
characteristic function of, 60

subway, 189
symmetry, 81

terminal object, 179
in C–Set, 216
in Set, 47

topological space, 136
topology, 135
topos, 222
tree, 96

root, 96
trivial homomorphism

of monoids, 78

universal property, 170
products, 32
pullback, 184

vector field, 116, 138
conservative, 138

vector space, 136, 225
vertex, 84

wiring diagram, 254

Yoneda’s lemma, 220

Bibliography

[Ati] Atiyah, M. (1989) “Topological quantum field theories”. Publications
Mathématiques de l’IHÉS 68 (68), pp. 175–186.

[Axl] Axler, S. (1997) Linear algebra done right. Springer.

[Awo] S. Awodey. (2010) Category theory. Second edition. Oxford Logic Guides, 52.
Oxford University Press, Oxford.

[Bar] Bralow, H. (1961) “Possible principles underlying the transformation of
sensory messages”. Sensory communication, pp. 217 – 234.

[BD] Baez, J.C.; Dolan, J. (1995) “Higher-dimensional algebra and topological
quantum field theory”. Journal of mathematical physics vol 36, 6073.

[BFL] Baez, J.C.; Fritz, T.; Leinster, T. (2011) “A characterization of entropy in
terms of information loss.” Entropy 13, no. 11.

[BS] Baez, J.C.; Stay, M. (2011) “Physics, topology, logic and computation: a
Rosetta Stone.” New structures for physics, 95Ð172. Lecture Notes in Phys.,
813, Springer, Heidelberg.

[BP1] Brown, R.; Porter, T. (2006) “Category Theory: an abstract setting for
analogy and comparison, In: What is Category Theory? Advanced Studies in
Mathematics and Logic, Polimetrica Publisher, Italy, pp. 257-274.

[BP2] Brown, R.; Porter, T. (2003) “Category theory and higher dimensional
algebra: potential descriptive tools in neuroscience”, Proceedings of the
International Conference on Theoretical Neurobiology, Delhi, edited by
Nandini Singh, National Brain Research Centre, Conference Proceedings 1
80-92.

[BW] M. Barr, C. Wells. (1990) Category theory for computing science. Prentice
Hall International Series in Computer Science. Prentice Hall International,
New York.

[Big] Biggs, N.M. (2004) Discrete mathematics. Oxford University Press, NY.

[Dia] Diaconescu, R. (2008) Institution-independent model theory Springer.

[DI] Döring, A.; Isham, C. J. “A topos foundation for theories of physics. I.
Formal languages for physics.” J. Math. Phys. 49 (2008), no. 5, 053515.

265

266 BIBLIOGRAPHY

[EV] Ehresmann, A.C.; Vanbremeersch, J.P. (2007) Memory evolutive systems;
hierarchy, emergence, cognition. Elsevier.

[Eve] Everett III, H. (1973). “The theory of the universal wave function.” In The
many-worlds interpretation of quantum mechanics (Vol. 1, p. 3).

[Gog] Goguen, J. (1992) “Sheaf semantics for concurrent interacting objects”
Mathematical structures in Computer Science Vol 2, pp. 159 – 191.

[Gro] Grothendieck, A. (1971). Séminaire de Géométrie Algébrique du Bois Marie -
1960-61 - Revêtements étales et groupe fondamental - (SGA 1) (Lecture notes
in mathematics 224) (in French). Berlin; New York: Springer-Verlag.

[Kro] Krömer, R. (2007). Tool and Object: A History and Philosophy of Category
Theory, Birkhauser.

[Lam] Lambek, J. (1980) “From λ-calculus to Cartesian closed categories”. In
Formalism, Academic Press, London, pp. 375 – 402.

[Law] Lawvere, F.W. (2005) “An elementary theory of the category of sets (long
version) with commentary.” (Reprinted and expanded from Proc. Nat. Acad.
Sci. U.S.A. 52 (1964)) Repr. Theory Appl. Categ. 11, pp. 1 – 35.

[Kho] Khovanov, M. (2000) “A categorificiation of the Jones polynomial” Duke
Math J..

[Le1] Leinster, T. (2004) Higher Operads, Higher Categories. London Mathematical
Society Lecture Note Series 298, Cambridge University Press.

[Le2] Leinster, T. (2012) “Rethinking set theory”. ePrint available
http://arxiv.org/abs/1212.6543.

[Lin] Linsker, R. (1988) “Self-organization in a perceptual network”. Computer 21,
no. 3, pp. 105 – 117.

[LM] Landry, E.; Marquis, J-P., 2005, ”Categories in Contexts: historical,
foundational, and philosophical.” Philosophia Mathematica, (3), vol. 13, no. 1,
1 – 43.

[LS] F.W. Lawvere, S.H. Schanuel. (2009) Conceptual mathematics. A first
introduction to categories. Second edition. Cambridge University Press,
Cambridge.

[MacK] MacKay, D.J. (2003). Information theory, inference and learning algorithms.
Cambridge university press.

[Mac] Mac Lane, S. (1998) Categories for the working mathematician. Second
edition. Graduate Texts in Mathematics, 5. Springer-Verlag, New York.

[Mar1] Marquis, J-P. (2009) From a Geometrical Point of View: a study in the
history and philosophy of category theory, Springer.

[Mar2] Marquis, J-P, “Category Theory”, The Stanford Encyclopedia of Philosophy
(Spring 2011 Edition), Edward N. Zalta (ed.), http:
//plato.stanford.edu/archives/spr2011/entries/category-theory

http://arxiv.org/abs/1212.6543
http://plato.stanford.edu/archives/spr2011/entries/category-theory
http://plato.stanford.edu/archives/spr2011/entries/category-theory

BIBLIOGRAPHY 267

[Min] Minsky, M. The Society of Mind. Simon and Schuster, NY 1985.

[Mog] Moggi, E. (1989) “A category-theoretic account of program modules.”
Category theory and computer science (Manchester, 1989), 101Ð117, Lecture
Notes in Comput. Sci., 389, Springer, Berlin.

[nLa] nLab authors. http://ncatlab.org/nlab/show/HomePage

[Pen] Penrose, R. (2006) The road to reality. Random house.

[RS] Radul, A.; Sussman, G.J. (2009). “The art of the propagator”. MIT Computer
science and artificial intelligence laboratory technical report.

[Sp1] Spivak, D.I. (2012) “Functorial data migration”. Information and
communication

[Sp2] Spivak, D.I. (2012) “Queries and constraints via lifting problems”. Submitted
to Mathematical structures in computer science. ePrint available:
http://arxiv.org/abs/1202.2591

[Sp3] Spivak, D.I. (2012) “Kleisli database instances”. ePrint available:
http://arxiv.org/abs/1209.1011

[Sp4] Spivak, D.I. (2013) “The operad of wiring diagrams: Formalizing a graphical
language for databases, recursion, and plug-and-play circuits”. Available
online: http://arxiv.org/abs/1305.0297

[SGWB] Spivak D.I., Giesa T., Wood E., Buehler M.J. (2011) “Category Theoretic
Analysis of Hierarchical Protein Materials and Social Networks.” PLoS ONE
6(9): e23911. doi:10.1371/journal.pone.0023911

[SK] Spivak, D.I., Kent, R.E. (2012) “Ologs: A Categorical Framework for
Knowledge Representation.” PLoS ONE 7(1): e24274.
doi:10.1371/journal.pone.0024274.

[WeS] Weinberger, S. (2011) “What is... Persistent Homology?” AMS.

[WeA] Weinstein, A. (1996) “Groupoids: unifying internal and external symmetry.
Notices of the AMS Vol 43, no. 7, pp. 744 – 752.

[Wik] Wikipedia (multiple authors). Various articles, all linked with a
hyperreference are scattered throughout this text. All accessed December 6,
2012 – September 17, 2013.

http://ncatlab.org/nlab/show/HomePage
http://arxiv.org/abs/1202.2591
http://arxiv.org/abs/1209.1011
http://arxiv.org/abs/1305.0297
http://www.wikipedia.org

MIT OpenCourseWare
http://ocw.mit.edu

18.S996�Category Theory for Scientist
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

