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4
Matrix estimation

Over the past decade or so, matrices have entered the picture of high-dimensional
statistics for several reasons. Perhaps the simplest explanation is that they are
the most natural extension of vectors. While this is true, and we will see exam-
ples where the extension from vectors to matrices is straightforward, matrices
have a much richer structure than vectors allowing “interaction” between their
rows and columns. In particular, while we have been describing simple vectors
in terms of their sparsity, here we can measure the complexity of a matrix by
its rank. This feature was successfully employed in a variety of applications
ranging from multi-task learning to collaborative filtering. This last application
was made popular by the Netflix prize in particular.

In this chapter, we study several statistical problems where the parameter of
interest θ is a matrix rather than a vector. These problems include: multivari-
ate regression, covariance matrix estimation and principal component analysis.
Before getting to these topics, we begin by a quick reminder on matrices and
linear algebra.

4.1 BASIC FACTS ABOUT MATRICES

Matrices are much more complicated objects than vectors. In particular,
while vectors can be identified with linear operators from IRd to IR, matrices
can be identified to linear operators from IRd to IRn for n ≥ 1. This seemingly
simple fact gives rise to a profusion of notions and properties as illustrated by
Bernstein’s book [Ber09] that contains facts about matrices over more than a
thousand pages. Fortunately, we will be needing only a small number of such
properties, which can be found in the excellent book [GVL96], that has become
a standard reference on matrices and numerical linear algebra.
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Singular value decomposition

Let A = {aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n} be a m × n real matrix of rank r ≤
min(m,n). The Singular Value Decomposition (SVD) of A is given by

A = UDV ⊤ =
∑r

λjujvj
⊤ ,

j=1

where D is a r× r diagonal matrix with positive diagonal entries {λ1, . . . , λr},
U is a matrix with columns {u1, . . . , u m

r} ∈ IR that are orthonormal and V is
a matrix with columns {v1, . . . , vr} ∈ IRn that are also orthonormal. Moreover,
it holds that

AA⊤uj = λ2juj , and A⊤Avj = λ2jvj

for j = 1, . . . , r. The values λj > 0 are called singular values of A and are
uniquely defined. If rank r < min(n,m) then the singular values of A are
given by λ = (λ1, . . . , λ , 0, . . . , 0)⊤ ∈ IRmin(n,m)

r where there are min(n,m)− r
zeros. This way, the vector λ of singular values of a n×m matrix is a vector
in IRmin(n,m).

In particular, if A is a n × n symmetric positive semidefinite (PSD), i.e.
A⊤ = A and u⊤Au ≥ 0 for all u ∈ IRn, then the singular values of A are equal
to its eigenvalues.

The largest singular value of A denoted by λmax (A) also satisfies the fol-
lowing variational formulation:

|Ax|2 y⊤Ax
λmax (A) = max = max = max y⊤Ax .

x∈IRn |x|2 x∈IRn

y∈IRm
|y|2|x|2 x∈Sn−1

y∈Sm−1

In the case of a n× n PSD matrix A, we have

λmax (A) = max x⊤Ax .
x∈Sn−1

Norms and inner product

Let A = {aij} and B = {bij} be two real matrices. Their size will be implicit
in the following notation.

Vector norms

The simplest way to treat a matrix is to deal with it as if it were a vector. In
particular, we can extend ℓq norms to matrices:

|A|q =
(∑ 1/q

a q
ij , q > 0 .

ij

| |
)

The cases where q ∈ {0,∞} can also be extended matrices:

|A|0 =
∑

1I(aij = 0) ,
ij

|A| = max∞
ij

|aij | .6
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The case q = 2 plays a particular role for matrices and |A|2 is called the
Frobenius norm of A and is often denoted by ‖A‖F . It is also the Hilbert-
Schmidt norm associated to the inner product:

〈A,B〉 = Tr(A⊤B) = Tr(B⊤A) .

Spectral norms

Let λ = (λ1, . . . , λr, 0, . . . , 0) be the singular values of a matrix A. We can
define spectral norms on A as vector norms on the vector λ. In particular, for
any q ∈ [1,∞],

‖A‖q = |λ|q ,
is called Schatten q-norm of A. Here again, special cases have special names:

• q = 2: ‖A‖2 = ‖A‖F is the Frobenius norm defined above.

• q = 1: ‖A‖1 = ‖A‖ is called the Nuclear norm (or trace norm) of A.∗

• q = ∞: ‖A‖ = λmax (A) = ‖A‖op is called the operator norm (or∞
spectral norm) of A.

We are going to employ these norms to assess the proximity to our matrix
of interest. While the interpretation of vector norms is clear by extension from
the vector case, the meaning of “‖A−B‖op is small” is not as transparent. The
following subsection provides some inequalities (without proofs) that allow a
better reading.

Useful matrix inequalities

Let A and B be two m× n matrices with singular values λ1(A) ≥ λ2(A) . . . ≥
λmin(m,n)(A) and λ1(B) ≥ . . . ≥ λmin(m,n)(B) respectively. Then the following
inequalities hold:

max
∣∣λk(A) λk(B) A B op , Weyl (1912)

∑
k

− ≤ ‖ − ‖
∣∣ 2
λ λ 2
k(A) − k(B)

∣∣
∣∣ ≤ ‖A−B‖F , Hoffman-Weilandt (1953)

k

1 1〈A,B〉 ≤ ‖A‖q‖B‖q , + = 1, p, q
p q

∈ [1,∞] , Hölder

4.2 MULTIVARIATE REGRESSION

In the traditional regression setup, the response variable Y is a scalar. In
several applications, the goal is not to predict a variable but rather a vector
Y ∈ IRT , still from a covariateX ∈ IRd. A standard example arises in genomics
data where Y contains T physical measurements of a patient and X contains
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the expression levels for d genes. As a result the regression function in this case
f(x) = IE[Y |X = x] is a function from IRd to IRT . Clearly, f can be estimated
independently for each coordinate, using the tools that we have developed in
the previous chapter. However, we will see that in several interesting scenar-
ios, some structure is shared across coordinates and this information can be
leveraged to yield better prediction bounds.

The model

Throughout this section, we consider the following multivariate linear regres-
sion model:

Y = XΘ∗ + E , (4.1)

where Y ∈ IRn×T is the matrix of observed responses, X is the n× d observed
design matrix (as before), Θ ∈ IRd×T is the matrix of unknown parameters and
E ∼ subGn T (σ

2) is the noise matrix. In this chapter, we will focus on the×
prediction task, which consists in estimating XΘ∗.

As mentioned in the foreword of this chapter, we can view this problem as T
(univariate) linear regression problems Y (j) = Xθ∗,(j)+ε(j), j = 1, . . . , T , where
Y (j), θ∗,(j) and ε(j) are the jth column of Y,Θ∗ and E respectively. In particu-
lar, an estimator for XΘ∗ can be obtained by concatenating the estimators for
each of the T problems. This approach is the subject of Problem 4.1.

The columns of Θ∗ correspond to T different regression tasks. Consider the
following example as a motivation. Assume that the Subway headquarters
want to evaluate the effect of d variables (promotions, day of the week, TV
ads,. . . ) on their sales. To that end, they ask each of their T = 40, 000
restaurants to report their sales numbers for the past n = 200 days. As a
result, franchise j returns to headquarters a vector Y(j) ∈ IRn. The d variables
for each of the n days are already known to headquarters and are stored in
a matrix X ∈ IRn×d. In this case, it may be reasonable to assume that the
same subset of variables has an impact of the sales for each of the franchise,
though the magnitude of this impact may differ from franchise to franchise. As
a result, one may assume that the matrix Θ∗ has each of its T columns that
is row sparse and that they share the same sparsity pattern, i.e., Θ∗ is of the
form: 

0 0 0 0

• •
∗

 • • • •



 • •
 0 0 0 0Θ =



 ,
. . . .


 . . . .



. . . .



0 0 0 0



• • • •



where • indicates a potentially nonzero entry.
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It follows from the result of Problem 4.1 that if each task is performed
ˆindividually, one may find an estimator Θ such that

1 kT log(
IE‖XΘ̂− 2 2 ed)

XΘ∗ . σ
n

‖F ,
n

where k is the number of nonzero coordinates in each column of Θ∗. We
remember that the term log(ed) corresponds to the additional price to pay
for not knowing where the nonzero components are. However, in this case,
when the number of tasks grows, this should become easier. This fact was
proved in [LPTVDG11]. We will see that we can recover a similar phenomenon
when the number of tasks becomes large, though larger than in [LPTVDG11].
Indeed, rather than exploiting sparsity, observe that such a matrix Θ∗ has rank
k. This is the kind of structure that we will be predominantly using in this
chapter.

Rather than assuming that the columns of Θ∗ share the same sparsity
pattern, it may be more appropriate to assume that the matrix Θ∗ is low rank
or approximately so. As a result, while the matrix may not be sparse at all,
the fact that it is low rank still materializes the idea that some structure is
shared across different tasks. In this more general setup, it is assumed that the
columns of Θ∗ live in a lower dimensional space. Going back to the Subway

example this amounts to assuming that while there are 40,000 franchises, there
are only a few canonical profiles for these franchises and that all franchises are
linear combinations of these profiles.

Sub-Gaussian matrix model

Recall that under the assumption ORT for the design matrix, i.e., X⊤X = nId,
then the univariate regression model can be reduced to the sub-Gaussian se-
quence model. Here we investigate the effect of this assumption on the multi-
variate regression model (4.1).

Observe that under assumption ORT,

1 1
X⊤Y = Θ∗ + X⊤E .

n n

Which can be written as an equation in IRd×T called the sub-Gaussian matrix
model (sGMM):

y = Θ∗ + F , (4.2)

where y = 1X⊤Y and F = 1X⊤E ∼ subGd T (σ
2/n).n n ×

Indeed, for any u ∈ Sd−1, v ∈ ST−1, it holds

1 1
u⊤Fv = ( 2Xu)⊤Ev =

n
√ w⊤Ev
n

∼ subG(σ /n) ,

⊤

where w = Xu/
√
n has unit norm: |w|2 = u⊤ X X 2

2 u =n |u|2 = 1.
Akin to the sub-Gaussian sequence model, we have a direct observation

model where we observe the parameter of interest with additive noise. This
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enables us to use thresholding methods for estimating Θ∗ when |Θ∗|0 is small.
However, this also follows from Problem 4.1. The reduction to the vector case
in the sGMM is just as straightforward. The interesting analysis begins when
Θ∗ is low-rank, which is equivalent to sparsity in its unknown eigenbasis.

Consider the SVD of Θ∗:

Θ∗ =
∑

λjujvj
⊤ .

j

and recall that ‖Θ∗‖0 = |λ|0. Therefore, if we knew uj and vj , we could
simply estimate the λjs by hard thresholding. It turns out that estimating
these eigenvectors by the eigenvectors of y is sufficient.

Consider the SVD of the observed matrix y:

∑
ˆy = λj ûj v̂j

⊤ .
j

Definition 4.1. The singular value thresholding estimator with threshold
2τ ≥ 0 is defined by

Θ̂svt =
∑

λ̂j1I(|λ̂j | > 2τ)ûj v̂j
⊤ .

j

Recall that the threshold for the hard thresholding estimator was chosen to
be the level of the noise with high probability. The singular value thresholding
estimator obeys the same rule, except that the norm in which the magnitude of
the noise is measured is adapted to the matrix case. Specifically, the following
lemma will allow us to control the operator norm of the matrix F .

Lemma 4.2. Let A be a d × T random matrix such that A ∼ subGd×T (σ2).
Then

‖A‖op ≤ 4σ
√
log(12)(d ∨ T ) + 2σ

√
2 log(1/δ)

with probability 1− δ.

Proof. This proof follows the same steps as Problem 1.4. Let N1 be a 1/4-
net for Sd−1 and N2 be a 1/4-net for ST−1. It follows from Lemma 1.18
that we can always choose 1 12d and 2T2 1 . Moreover, for any
u ∈ Sd−1, v ∈ ST 1

|N | ≤ |N | ≤
− , it holds

1
u⊤Av ≤ max x⊤Av + max u⊤Av

x∈N1 4 u∈Sd−1

1 1≤ max max x⊤Ay + max max x⊤Av + max u⊤Av
x∈N y∈N 4 x∈N v∈ST−1 4 u∈Sd−11 2 1

1≤ max max x⊤Ay + max max u⊤Av
x∈N1 y∈N2 2 u∈Sd−1 v∈ST−1

It yields
‖A‖op ≤ 2 max max x⊤Ay

x∈N1 y∈N2
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So that for any t ≥ 0, by a union bound,

IP
(
‖A‖op > t

)
≤ I >

x

∑
P x⊤Ay t/2

∈N1
y∈N2

( )

Next, since A ∼ subGd T (σ
2), it holds that x⊤Ay ∼ subG(σ2) for any x× ∈

N1, y ∈ N2.Together with the above display, it yields

IP
(
‖A‖op > t

) t≤ 12d+T exp
( 2

− δ
8σ2

f

)
≤

or
t ≥ 4σ

√
log(12)(d ∨ T ) + 2σ

√
2 log(1/δ) .

The following theorem holds.

Theorem 4.3. Consider the multivariate linear regression model (4.1) under
the assumption ORT or, equivalently, the sub-Gaussian matrix model (4.2).

ˆThen, the singular value thresholding estimator Θsvt with threshold

2τ = 8σ

√
log(12)(d ∨ T )

+ 4σ

√
2 log(1/δ)

, (4.3)
n n

satisfies

1 ‖XΘ̂svt − XΘ∗‖2 = ‖Θ̂svt Θ∗ 2 144 rank(Θ∗)τ2
n F − ‖F ≤

σ2 rank(Θ∗)
.

(
d ∨ T + log(1/δ) .

n

with probability 1

)

− δ.

Proof. Assume without loss of generality that the singular values of Θ∗ and y
ˆ ˆare arranged in a non increasing order: λ1 ≥ λ2 ≥ . . . and λ1 ≥ λ2 ≥ . . . .

Define the set S = { ˆj : |λj | > 2τ}.
Observe first that it follows from Lemma 4.2 that ‖F‖op ≤ τ for τ chosen

as in (4.3) on an event A such that IP(A) ≥ 1− δ. The rest of the proof is on
A.

ˆNote that it follows from Weyl’s inequality that |λj − λj | ≤ ‖F‖op ≤ τ . It
implies that S ⊂ {j : |λj | > τ} and Sc ⊂ {j : |λj | ≤ 3τ

¯
}.

Next define the oracle Θ =
∑

j∈S λjujvj
⊤ and note that

‖Θ̂svt − ¯Θ∗‖2 ≤ ˆ2‖Θsvt −Θ‖2 ¯
F F + 2‖Θ−Θ∗‖2F (4.4)

Using Cauchy-Schwarz, we control the first term as follows

‖Θ̂svt − Θ̄‖2F ≤ ˆrank(Θsvt − Θ̄)‖Θ̂svt − Θ̄‖2op ≤ ˆ2|S|‖Θsvt − Θ̄‖2op
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Moreover,

‖ ˆ svt − ¯ ¯Θ ‖ ˆΘ svt
op ≤ ‖Θ − y‖op + ‖y −Θ∗‖op + ‖Θ∗ −Θ‖op

≤ max |λ̂j |+ τ +max λ
j∈Sc j∈Sc

| j | ≤ 6τ .

Therefore,

‖Θ̂svt − Θ̄‖2F ≤ 72|S|τ2 = 72 τ2 .
j

∑

∈S

The second term in (4.4) can be written as

‖Θ̄− Θ∗‖2F =
j

∑

Sc

|λj |2 .
∈

Plugging the above two displays in (4.4), we get

‖Θ̂svt −Θ∗‖2F ≤ 144
j

∑
τ2 +

∈S j

∑

∈Sc

|λj |2

Since on S, τ2 = min(τ2, |λj |2) and on Sc, |λj |2 ≤ 3min(τ2, |λj |2), it yields,

‖Θ̂svt −Θ∗‖2F ≤ 432
∑

min(τ2, |λj
j

|2)

rank(Θ∗)

≤ 432
∑

τ2

j=1

= 432 rank(Θ∗)τ2 .

In the next subsection, we extend our analysis to the case where X does not
necessarily satisfy the assumption ORT.

Penalization by rank

The estimator from this section is the counterpart of the BIC estimator in the
spectral domain. However, we will see that unlike BIC, it can be computed
efficiently.

ˆLet Θrk be any solution to the following minimization problem:

min
{ 1 ‖Y− XΘ‖2F + 2τ2 rank(Θ)

Θ∈IRd×T n

}
.

This estimator is called estimator by rank penalization with regularization pa-
rameter τ2. It enjoys the following property.
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Theorem 4.4. Consider the multivariate linear regression model (4.1). Then,
ˆthe estimator by rank penalization Θrk with regularization parameter τ2, where

τ is defined in (4.3) satisfies

1 2

‖ Θ̂rk − Θ∗‖2 ≤ 8 rank(Θ∗)τ2
σ rank(Θ∗)

X X .
n F d

n
∨ T + log(1/δ) .

with probability 1

( )

− δ.

Proof. We begin as usual by noting that

‖Y− Xˆ ˆΘrk‖2F + 2nτ2 rank(Θrk) ≤ ‖ 2Y− XΘ∗‖F + 2nτ2 rank(Θ∗) ,

which is equivalent to

‖ 2 2 2Xˆ r ˆΘ k − XΘ∗‖ X rk X ˆ rk
F ≤ 2〈E, Θ − Θ∗〉 − 2nτ rank(Θ ) + 2nτ rank(Θ∗) .

Next, by Young’s inequality, we have

2〈E,XΘ̂rk 1− XΘ∗〉 = 2〈 ˆE,U〉2 +
2
‖XΘrk − XΘ∗‖2F ,

where
XΘ̂rk − XΘ∗

U = .
‖XΘ̂rk − XΘ∗‖F

Write
XΘ̂rk − XΘ∗ = ΦN ,

where Φ is a n× r, r ≤ d matrix whose columns form orthonormal basis of the
column span of X. The matrix Φ can come from the SVD of X for example:
X = ΦΛΨ⊤. It yields

ΦN
U = ‖N‖F

and

‖XΘ̂rk − XΘ∗‖2F ≤ 〈 ˆ4 Φ⊤E,N/‖N‖F 〉2 − 4nτ2 rank(Θrk) + 4nτ2 rank(Θ∗) .
(4.5)

ˆNote that rank(N) ≤ rank(Θrk) + rank(Θ∗). Therefore, by Hölder’s in-
equality, we get

〈E,U〉2 = 〈Φ⊤E,N/‖N‖F 〉2

≤ ‖Φ⊤E‖2op
‖N‖21
‖N‖2F

≤ rank(N)‖Φ⊤E‖2op
≤ ‖Φ⊤E‖2op

[
ˆrank(Θrk) + rank(Θ∗) .

Next, note that Lemma 4.2 yields ‖Φ⊤E‖2op ≤ nτ2 so that

]

〈E,U〉2 ≤ ˆnτ2 rank(Θrk) + rank(Θ∗) .

Together with (4.5), this complete

[

s the proof.

]
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It follows from Theorem 4.4 that the estimator by rank penalization enjoys
the same properties as the singular value thresholding estimator even when X

does not satisfies the ORT condition. This is reminiscent of the BIC estimator
which enjoys the same properties as the hard thresholding estimator. However
this analogy does not extend to computational questions. Indeed, while the
rank penalty, just like the sparsity penalty, is not convex, it turns out that
XΘ̂rk can be computed efficiently.

Note first that

1
min ‖ 2 + 2τ2

1
Y−XΘ‖F rank(Θ) = min min Θ 2Y X F + 2τ2k .

Θ∈IRd×T n k

{
n Θ∈IRd×T

‖ − ‖
rank(Θ)≤k

}

Therefore, it remains to show that

min Y XΘ 2
F

Θ∈IRd×T
‖ − ‖

rank(Θ)≤k

¯can be solved efficiently. To that end, let Y = X(X⊤X)†X⊤Y denote the orthog-
onal projection of Y onto the image space of X: this is a linear operator from
IRd×T into IRn×T . By the Pythagorean theorem, we get for any Θ ∈ IRd×T ,

‖Y− XΘ‖2 Y Ȳ 2 Ȳ 2XF = ‖ − ‖F + ‖ − Θ‖F .
¯Next consider the SVD of Y:

Ȳ =
∑

λjujvj
⊤

j

˜where λ1 ≥ λ2 ≥ . . .. The claim is that if we define Y by

∑k
Ỹ = λjujvj

⊤

j=1

which is clearly of rank at most k, then it satisfies

‖Ȳ− 2Ỹ‖ ¯
F = min Y Z 2

F .
Z:rank(Z)≤k

‖ − ‖

Indeed,

‖Ȳ− Ỹ‖2F =
∑

λ2j ,
j>k

and for any matrix Z such that rank(Z) ≤ k with SVD

k

Z =
∑

µjxjyj
⊤,

j=1

where µ1 ≥ µ2 ≥ . . ., we have by Hoffman-Weilandt

‖Z − Ȳ ‖2F ≥
∑

j≥1

|λj − µj |2 ≥
∑

λ2j .
j>k
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Therefore, any minimizer of XΘ 7→ ‖Y− XΘ‖2F over matrices of rank at most
¯k can be obtained by truncating the SVD of Y at order k.

ˆ ˆOnce XΘrk has been found, one may obtain a corresponding Θrk by least
squares but this is not necessary for our results.

Remark 4.5. While the rank penalized estimator can be computed efficiently,
it is worth pointing out that a convex relaxation for the rank penalty can also

ˆbe used. The estimator by nuclear norm penalization Θ is defined to be any
solution to the minimization problem

1
min

n
‖Y− XΘ‖2F + τ

Θ∈IRd×T
‖Θ‖1

Clearly this criterion is convex

{

and it can actually be

}

implemented efficiently
using semi-definite programming. It has been popularized by matrix comple-
tion problems. Let X have the following SVD:

r

X =
∑

λjujvj
⊤ ,

j=1

with λ1 ≥ λ2 ≥ . . . ≥ λr > 0. It can be shown that for some appropriate choice
of τ , it holds

1 λ σ2 rank(Θ∗)‖Xˆ 1
Θ ‖2X

n
− Θ∗

F . d
λr n

∨ T

with probability .99. However, the proof of this result is far more involved
than a simple adaption of the proof for the Lasso estimator to the matrix case
(the readers are invited to see that for themselves). For one thing, there is no
assumption on the design matrix (such as INC for example). This result can
be found in [KLT11].

4.3 COVARIANCE MATRIX ESTIMATION

Empirical covariance matrix

Le[t X1, .]. . , Xn be n i.i.d. copies of a random vector X ∈ IRd such that
IE XX⊤ = Σ for some unknown matrix Σ ≻ 0 called covariance matrix.
This matrix contains information about the moments of order 2 of the random
vector X . A natural candidate to estimate Σ is the empirical covariance matrix
Σ̂ defined by

n
1

Σ̂ = XiX
n i

⊤ .
i=1

Using the tools of Chapter 1, we c

∑

an prove the following result.

Theorem 4.6. Let X1, . . . , Xn be n i.i.d. sub-Gaussian random vectors such
that IE[XX⊤] = Σ and X ∼ subGd(‖Σ‖op). Then

(√d+ log(1/δ) d+ log(1/δ)‖Σ̂− Σ‖op . ‖Σ‖op
n

∨
n

)
,
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with probability 1− δ.

Proof. Observe first that without loss of generality we can assume that Σ = Id.
Indeed, note that since IE XX⊤ = Σ ≻ 0, then X ∼ subGd(‖Σ‖op). Moreover,

Y = Σ−1/2X ∼ subG 1
d(1)

[

and IE

]

[Y Y ⊤] = Σ− /2ΣΣ−1/2 = Id. Therefore,

‖Σ̂− ‖ n
Σ op ‖ 1

i=1 iXn

∑
X i

⊤
=

− Σ‖op
‖Σ‖op ‖Σ‖op

‖ nΣ1/2‖op‖ 1
n

∑
i=1 YiYi

⊤ − I≤ d‖op‖Σ1/2‖op
‖Σ‖op

n
1

= ‖
n

∑
YiYi

⊤ Id op .
i=1

− ‖

Let N be a 1/4-net for Sd−1 such that |N | ≤ 12d. It follows from the proof of
Lemma 4.2 that

‖Σ̂− Id‖op ≤ ˆ2 max x⊤(Σ
x,y∈N

− Id)y

So that for any t ≥ 0, by a union bound,

(
‖ˆIP Σ− Id‖op > t

)
≤

∑
IP
(
x⊤ ˆ(Σ >

x,y

− Id)y t/2
∈N

)
. (4.6)

It holds,

∑n1ˆx⊤(Σ− Id)y =
{
(Xi

⊤x)(Xi
⊤y)− IE

[
(X⊤

n i x)(Xi
⊤y)

i=1

]}
.

Using polarization, we also have

Z2

(Xi
⊤x)(Xi

⊤y) = + − Z2
− ,

4

here Z+ = Xi
⊤(x+ y) and Z = Xi

⊤(x− y). It yields−

IE
[
exp

(
s
(
(Xi

⊤x)(Xi
⊤y)− IE

[
(Xi

⊤x)(Xi
⊤y)

= IE

]))]

[ s
exp

(
4

(
Z2
+ − IE[Z2

+]
) s− Z2 IE[Z2 ])

( 4

2

(
− − −

E x

))

≤ I
[
e p Z

]

(s
2

(
2

+ − IE[Z+]

where in the last inequality, we u

)

s

)]
IE
[
exp

( s−
2

ed Cauchy-Sc

( 1/2

Z2 ,− − IE[Z2 ]−

hwarz. Next

)

,

)]

s

)

ince X
subG

∼
d(1), we have Z+, Z ∼ subG(2), and it follows from Lemma 1.12 that−

Z2
+ − IE[Z2

+] ∼ subE(32) , and Z2
− − IE[Z2 ]− ∼ subE(32)

Therefore for any s ≤ 1/16, we have for any Z ∈ {Z+, Z−}, we have

IE
[ s 2

exp
(
2

(
Z2 − IE[Z2]

))]
≤ e128s ,
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It yields that

(Xi
⊤x)(Xi

⊤y)− IE (Xi
⊤x)(Xi

⊤y) ∼ subE(16) .

Applying now Bernstein’s inequalit

[

y (Theorem 1

]

.13), we get

n t 2 tˆIP x⊤(Σ− Id)y > t/2 ≤ exp
[
− ( ) .

2

(
32

)
∧

32

]

Together with (

(

4.6), this yields

)

ˆIP
(
‖Σ− Id‖op > t ≤ 144d exp

[ n− (
( t )2 t∧ )

]
. (4.7)

2 32 32

In particular, the right hand sid

)

e of the above inequality is at most δ ∈ (0, 1) if

t 2d 2 2d 2 1/2

≥ log(144) + log(1/δ)
32 n n

∨ log(144) + log(1/δ)
n n

This conclud

(

es our proof.

) ( )

Theorem 4.6 indicates that for fixed d, the empirical covariance matrix is a
consistent estimator of Σ (in any norm as they are all equivalent in finite dimen-
sion). However, the bound that we got is not satisfactory in high-dimensions
when d≫ n. To overcome this limitation, we can introduce sparsity as we have
done in the case of regression. The most obvious way to do so is to assume
that few of the entries of Σ are non zero and it turns out that in this case
thresholding is optimal. There is a long line of work on this subject (see for
example [CZZ10] and [CZ12]).

Once we have a good estimator of Σ, what can we do with it? The key
insight is that Σ contains information about the projection of the vector X
onto any direction u ∈ Sd−1. Indeed, we have that var(X⊤u) = u⊤Σu, which

ˆcan be readily estimated by V̂ar(X⊤u) = u⊤Σu. Observe that it follows from
Theorem 4.6

∣∣V̂ ˆar(X⊤u)−Var(X⊤u)
∣∣ =

∣∣u⊤(Σ− Σ)u

≤ ‖Σ̂− Σ‖op

∣∣

d+ log(1/δ) d+ log(1/δ)
. ‖Σ‖op

√

n
∨

n

with probability 1− δ.

( )

The above fact is useful in the Markowitz theory of portfolio section for
example [Mar52], where a portfolio of assets is a vector u ∈ IRd such that
|u|1 = 1 and the risk of a portfolio is given by the variance Var(X⊤u). The
goal is then to maximize reward subject to risk constraints. In most instances,
the empirical covariance matrix is plugged into the formula in place of Σ.
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4.4 PRINCIPAL COMPONENT ANALYSIS

Spiked covariance model

Estimating the variance in all directions is also useful for dimension reduction.
In Principal Component Analysis (PCA), the goal is to find one (or more)
directions onto which the data X1, . . . , Xn can be projected without loosing
much of its properties. There are several goals for doing this but perhaps
the most prominent ones are data visualization (in few dimensions, one can
plot and visualize the cloud of n points) and clustering (clustering is a hard
computational problem and it is therefore preferable to carry it out in lower
dimensions). An example of the output of a principal component analysis
is given in Figure 4.1. In this figure, the data has been projected onto two
orthogonal directions PC1 and PC2, that were estimated to have the most
variance (among all such orthogonal pairs). The idea is that when projected
onto such directions, points will remain far apart and a clustering pattern
will still emerge. This is the case in Figure 4.1 where the original data is
given by d = 500, 000 gene expression levels measured on n ≃ 1, 387 people.
Depicted are the projections of these 1, 387 points in two dimension. This
image has become quite popular as it shows that gene expression levels can
recover the structure induced by geographic clustering. How is it possible to
“compress” half a million dimensions into only two? The answer is that the
data is intrinsically low dimensional. In this case, a plausible assumption is
that all the 1, 387 points live close to a two-dimensional linear subspace. To see
how this assumption (in one dimension instead of two for simplicity) translates
into the structure of the covariance matrix Σ, assume that X1, . . . , Xn are
Gaussian random variables generated as follows. Fix a direction v ∈ Sd−1

and let Y1, . . . , Yn ∼ Nd(0, Id) so that v⊤Yi are i.i.d. N (0, 1). In particular,
the vectors (v⊤Y1)v, . . . , (v⊤Yn)v live in the one-dimensional space spanned by
v. If one would observe such data the problem would be easy as only two
observations would suffice to recover v. Instead, we observe X1, . . . , Xn ∈ IRd

where Xi = (v⊤Yi)v + Zi, and Z
2

i ∼ Nd(0, σ Id) are i.i.d. and independent of
the Yis, that is we add a isotropic noise to every point. If the σ is small enough,
we can hope to recover the direction v (See Figure 4.2). The covariance matrix
of Xi generated as such is given by

Σ = IE
[
XX⊤

This model is often

]
= IE

[
((v⊤Y )v + Z)((v⊤Y )v + Z)⊤ = vv⊤ + σ2Id .

called the spiked covariance model.

]

By a simple rescaling,
it is equivalent to the following definition.

Definition 4.7. A covariance matrix Σ ∈ IRd×d is said to satisfy the spiked
covariance model if it is of the form

Σ = θvv⊤ + Id ,

where θ > 0 and v ∈ Sd−1. The vector v is called the spike.
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Figure 4.1. Projection onto two dimensions of 1, 387 points from gene expression data.
Source: Gene expression blog.

v

Figure 4.2. Points are close to a one dimensional space space by v.

This model can be extended to more than one spike but this extension is
beyond the scope of these notes.

Clearly, under the spiked covariance model, v is the eigenvector of the
matrix Σ that is associated to its largest eigenvalue 1 + θ. We will refer to
this vector simply as largest eigenvector. To estimate it, a natural candidate

˜ ˜is the largest eigenvector v̂ of Σ, where Σ is any estimator of Σ. There is a
caveat: by symmetry, if u is an eigenvector, of a symmetric matrix, then −u is
also an eigenvector associated to the same eigenvalue. Therefore, we may only
estimate v up to a sign flip. To overcome this limitation, it is often useful to
describe proximity between two vectors u and v in terms of the principal angle

Courtesy of Macmillan Publishers Ltd. Used with permission.
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between their linear span. Let us recall that for two unit vectors the principal
angle between their linear spans is denoted by ∠(u, v) and defined as

∠(u, v) = arccos(|u⊤v|) .
The following result form perturbation theory is known as the Davis-Kahan
sin(θ) theorem as it bounds the sin of the principal angle between eigenspaces.
This theorem exists in much more general versions that extend beyond one-
dimensional eigenspaces.

Theorem 4.8 (Davis-Kahan sin(θ) theorem). Let Σ satisfy the spiked covari-
˜ance model and let Σ be any PSD estimator of Σ. Let ṽ denote the largest

˜eigenvector of Σ. Then we have

8
min |εṽ − v|22 ≤ ˜2 sin2

ε∈{±

(
∠(ṽ, v)

1}

)
≤ Σ Σ 2 .
θ2

‖ − ‖op

Proof. Note that for any u ∈ Sd−1, it holds under the spiked covariance model
that

u⊤Σu = 1 + θ(v⊤u)2 = 1 + θ cos2(∠(u, v)) .

Therefore,

v⊤Σv − ṽ⊤Σṽ = θ[1− cos2(∠(ṽ, v))] = θ sin2(∠(ṽ, v)) .

Next, observe that

v⊤Σv − ṽ⊤ ˜ ˜Σṽ = v⊤Σv − ṽ⊤Σṽ − v⊤ Σ− Σ v

≤ ⊤ ˜
(
˜ṽ Σṽ − ṽ⊤Σṽ − v⊤

(

Σ− Σ

)

v

= 〈Σ̂− Σ, ṽṽ⊤ − vv⊤〉

)

(4.8)

≤ ‖Σ̃− Σ‖op‖ṽṽ⊤ − vv⊤‖1 (Hölder)
√

≤ 2‖Σ̃− Σ‖op‖ṽṽ⊤ − vv⊤‖F (Cauchy-Schwarz) .

where in the first inequality, we used the fact that ṽ is the largest eigenvector
˜of Σ and in the last one, we used the fact that the matrix ṽṽ⊤ − vv⊤ has rank

at most 2.
Next, we have that

‖ṽṽ⊤ − vv⊤‖2F = 2(1− (v⊤ṽ)2) = 2 sin2(∠(ṽ, v)) .

Therefore, we have proved that

2 ∠ ≤ ‖˜θ sin ( (ṽ, v)) 2 Σ− Σ‖op sin(∠(ṽ, v)) ,
so that

2 ˜sin(∠(ṽ, v)) ≤ ‖Σ Σ
θ

− ‖op .
To conclude the proof, it remains to check that

min |εṽ − v|22 = 2− 2
ε∈{±1}

|ṽ⊤v| ≤ 2− 2(ṽ⊤v)2 = 2 sin2(∠(ṽ, v)) .
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Combined with Theorem 4.6, we immediately get the following corollary.

Corollary 4.9. Let X1, . . . , X[ n be ]n i.i.d. copies of a sub-Gaussian random
vector X ∈ IRd such that IE XX⊤ = Σ and X ∼ subGd(‖Σ‖op). Assume
further that Σ = θvv⊤ + Id satisfies the spiked covariance model. Then, the

ˆlargest eigenvector v̂ of the empirical covariance matrix Σ satisfies,

1 + θ d+ log(1/δ) d+ log(1/δ)
min |εv̂ v

ε∈{±1}
− |2 .

θ

√

n
∨

n

with probability 1

( )

− δ.

ˆThis result justifies the use of the empirical covariance matrix Σ as a re-
placement for the true covariance matrix Σ when performing PCA in low di-
mensions, that is when d ≪ n. In the high-dimensional case, where d ≫ n,
the above result is uninformative. As before, we resort to sparsity to overcome
this limitation.

Sparse PCA

In the example of Figure 4.1, it may be desirable to interpret the meaning of
the two directions denoted by PC1 and PC2. We know that they are linear
combinations of the original 500,000 gene expression levels. A natural question
to ask is whether only a subset of these genes could suffice to obtain similar
results. Such a discovery could have potential interesting scientific applications
as it would point to a few genes responsible for disparities between European
populations.

In the case of the spiked covariance model this amounts to have v to be
sparse. Beyond interpretability as we just discussed, sparsity should also lead
to statistical stability as in the case of sparse linear regression for example.
To enforce sparsity, we will assume that v in the spiked covariance model is
k-sparse: |v|0 = k. Therefore, a natural candidate to estimate v is given by v̂
defined by

v̂⊤Σ̂v̂ = max u⊤Σ̂u .
u∈ d−1

|u
S
|0=k

ˆIt is easy to check that λk ˆ
max(Σ) = v̂⊤Σv̂ is the largest of all leading eigenvalues

ˆamong all k × k sub-matrices of Σ so that the maximum is indeed attained,
ˆthough there my be several maximizers. We call λkmax(Σ) the k-sparse leading

ˆeigenvalue of Σ and v̂ a k-sparse leading eigenvector.

Theorem 4.10. Let X1, . . . ,[Xn be]n i.i.d. copies of a sub-Gaussian random
vector X ∈ IRd such that IE XX⊤ = Σ and X ∼ subGd(‖Σ‖op). Assume
further that Σ = θvv⊤ + Id satisfies the spiked covariance model for v such
that |v|0 = k ≤ d/2. Then, the k-sparse largest eigenvector v̂ of the empirical
covariance matrix satisfies,

1 + θ
√
k log(ed/k) + log(1/δ) k log(ed/k) + log(1/δ)

min |εv̂ − v
ε 1}

|2 . .
∈{± θ n

∨
n

( )
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with probability 1− δ.

Proof. We begin by obtaining an intermediate result of the Davis-Kahan sin(θ)
theorem (Theorem 4.8). Note that we get from (4.8) that

v⊤Σv − v̂⊤ ˆΣv̂ ≤ 〈Σ− Σ, v̂v̂⊤ − vv⊤〉

Since both v̂ and v are k sparse, there exists a (random) set S ⊂ {1, . . . , d}
such that |S| ≤ 2k and {v̂v̂⊤ − vv⊤}ij = 0 if (i, j) ∈/ S2. It yields

〈Σ̂− Σ, v̂v̂⊤ − ⊤〉 〈ˆvv = Σ(S)− Σ(S), v̂(S)v̂(S)⊤ − v(S)v(S)⊤〉

Where for any d×d matrix M , we defined the matrix M(S) to be the |S|× |S|
sub-matrix of M with rows and columns indexed by S and for any vector
x ∈ IRd, x(S) ∈ IR|S| denotes the sub-vector of x with coordinates indexed by
S. It yields, by Hölder’s inequality that

v⊤Σv − ˆv̂⊤Σv̂ ≤ ‖Σ(S)− Σ(S)‖op‖v̂(S)v̂(S)⊤ − v(S)v(S)⊤‖1 .

Following the same steps as in the proof of Theorem 4.8, we get now that

8 ˆmin |εv̂ − v|22 ≤ 2 sin2
(
∠(v̂, v)

)
≤ sup ‖Σ(S)− Σ(S)‖op .

ε∈{±1} θ2 S : |S|=2k

ˆTo conclude the proof, it remains to control supS : S =2k ‖Σ(S)| | − Σ(S)‖op. To
that end, observe that

IP
[

ˆsup Σ(S) Σ(S) op > t Σ op
S : |S|=2k

‖ − ‖ ‖ ‖
]

≤
∑

IP
[

sup ‖Σ̂(S)− Σ(S) op > t Σ(S) op
S : S =2k

‖ ‖ ‖
S : S

||=2k
||

]

(
d
)

2k
[ n ( t 2 t≤ 144 exp − ( ) .

2k 2 32

)
∧
32

]

where we used (4.7) in the second inequality. Using Lemma 2.7, we get that
the right-hand side above is further bounded by

[ n ( t )2 t ed
exp − ( ∧ ) + 2k log(144) + k log

2 32 32 2k

Choosing now t such that

( )]

k log(ed/k) + log(1/δ) k log(ed/k) + log(1/δ)
t ≥ C

√

n
∨ ,

n

for large enough C ensures that the desired bound holds with probability at
least 1− δ.
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4.5 PROBLEM SET

Problem 4.1. Using the results of Chapter 2, show that the following holds
for the multivariate regression model (4.1).

ˆ1. There exists an estimator Θ ∈ IRd×T such that

1 T
XΘ̂ XΘ∗ 2 . σ2 r

n
‖ − ‖F n

with probability .99, where r denotes the rank of X .

ˆ2. There exists an estimator Θ ∈ IRd×T such that

1 ‖ Θ̂− Θ∗‖2 . σ2 )
X X

|Θ∗|0 log(ed
n F .

n

with probability .99.

Problem 4.2. Consider the multivariate regression model (4.1) where Y has
SVD:

Y =
∑

λ̂j ûj v̂j
⊤ .

j

Let M be defined by

M̂ =
∑

ˆ ˆλj1I(|λj | > 2τ)ûj v̂j
⊤ , τ > 0 .

j

1. Show that there exists a choice of τ such that

1 σ2 rank(Θ∗)
n
‖M̂ − ∗ 2XΘ ‖F . (d

n
∨ T )

with probability .99.

ˆ ˆ2. Show that there exists a matrix n×n matrix P such that PM = XΘ for
ˆsome estimator Θ and

1 2 σ2 rank(Θ∗)‖XΘ̂− XΘ∗‖F . (d
n n

∨ T )

with probability .99.

3. Comment on the above results in light of the results obtain in Section 4.2.

Problem 4.3. ˆConsider the multivariate regression model (4.1) and define Θ
be the any solution to the minimization problem

1
min

Θ∈IRd×T

{
n
‖ − 2Y XΘ‖F + τ‖XΘ‖1

}
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1. Show that there exists a choice of τ such that

1 σ2
2 rank(Θ∗)‖XΘ̂− XΘ∗‖F . (d ∨ T )

n n

with probability .99.

[Hint:Consider the matrix

∑ λ̂j + λ∗j
ûj v̂j

⊤
2

j

where λ∗1 ≥ λ∗2 ≥ ˆ. . . and λ1 ≥ λ̂2 ≥ . . . are the singular values

of XΘ∗ and Y respectively and the SVD of Y is given by

Y
∑

ˆ= λj ûj v̂j
⊤

j

ˆ2. Find a closed form for XΘ.
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