18.S997 Spring 2015: Problem Set 2

Problem 2.1

Let $X=\left(1, Z, \ldots, Z^{d-1}\right)^{\top} \in \mathbb{R}^{d}$ be a random vector where Z is a random variable. Show that the matrix $\mathbb{E}\left(X X^{\top}\right)$ is positive definite if Z admits a probability density with respect to the Lebesgue measure on \mathbb{R}.

Problem 2.2

For any $q>0$, a vector $\theta \in \mathbb{R}^{d}$ is said to be in a weak ℓ_{q} ball of radius R if the decreasing rearrangement $\left|\theta_{[1]}\right| \geq\left|\theta_{[2]}\right| \geq \ldots$ satisfies

$$
\left|\theta_{[j]}\right| \leq R j^{-1 / q}
$$

Moreover, we define the weak ℓ_{q} norm of θ by

$$
|\theta|_{w \ell_{q}}=\max _{1 \leq j \leq d} j^{1 / q}\left|\theta_{[j]}\right|
$$

(a) Give examples of $\theta, \theta^{\prime} \in \mathbb{R}^{d}$ such that

$$
\left|\theta+\theta^{\prime}\right|_{w \ell_{1}}>|\theta|_{w \ell_{1}}+\left|\theta^{\prime}\right|_{w \ell_{1}}
$$

What do you conclude?
(b) Show that $|\theta|_{w \ell_{q}} \leq|\theta|_{q}$.
(c) Show that if $\lim _{d \rightarrow \infty}|\theta|_{w \ell_{q}}<\infty$, then $\lim _{d \rightarrow \infty}|\theta|_{q^{\prime}}<\infty$ for all $q^{\prime}>q$.
(d) Show that, for any $q \in(0,2)$ if $\lim _{d \rightarrow \infty}|\theta|_{w \ell_{q}}=C$, there exists a constant $C_{q}>0$ that depends on q but not on d and such that under the assumptions of Theorem 2.11, it holds

$$
\left|\hat{\theta}^{\mathrm{HRD}}-\theta^{*}\right|_{2}^{2} \leq C_{q}\left(\frac{\sigma^{2} \log 2 d}{n}\right)^{1-\frac{q}{2}}
$$

with probability .99.

Problem 2.3

Assume that the linear model (Equation 2.2) with $\varepsilon \sim \operatorname{subG}_{n}\left(\sigma^{2}\right)$ and $\theta^{*} \neq 0$.
Show that the modified BIC estimator $\hat{\theta}$ defined by

$$
\hat{\theta} \in \underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}}\left\{\frac{1}{n}|Y-\mathbb{X} \theta|_{2}^{2}+\lambda|\theta|_{0} \log \left(\frac{e d}{|\theta|_{0}}\right)\right\}
$$

satisfies

$$
\operatorname{MSE}(\mathbb{X} \hat{\theta}) \lesssim\left|\theta^{*}\right|_{0} \sigma^{2} \frac{\log \left(\frac{e d}{\left|\theta^{*}\right|_{0}}\right)}{n}
$$

with probability .99 , for appropriately chosen λ. What do you conclude?

MIT OpenCourseWare
http://ocw.mit.edu
18.S997 High-dimensional Statistics

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

