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Linear Regression Model

In this chapter, we consider the following regression model:

Yi = f(Xi) + εi, i = 1, . . . , n , (2.1)

where ε = (ε1, . . . , εn)
⊤ is sub-Gaussian with variance proxy σ2 and such that

IE[ε] = 0. Our goal is to estimate the function f under a linear assumption.
Namely, we assume that x ∈ IRd and f(x) = x⊤θ∗ for some unknown θ∗ ∈ IRd.

2.1 FIXED DESIGN LINEAR REGRESSION

Depending on the nature of the design points X1, . . . , Xn, we will favor a
different measure of risk. In particular, we will focus either on fixed or random
design.

Random design

The case of random design corresponds to the statistical learning setup. Let
(X1, Y1), . . . , (Xn+1, Yn+1) be n+1 i.i.d. random couples. Given (X1, Y1), . . . , (Xn, Yn)

ˆ ˆthe goal is construct a function fn such that fn(Xn+1) is a good predictor of
ˆYn+1. Note that when fn is constructed, Xn+1 is still unknown and we have

to account for what value it is likely to take.
Consider the following example from [HTF01, Section 3.2]. The response

variable Y is the log-volume of a cancerous tumor, and the goal is to predict
it based on X ∈ IR6, a collection of variables that are easier to measure (age
of patient, log-weight of prostate, . . . ). Here the goal is clearly to construct f
for prediction purposes. Indeed, we want to find an automatic mechanism that
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2.1. Fixed design linear regression 34

outputs a good prediction of the log-weight of the tumor given certain inputs
for a new (unseen) patient.

A natural measure of performance here is the L2-risk employed in the in-
troduction:

ˆR(fn) = IE[Yn+1 − f̂n(Xn+1)]
2 ˆ= IE[Yn+1 − f(Xn+1)]

2 + ‖fn − f‖2L2(PX ) ,

where PX denotes the marginal distribution of Xn+1. It measures how good
the prediction of Yn+1 is in average over realizations of Xn+1. In particular,
it does not put much emphasis on values of Xn+1 that are not very likely to
occur.

Note that if the εi are random variables with variance σ2 then, one simply
ˆ ˆhas R(fn) = σ2 + ‖fn − f‖2 2 . Therefore, for random design, we will focusL (PX )

ˆon the squared L2 norm ‖fn− f‖2 2 as a measure of accuracy. It measuresL (PX )

ˆhow close fn is to the unknown f in average over realizations of Xn+1.

Fixed design

In fixed design, the points (or vectors) X1, . . . , Xn are deterministic. To em-
phasize this fact, we use lowercase letters x1, . . . , xn to denote fixed design. Of
course, we can always think of them as realizations of a random variable but
the distinction between fixed and random design is deeper and significantly
affects our measure of performance. Indeed, recall that for random design, we
look at the performance in average over realizations of Xn+1. Here, there is no
such thing as a marginal distribution of Xn+1. Rather, since the design points
x1, . . . , xn are considered deterministic, our goal is estimate f only at these
points. This problem is sometimes called denoising since our goal is to recover
f(x1), . . . , f(xn) given noisy observations of these values.

In many instances, fixed design can be recognized from their structured
form. A typical example is the regular design on [0, 1], given by xi = i/n, i =
1, . . . , n. Interpolation between these points is possible under smoothness as-
sumptions.

Note that in fixed design, we observe µ∗+ε, where µ∗ =
(
f(x1), . . . , f(xn)

⊤ ∈
IRn and ε = (ε1, . . . , ε)

⊤ ∈ IRn is sub-Gaussian with variance proxy σ2. Instead
of a functional estimation problem, it is often simpler to view this problem a

)

s a
vector problem in IRn. This point of view will allow us to leverage the Euclidean
geometry of IRn.

In the case of fixed design, we will focus on the Mean Squared Error (MSE)
as a measure of performance. It is defined by

n
1 2

MSE ˆ ˆ(fn) =
∑

fn(xi)
n
i=1

− f(xi) .

Equivalently, if we view our problem as

(

a vector proble

)

m, it is defined by

n
1 2 1

MSE(µ̂) =
∑

i=1

(
µ̂i − µ∗

n i

)
=
n
|µ̂− µ∗|22 .
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Often, the design vectors x1, . . . , xn ∈ IRd are stored in a n× d design matrix
X, whose jth row is given by x⊤j . With this notation, the linear regression
model can be written

Y = Xθ∗ + ε , (2.2)

where Y = (Y1, . . . , Yn)
⊤ and ε = (ε1, . . . , εn)

⊤. Moreover,

1 X X
MSE(Xθ̂) = |X ˆ(θ − θ∗)|2

⊤
ˆ ˆ

2 = (θ θ
n

− ∗)⊤ (θ
n

− θ∗) . (2.3)

A natural example of fixed design regression is image denoising. Assume
that µ∗

i , i ∈ 1, . . . , n is the grayscale value of pixel i of an image. We do not
get to observe the image µ∗ but rather a noisy version of it Y = µ∗ + ε. Given
a library of d images {x1, . . . , xd}, xj ∈ IRn, our goal is to recover the original
image µ∗ using linear combinations of the images x1, . . . , xd. This can be done
fairly accurately (see Figure 2.1).

Figure 2.1. Reconstruction of the digit “6”: Original (left), Noisy (middle) and Recon-

struction (right). Here n = 16× 16 = 256 pixels. Source [RT11].

As we will see in Remark 2.3, choosing fixed design properly also ensures
that if MSE ˆ ˆ ˆ ˆ(f) is small for some linear estimator f(x) = x⊤θ, then |θ− θ∗|22 is
also small.

In this chapter we only consider the fixed design case.

2.2 LEAST SQUARES ESTIMATORS

Throughout this section, we consider the regression model (2.2) with fixed
design.

Unconstrained least squares estimator

ˆDefine the (unconstrained) least squares estimator θls to be any vector such
that

θ̂ls ∈ argmin
θ∈IRd

|Y − Xθ|22 .
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Note that we are interested in estimating Xθ∗ and not θ∗ itself, so by exten-
ˆsion, we also call µ̂ls = Xθls least squares estimator. Observe that µ̂ls is the

projection of Y onto the column span of X.
It is not hard to see that least squares estimators of θ∗ and µ∗ = Xθ∗ are

maximum likelihood estimators when ε ∼ N (0, σ2In).

Proposition 2.1. ˆThe least squares estimator µ̂ls = Xθls ∈ IRn satisfies

X⊤µ̂ls = X⊤Y .

ˆMoreover, θls can be chosen to be

θ̂ls = (X⊤X)†X⊤Y ,

where (X⊤X)† denotes the Moore-Penrose pseudoinverse of X⊤X.

Proof. The function θ 7→ |Y − Xθ|22 is convex so any of its minima satisfies

∇θ|Y − Xθ|22 = 0

Where ∇θ is the gradient operator. Using matrix calculus, we find

∇θ|Y − Xθ|22 = ∇θ

{
|Y |22 +−2Y ⊤Xθ + θ⊤X⊤Xθ = −2(Y ⊤X− θ⊤X⊤X)⊤ .

Therefore, solving ∇θ|Y − Xθ|22 = 0 yields

}

X⊤Xθ = X⊤Y .

It concludes the proof of the first statement. The second statement follows
from the definition of the Moore-Penrose pseudoinverse.

We are now going to prove our first result on the finite sample performance
of the least squares estimator for fixed design.

Theorem 2.2. Assume that the linear model (2.2) holds where ε ∼ subGn(σ
2).

ˆThen the least squares estimator θls satisfies

1ˆ ˆIE MSE( θls) = IE| θls − θ∗|2 2 rX X X
n 2 . σ ,

n

where r = rank(X⊤X

[

). Moreove

]

r, for any δ > 0, with probability 1− δ, it holds

ls 2 r + log(1/δ)
MSE(Xθ̂ ) . σ .

n

Proof. Note that by definition

|Y − Xθ̂ls|22 ≤ |Y − Xθ∗|22 = |ε|22 . (2.4)

Moreover,

|Y − Xθ̂ls|2 = | 2Xθ∗ + ε− Xθ̂ls| = |Xθ̂ls − 2 2X X2 θ∗|2 − 2ε⊤ ˆ(θls2 − θ∗) + |ε|2 .
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Therefore, we get

X l̂

|Xθ̂l ε⊤ (θ s
s θ∗)− Xθ∗ 2 ˆ

2 2ε⊤X( ls ∗ = 2 Xˆθ θ ) θls Xθ∗ 2
ls

−| ≤ − | − | (2.5)
|X ˆ(θ − θ∗)|2

Note that it is difficult to control

ε⊤X ˆ(θls − θ∗)

|X ˆ(θls − θ∗)|2
ˆas θls depends on ε and the dependence structure of this term may be com-

ˆplicated. To remove this dependency, a traditional technique is “sup-out” θls.
This is typically where maximal inequalities are needed. Here we have to be a
bit careful.

Let Φ = [φ1, . . . , φr ] ∈ IRn×r be an orthonormal basis of the column span

of X ˆ. In particular, there exists ν ∈ IRr such that X(θls − θ∗) = Φν. It yields

ε⊤X ˆ(θls − θ∗) ε⊤Φν ε⊤Φν ν
= = = ε̃⊤ sup ε̃⊤u ,

|X ˆ(θls |ν|2
≤

− θ∗)|2 |Φν|2 |ν|2 u∈B2

where B2 is the unit ball of IRr and ε̃ = Φ⊤ε. Thus

|Xθ̂ls − Xθ∗|22 ≤ 4 sup (ε̃⊤u)2 ,
u∈B2

Next, note that for any u ∈ Sr−1, it holds |Φu|22 = u⊤Φ⊤Φu = u⊤u = 1 so
that for any s ∈ IR, we have

2 2⊤

IE[esε̃ u] = IE[esε
⊤Φu s σ

] ≤ e 2 .

Therefore, ε̃ ∼ subGr(σ
2).

To conclude the bound in expectation, observe that Lemma 1.4 yields

r

4IE
[
sup (ε̃⊤u)2

]
= 4

∑
IE[ε̃2i ]

u∈B2 i=1

≤ 16σ2r .

Moreover, with probability 1 − δ, it follows from the last step in the proof1 of
Theorem 1.19 that

sup (ε̃⊤u)2 2r +
u

≤ 8 log(6)σ 8σ2 log(1/δ) .
∈B2

Remark 2.3. If d ≤ ⊤

n and B := X X has rank d, then we haven

E| l̂s MS (Xθ̂ls)
θ − θ∗|22 ≤ ,

λmin(B)

ˆand we can use Theorem 2.2 to bound |θls − θ∗|22 directly.

1we could use Theorem 1.19 directly here but at the cost of a factor 2 in the constant.
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Constrained least squares estimator

Let K ⊂ IRd be a symmetric convex set. If we know a priori that θ∗ ∈ K, we
ˆmay prefer a constrained least squares estimator θlsK defined by

θ̂lsK ∈ argmin Y
θ K

| − 2Xθ|2 .
∈

Indeed, the fundamental inequality (2.4) would still hold and the bounds on
the MSE may be smaller. Indeed, (2.5) can be replaced by

|Xˆ ˆθls − Xθ∗|2 ≤ 2ε⊤X(θlsK 2 K − θ∗) ≤ 2 sup (ε⊤Xθ) ,
θ∈K−K

where K −K = {x − y : x, y ∈ K}. It is easy to see that if K is symmetric
(x ∈ K ⇔ −x ∈ K) and convex, then K −K = 2K so that

2 sup (ε⊤Xθ) = 4 sup (ε⊤v)
θ∈K−K v∈XK

where XK = {Xθ : θ ∈ K} ⊂ IRn. This is a measure of the size (width) of
XK. If ε ∼ N (0, Id), the expected value of the above supremum is actually
called Gaussian width of XK. Here, ε is not Gaussian but sub-Gaussian and
similar properties will hold.

ℓ1 constrained least squares

Assume here that K = B1 is the unit ℓ1 ball of IRd. Recall that it is defined by

d

B1 =
{
x ∈ IRd :

∑

i=1

|xi| ≤ 1
}
,

and it has exactly 2d vertices V = {e1,−e1, . . . , ed,−ed}, where ej is the j-th
vector of the canonical basis of IRd and is defined by

ej = (0, . . . , 0, ︸︷1︷ , 0, . . . , 0)⊤ .

jth position

It implies that the set XK = {Xθ, θ ∈ K

︸

} ⊂ IRn is also a polytope with at
most 2d vertices that are in the set XV = {X1,−X1, . . . ,Xd,−Xd} where Xj is
the j-th column of X. Indeed, XK is a obtained by rescaling and embedding
(resp. projecting) the polytope K when d ≤ n (resp., d

X X X

≥ n). Note that some
columns of might not be vertices of K so that V might be a strict superset
of the set of vertices of XK.

Theorem 2.4. Let K = B1 be the unit ℓ1 ball of IRd, d ≥ 2 and assume that
θ∗ ∈ B1. Moreover, assume the conditions of Theorem 2.2 and that the columns
of X are normalized in such a way that maxj |Xj |2

√≤ n. Then the constrained
ˆleast squares estimator θlsB1

satisfies

1 log dˆ ˆIE
[
MSE(Xθls )

]
= IE|Xθls 2X

1 B1
− θ∗|2 . σB n

√
,

n
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Moreover, for any δ > 0, with probability 1− δ, it holds

MSE(Xθ̂lsB1
) . σ

√
log(d/δ)

.
n

Proof. From the considerations preceding the theorem, we got that

|Xθ̂lsB1
− 2Xθ∗|2 ≤ 4 sup (ε⊤v)

v∈XK

Observe now that since ε ∼ subGn(σ
2),then for any column Xj such that

|Xj |2
√≤ n, the random variable ε⊤[Xj ∼ subG(]nσ

2). Therefore, applying
ˆTheorem 1.16, we get the bound on IE MSE(XθlsK) and for any t ≥ 0,

2

ˆ nt

IP
[
MSE(XθlsK) > t ≤ IP sup (ε⊤v) > nt/4 2

v
≤ 2de− 32σ

∈XK

To conclude the proof, we fin

]

d t su

[

ch that

]

2de−
2nt
2 ≤ δ ⇔ t2 ≥ 32σ2 log(2d) 2 log(1/δ)

32σ + 32σ .
n n

ˆNote that the proof of Theorem 2.2 also applies to θls
1
(exercise!) so thatB

θ̂ls
1
benefits from the best of both rates.B

[
ls

] r
√

log dˆIE MSE(Xθ
1
) . min , .B n n

This is called an elbow effect. The elbow t

(

akes place a

)

round r
√≃ n (up to

logarithmic terms).

ℓ0 constrained least squares

We abusively call ℓ0 norm of a vector θ ∈ IRd it number of non-zero coefficient.
It is denoted by

d

|θ|0 = 1I(θj = 0) .
j=1

We call a vector θ with “small” ℓ

∑

0 norm a sparse vector. More precisely, if
|θ|0 ≤ k, we say that θ is a k-sparse vector. We also call support of θ the set

supp(θ) =

so that |θ|0 = card(supp(θ)) =: |

{
j ∈ {1, . . . , d} : θj = 0

supp(θ)| .

}

Remark 2.5. The ℓ0 terminology and notation comes from the fact that

d

lim
q→0+

∑

j=1

|θj |q = |θ|0

Therefore it is really limq 0+ |θ|qq but the notation |θ|00 suggests too much that→
it is always equal to 1.

6

6
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By extension, denote by B0(k) the ℓ0 ball of IRd, i.e., the set of k-sparse
vectors, defined by

B0(k) = {θ ∈ IRd : |θ|0 ≤ k} .
ˆIn this section, our goal is to control the MSE of θlsK whenK = B0(k). Note that

ˆcomputing θls essentially requires computing d least squares estimators,B0(k) k

which is an exponential number in k. In practice this will be hard (or even
impossible) but it is interesting to understand the

(

s

)

tatistical properties of this
estimator and to use them as a benchmark.

Theorem 2.6. Fix a positive integer k ≤ d/2. Let K = B0(k) be set of
k-sparse vectors of IRd and assume that θ∗ ∈ B0(k). Moreover, assume the
conditions of Theorem 2.2. Then, for any δ > 0, with probability 1− δ, it holds

σ2
(
d
)

σ2
ls k σ2

MSE Xˆ( θ (k)) .0
log + + log(1/δ) .B n 2k n n

Proof. We begin as in the proof of Theorem 2.2 to get (2.5):

ˆε⊤X(θls θ∗)| 2Xθ̂lsK − X ∗ ⊤X ˆθ 2ε θls2 K − θ∗) = 2
−| ≤ ( |Xθ̂ls − XK θ∗| K

2 .
|X ˆ(θlsK − θ∗)|2

ˆ ˆWe know that both θlsK and θ∗ are in B0(k) so that θlsK − θ∗ ∈ B0(2k). For
any S ⊂ {1, . . . , d}, let XS denote the n× |S| submatrix of X that is obtained
from the columns of Xj , j ∈ S of X. Denote by rS ≤ |S| the rank of XS and
let ΦS = [φ1, . . . , φrS ] ∈ IRn×rS be an orthonormal basis of the column span
of XS . Moreover, for any θ ∈ IRd, define θ(S) ∈ IR|S| to be the vector with

ˆ ˆ ˆcoordinates θj , j ∈ S. If we denote by S = supp(θlsK − θ∗), we have |S| ≤ 2k
and there exists ν ∈ IRrŜ such that

X ˆ(θls − ˆθ∗) = X (θls ˆ
K ˆ K(S)− θ∗ ˆ(S)) = Φ ˆν .S S

Therefore,

ε⊤X ˆ(θlsK − θ∗) ε⊤Φ ˆν
= S ε⊤Φ

ˆ
≤ max sup [| | S ]u|X(θlsK − θ∗)|2 ν 2 |S|=2k u∈BrS

2

where BrS2 is the unit ball of IRrS . It yields

|Xθ̂lsK − Xθ∗|22 ≤ 4 max sup (ε̃⊤S u)
2 ,

|S|=2k ∈Br
u S

2

ε̃S = Φ⊤
S ε ∼ subGrS (σ

2).
Using a union bound, we get for any t > 0,

IP
(
max sup (ε̃⊤u)2 > t IP sup (ε̃⊤u)2 > t
|S|=2k rS

2

)
≤

∈B |S

∑

|= k

(
u∈ r

u S
2 B2

)

It follows from the proof of Theorem 1.19 that for any |S| ≤ 2k,

IP
(

sup (ε̃⊤u)2 > t
u∈BrS

2

)
≤ 6|S|e−

t
28σ ≤ 62ke−

t
28σ .
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Together, the above three displays yield

IP(|Xˆ t

θls 2 d
XK − θ∗|2 > 4t) ≤

( )
62ke− 28σ . (2.6)

2k

To ensure that the right-hand side of the above inequality is bounded by δ, we
need

t ≥ Cσ2
{
log

(
d
)
+ k log(6) + log(1/δ)

2k

}
.

How large is log
(
d
)
? It turns out that it is not much larger than k.2k

Lemma 2.7. For any integers 1 ≤ k ≤ n, it holds

(
n

k

)
≤

(en
k

)k

Proof. Observe first that if k = 1, since n ≥ 1, it holds,

(
n

1

)
= n ≤ en =

(en
1

)1

Next, we proceed by induction and assume that it holds for some k ≤ n− 1.

(
n
) (en k

k
≤

k

)

Observe that
(

n

k + 1

)
=

(
n n− k en k n− k eknk+1 1 k

= 1 + ,
k

)

k + 1
≤

(
k

)
k + 1 (k + 1)k+1

(
k

)

where we used the induction hypothesis in the first inequality. To conclude, it
suffices to observe that ( 1

1 +
k

)k
≤ e

It immediately leads to the following corollary:

Corollary 2.8. Under the assumptions of Theorem 2.6, for any δ > 0, with
probability 1− δ, it holds

ls σ2k ed σ2k σ2

MSE(Xθ̂
0(k)

) . log loB n

(
2

)
+ log(6) + g(1/δ) .

k n n
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Note that for any fixed δ, there exits a constant Cδ > 0 such that for any
n ≥ 2k,

ls σ2k ed
MSE Xˆ( θB0(k)

) ≤ Cδ log .
n 2k

Comparing this result with Theorem 2.2 with r =

(

k,

)

we see that the price to
pay for not knowing the support of θ∗ but only its size, is a logarithmic factor
in the dimension d.

This result immediately leads the following bound in expectation.

Corollary 2.9. Under the assumptions of Theorem 2.6,

σ2k ed
IE MSE(Xθ̂ls k)) .B0(

log
n

(
k

)
.

Proof. It follows from (

[

2.6) that for an

]

y H ≥ 0,

IE
[
MSE(Xθ̂ls

0(k)
)
]
=

∫ ∞
IP(|Xθ̂lsK − Xθ∗|22 > nu)duB

0

≤ H +

∫ ∞
IP(|Xθ̂lsK − Xθ∗|22 > n(u +H))du

0

2k ∞
≤

∑(
d
) ∫

−n(u+H)

H + 62k e 232σ ,
j 0j=1

2k

= H +
∑ d k − nH

62
32σ2

e 232σ du .
j n

j=1

( )

Next, take H to be such that

∑2k (
d
)
62ke−

nH
232σ = 1 .

j
j=1

In particular, it yields
σ2k ed

H . log ,
n k

which completes the proof.

( )

2.3 THE GAUSSIAN SEQUENCE MODEL

The Gaussian Sequence Model is a toy model that has received a lot of
attention, mostly in the eighties. The main reason for its popularity is that
it carries already most of the insight of nonparametric estimation. While the
model looks very simple it allows to carry deep ideas that extend beyond its
framework and in particular to the linear regression model that we are inter-
ested in. Unfortunately we will only cover a small part of these ideas and
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the interested reader should definitely look at the excellent books by A. Tsy-
bakov [Tsy09, Chapter 3] and I. Johnstone [Joh11]. The model is as follows:

Yi = θi
∗ + εi , i = 1, . . . , d (2.7)

where ε1, . . . , εd are i.i.d N (0, σ2) random variables. Note that often, d is taken
equal to ∞ in this sequence model and we will also discuss this case. Its links
to nonparametric estimation will become clearer in Chapter 3. The goal here
is to estimate the unknown vector θ∗.

The sub-Gaussian Sequence Model

Note first that the model (2.7) is a special case of the linear model with fixed
design (2.1) with n = d, f(x) = x⊤θ∗, x1, . . . , xn form the canonical basis of
IRn and ε has a Gaussian distribution. Therefore, n = d is both the dimension
of the parameter θ and the number of observation and it looks like we have
chosen to index this problem by d rather than n somewhat arbitrarily. We
can bring n back into the picture, by observing that this model encompasses
slightly more general choices for the design matrix X as long as it satisfies the
following assumption.

Assumption ORT The design matrix satisfies

X⊤X
= Id ,

n

where Id denotes the identity matrix of IRd.

Assumption ORT allows for cases where d ≤ n but not d > n (high dimensional
case) because of obvious rank constraints. In particular, it means that the d
columns of X are orthogonal in IRn and all have norm

√
n.

Under this assumption, it follows from the linear regression model (2.2)
that

1 X⊤X 1
y := X⊤Y = θ∗ + X⊤ε

n n n
= θ∗ + ξ ,

where ξ = (ξ1, . . . , ξd) ∼ subG 2
d(σ /n). As a result, under the assumption ORT,

the linear regression model (2.2) is equivalent to the sub-Gaussian Sequence
Model (2.7) up to a transformation of the data Y and a change of variable

ˆfor the variance. Moreover, for any estimator θ ∈ IRd, under ORT, it follows
from (2.3) that

X⊤X
MSE(Xˆ ˆθ) = (θ − ˆ ˆθ∗)⊤ (θ

n
− θ∗) = |θ − θ∗|22 .
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Furthermore, for any θ ∈ IRd, the assumption ORT yields,

|y − θ|2 1
2 = | X⊤Y

n
− θ|22

= |θ|2 2 1
2 − θ⊤X⊤Y + Y ⊤XX⊤Y

n n2

1
= |Xθ|2 2 1

2 − (Xθ)⊤Y + |Y 2

n n n
|2 +Q

1
=
n
|Y − Xθ|22 +Q , (2.8)

where Q is a constant that does not depend on θ and is defined by

1 1
Q = Y ⊤ 2XX⊤Y

n2
−
n
|Y |2

ˆThis implies in particular that the least squares estimator θls is equal to y.

We introduce a sightly more general model called sub-Gaussian sequence
model :

y = θ∗ + ξ ∈ IRd (2.9)

where ξ ∼ subGd(σ
2/n).

In this section, we can actually completely “forget” about our original
model (2.2). In particular we can define this model independently of Assump-
tion ORT and thus for any values of n and d.

The sub-Gaussian sequence model, like the Gaussian sequence model are
called direct (observation) problems as opposed to inverse problems where the
goal is to estimate the parameter θ∗ only from noisy observations of its image
through an operator. The linear regression model one such inverse problem
where the matrix X plays the role of a linear operator. However, in these notes,
we never try to invert the operator. See [Cav11] for an interesting survey on
the statistical theory of inverse problems.

Sparsity adaptive thresholding estimators

If we knew a priori that θ was k sparse, we could employ directly Corollary 2.8
to obtain that with probability 1− δ, we have

ls σ2k ed
MSE(Xθ̂B0(k)

) ≤ Cδ log .
n 2k

As we will see, the assumption ORT gives us the lu

(

xur

)

y to not know k and yet
adapt to its value. Adaptation means that we can construct an estimator that
does not require the knowledge of k (the smallest such that |θ∗

ˆ
|0 ≤ k) and yet,

perform as well as θls , up to a multiplicative constant.B0(k)

Let us begin with some heuristic considerations to gain some intuition.
Assume the sub-Gaussian sequence model (2.9). If nothing is known about θ∗
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ˆit is natural to estimate it using the least squares estimator θls = y. In this
case,

MSE(Xθ̂ls) = |y − θ∗|2 σ2d
2 = |ξ|22 ≤ Cδ ,

n

where the last inequality holds with probability at least 1− δ. This is actually
what we are looking for if k = Cd for some positive constant C ≤ 1. The
problem with this approach is that it does not use the fact that k may be much
smaller than d, which happens when θ∗ has many zero coordinate.

If θj
∗ = 0, then, yj = ξj , which is a sub-Gaussian random variable with vari-

ance proxy σ2/n. In particular, we know from Lemma 1.3 that with probability
at least 1− δ,

2|ξj | ≤ σ

√
log(2/δ)

= τ . (2.10)
n

The consequences of this inequality are interesting. One the one hand, if we
observe |yj | ≫ τ , then it must correspond to θj

∗ = 0. On the other hand, if
|yj | ≤ τ is smaller, then, θj

∗ cannot be very large. In particular, by the triangle
inequality, |θj∗| ≤ |yj |+ |ξj | ≤ 2τ . Therefore, we loose at most 2τ by choosing

θ̂j = 0. It leads us to consider the following estimator.

Definition 2.10. The hard thresholding estimator with threshold 2τ > 0
ˆis denoted by θhrd and has coordinates

θ̂hrd
y if y > 2τ ,

j =

{
j | j|
0 if |yj| ≤ 2τ ,

ˆfor j = 1, . . . , d. In short, we can write θhrdj = yj1I(|yj | > 2τ).

From our above consideration, we are tempted to choose τ as in (2.10).
Yet, this threshold is not large enough. Indeed, we need to choose τ such that
|ξj | ≤ τ simultaneously for all j. This can be done using a maximal inequality.
Namely, Theorem 1.14 ensures that with probability at least 1− δ,

2 log(2d/δ)
max |ξj σ
1≤j≤d

| ≤
√

n

It yields the following theorem.

Theorem 2.11. Consider the linear regression model (2.2) under the assump-
tion ORT or, equivalenty, the sub-Gaussian sequence model (2.9). Then the

ˆhard thresholding estimator θhrd with threshold

lo
2τ 2σ

√
2 g(2d/δ)

= , (2.11)
n

enjoys the following two properties on the same event A such that IP(A) ≥ 1−δ:

6



2.3. The Gaussian Sequence Model 46

(i) If |θ∗|0 = k,

lo
SE( 2 2 k g(2d/δ)

M X ĥrd) = |ˆθ θhrd − θ∗|2 . σ .
n

(ii) if minj∈supp(θ∗) |θj∗| > 3τ , then

ˆsupp(θhrd) = supp(θ∗) .

Proof. Define the event

A = max ,
j

|ξj | ≤ τ

and recall that Theorem 1.14 yie

{

lds IP(

}

A) ≥ 1 − δ. On the event A, the
following holds for any j = 1, . . . , d.

First, observe that

|yj| > 2τ ⇒ |θj∗| ≥ |yj | − |ξj | > τ (2.12)

and
|yj | ≤ 2τ ⇒ |θj∗| ≤ |yj |+ |ξj | ≤ 3τ (2.13)

It yields

|θ̂hrdj − θj
∗| = |yj − θj

∗|1I(|yj | > 2τ) + |θj∗|1I(|yj | ≤ 2τ)

≤ τ1I(|yj | > 2τ) + |θj∗|1I(|yj| ≤ 2τ)

≤ τ1I(|θj∗| > τ) + |θj∗|1I(|θj∗| ≤ 3τ) by (2.12) and (2.13)

≤ 4min(|θj∗|, τ)

It yields

d d

|θ̂hrd − ˆθ∗|22 =
∑

|θhrd 2
j − θj

∗| ≤ 16
j=1

∑
min(

j=1

|θj∗|2, τ2) ≤ 16|θ∗|0τ2 .

This completes the proof of (i).
To prove (ii), note that if θj

∗ = 0, then |θj∗| > 3τ so that

|yj| = |θj∗ + ξj | > 3τ − τ = 2τ .

ˆTherefore, θhrd ˆ
j = 0 so that supp(θ∗) ⊂ supp(θhrd).
ˆ ˆNext, if θhrdj = 0, then |θhrdj | = |yj| > 2τ . It yields

|θj∗| ≥ |yj | − τ > τ

Therefore, |θj∗| ˆ= 0 and supp(θhrd) ⊂ supp(θ∗).

6

6
6

6
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Figure 2.2. Transformation applied to yj with 2τ = 1 to obtain the hard (left) and soft

(right) thresholding estimators

ˆSimilar results can be obtained for the soft thresholding estimator θsft

defined by
yj 2τ if yj > 2τ ,

θ̂sftj =


 −

yj + 2τ if yj < −2τ ,
0 if |yj | ≤ 2τ ,

In short, we can write



θ̂sftj =
( 2τ
1− y|yj |

)
j

+

2.4 HIGH-DIMENSIONAL LINEAR REGRESSION

The BIC and Lasso estimators

It can be shown (see Problem 2.5) that the hard and soft thresholding es-
timators are solutions of the following penalized empirical risk minimization
problems:

θ̂hrd = argmin θ
θ∈Rd

|y
I

− |22 + 4τ2|θ|0

θ̂sft

{ }

= argmin
θ∈IRd

{
|y − θ|22 + 4τ |θ|1

}
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In view of (2.8), under the assumption ORT, the above variational definitions
can be written as

θ̂hrd
1

= argmin
{

|Y − 2 + 4τ2Xθ|2 |θ 0
θ∈IRd n

|

ˆ

}

θsft
1

= argmin
{

|Y − Xθ 2

θ∈IRd n
|2 + 4τ |θ|1

}

When the assumption ORT is not satisfied, they no longer correspond to thresh-
olding estimators but can still be defined as above. We change the constant in
the threshold parameters for future convenience.

Definition 2.12. Fix τ > 0 and assume the linear regression model (2.2). The
ˆBIC2 estimator of θ∗ in is defined by any θbic such that

θ̂bic
1∈ argmin

{
|Y − |22 + 2Xθ τ |θ 0

θ∈IRd n
|
}

ˆMoreover the Lasso estimator of θ∗ in is defined by any θL such that

1
θ̂L ∈ argmin Y Xθ 2

2 + 2τ θ 1
θ∈IRd

{
n
| − | | |

}

Remark 2.13. Numerical considerations. Computing the BIC estimator
can be proved to be NP-hard in the worst case. In particular, no computational
method is known to be significantly faster than the brute force search among
all 2d sparsity patterns. Indeed, we can rewrite:

1
min

{ 1|Y − |θ| 2 2Xθ|22 + τ2 0 m
θ

}
= min

∈I 0≤k≤d

{
in Y Xθ + τ k

Rd n θ : |θ|0=k n
| − |2

}

To compute min 1
θ : θ 0=k |Y − Xθ|22, we need to compute d least squares| | n k

estimators on a space of size k. Each costs O(k3) (matrix inversion). Therefore
the total cost of the brute force search is

( )

d

C
∑(

d
)
k3 = Cd32d .

k
k=0

Instead the the Lasso estimator is convex problem and there exists many
efficient algorithms to compute it. We will not describe this optimization prob-
lem in details but only highlight a few of the best known algorithms:

1. Probably the most popular method among statisticians relies on coor-
dinate gradient descent. It is implemented in the glmnet package in R
[FHT10],

2Note that it minimizes the Bayes Information Criterion (BIC) employed in the tradi-

tional literature of asymptotic statistics if τ =
√

log(d)/n. We will use the same value below,
up to multiplicative constants (it’s the price to pay to get non asymptotic results).
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2. An interesting method called LARS [EHJT04] computes the entire reg-
ularization path, i.e., the solution of the convex problem for all values

ˆof τ . It relies on the fact that, as a function of τ , the solution θL is a
piecewise linear function (with values in IRd). Yet this method proved
to be too slow for very large problems and has been replaced by glmnet

which computes solutions for values of τ on a grid much faster.

3. The optimization community has made interesting contribution to this
field by using proximal methods to solve this problem. It exploits the
structure of the form: smooth (sum of squares) + simple (ℓ1 norm).
A good entry point to this literature is perhaps the FISTA algorithm
[BT09].

4. There has been recently a lot of interest around this objective for very
large d and very large n. In this case, even computing |Y − Xθ|22 may
be computationally expensive and solutions based on stochastic gradient
descent are flourishing.

ˆNote that by Lagrange duality computing θL is equivalent to solving an
ℓ1 constrained least squares. Nevertheless, the radius of the ℓ1 constraint is
unknown. In general it is hard to relate Lagrange multipliers to the size con-
straints. The name “Lasso” was given to the constrained version this estimator
in the original paper of Robert Tibshirani [Tib96].

Analysis of the BIC estimator

While computationally hard to implement, the BIC estimator gives us a good
ˆbenchmark for sparse estimation. Its performance is similar to that of θhrd but

without assumption ORT.

Theorem 2.14. Assume that the linear model (2.2) holds where ε ∼ subGn(σ
2).

ˆThen, the BIC estimator θbic with regularization parameter

τ2
σ2 σ2 log(ed)

= 16 log(6) + 32 . (2.14)
n n

satisfies

MSE(Xθ̂bic
1 log(ed/δ)

) =
n
|Xθ̂bic − θ∗|22 . |θ∗|0σ2X

n

with probability at least 1− δ.

Proof. We begin as usual by noting that

1 |Y − θ̂bic|2 1ˆ+ 2X 2 τ |θbic|0 ≤ ∗
n
|Y − Xθ

n
|22 + τ2|θ∗|0 .

It implies

|Xθ̂bic − Xθ∗|22 ≤ nτ2|θ∗|0 + 2ε⊤X ˆ ˆ(θbic − θ∗)− nτ2|θbic|0 .
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First, note that

Xθ̂bic Xθ∗
2ε⊤X ˆ(θbic − θ∗) = 2ε⊤

( − )
|Xθ̂bic − Xθ∗

|Xθ̂bic − Xθ∗|2
|2

[ ( Xθ̂bic Xθ∗ 2 1≤ 2 ε⊤ + Xθ̂bic Xθ∗ 2 ,
| ˆ 2
Xθbic

−
Xθ∗|2

)]
2
| − |

−
where we use the inequality 2ab ≤ 2a2 + 1b2. Together with the previous2
display, it yields

|Xθ̂bic − Xθ∗|22 ≤ 2nτ2|θ∗|0 + 4
[
ε⊤U ˆ 2 ˆ(θbic − θ∗)

]
− 2nτ2|θbic|0 (2.15)

where
Xθ̂bic Xθ∗U ˆ(θbic − θ∗) =

−
|Xθ̂bic − Xθ∗|2

ˆNext, we need to “sup out” θbic. To that end, we decompose the sup into a
max over cardinalities as follows:

sup = max max sup .
1 k d S =kθ∈IRd ≤ ≤ | | supp(θ)=S

Applied to the above inequality, it yields

4
[
ε⊤U ˆ(θbic − θ∗)

]2 − 2nτ2|θ̂bic|0
≤ 2

max
{
max sup 4

≤k≤d |S|=k supp(θ)=S

[
ε⊤U(θ

1
− θ∗)

]
− 2nτ2k

}

≤ max
1≤k≤d

{
max sup 4
|S|=k r∈B S,∗u 2

[
ε⊤

2
ΦS, u

]
− 2nτ2k

}
,∗

where ΦS, = [φ1, . . . , φrS,∗ ] is an orthonormal basis of the set {Xj, j∗ ∈ S ∪
supp(θ∗)} of columns of X and rS,∗ ≤ |S| + |θ∗|0 is the dimension of this
column span.

Using union bounds, we get for any t > 0,

IP
(

max
{ 2
max sup 4 ε⊤ΦS, u 2nτ2k )

1≤k≤d |S|=k r
∗

u

− ≥ t
∈B S,∗

2

d

[ ] }

≤
∑ ∑ t 1

sup ε⊤
2

IP Φ 2
S, u

rS,∗
∗

k=1

≥ + nτ k
4 2

|S|=k

(

u∈B2

[ ] )

Moreover, using the ε-net argument from Theorem 1.19, we get for |S| = k,

IP
(

sup
[
ε⊤Φ u

]2 t 1 t + 1nτ2k≥ + nτ2k
)
≤ 2 · 6r

2
,

∗ S,∗ exp
r 4∈B ∗u 2

(
− 4 2

S,
S 2 8σ

2

)

t
2 exp

( nτ k≤ − − + (k + |θ∗|0) log(6)
32σ2 16σ2

)

≤ exp
( t−

32σ2
− 2k log(ed) + |θ∗|0 log(12)

)
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where, in the last inequality, we used the definition (2.14) of τ .
Putting everything together, we get

IP
(
| θ̂bic − θ∗|2 2X X 2 ≥ 2nτ |θ∗|0 + t

)
≤

∑d ∑ t
exp

(
− − 2k log(ed) + |θ∗|0 log(12)

32σ2
k=1 |S|=k

)

∑d d
=

( )
exp

( t− − 2k log(ed) + θ∗ 0 log(12)
k 32σ2

k=1

| |

d

)

≤
∑

exp
( t− − k log(ed) + θ∗ 0 log(12) by Lemma 2.7

32σ2
k=1

| |

d

)

=
∑

(ed)−k
t

exp
(
− + |θ∗ g

k

|0 lo (12)
32σ2

=1

t

)

≤ exp
(
− + |θ∗|0 log(12) .

32σ2

)

To conclude the proof, choose t = 32σ2|θ∗|0 log(12)+32σ2 log(1/δ) and observe
that combined with (2.15), it yields with probability 1− δ,

|Xθ̂bic − Xθ∗|22 ≤ 2nτ2|θ∗|0 + t

= 64σ2 log(ed)|θ∗|0 + 64 log(12)σ2|θ∗|0 + 32σ2 log(1/δ)

≤ 224|θ∗|0σ2 log(ed) + 32σ2 log(1/δ) .

ˆIt follows from Theorem 2.14 that θbic adapts to the unknown sparsity of
∗ ˆθ , just like θhrd. Moreover, this holds under no assumption on the design
matrix X.

Analysis of the Lasso estimator

Slow rate for the Lasso estimator

The properties of the BIC estimator are quite impressive. It shows that under
no assumption on X, one can mimic two oracles: (i) the oracle that knows the
support of θ∗ (and computes least squares on this support), up to a log(ed)
term and (ii) the oracle that knows the sparsity |θ∗|0 of θ∗, up to a smaller
logarithmic term log(ed/|θ∗|0) is replaced by log(ed). Actually the latter can
even be removed by using a modified BIC estimator (see Problem 2.6).

The Lasso estimator is a bit more difficult because, by construction, it
should more naturally adapt to the unknown ℓ1-norm of θ∗. This can be easily
shown as in the next theorem, analogous to Theorem 2.4.
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Theorem 2.15. Assume that the linear model (2.2) holds where ε ∼ subGn(σ
2).

Moreover, assume that the columns of X are normalized in such a way that
ˆmaxj |Xj |2

√≤ n. Then, the Lasso estimator θL with regularization parameter

√
2 log(2d) 2 log(1/δ)

2τ = 2σ + 2σ
n

√
. (2.16)

n

satisfies

1 2 log(2d) 2 log(1/δ)
MSE Xθ̂ |Xˆ( L) = θL − θ∗ 1σ

n
|2X 2 ≤ 4|θ∗|

√
+ 4 θ∗ 1σ

n
| |

√

n

with probability at least 1 − δ. Moreover, there exists a numerical constant
C > 0 such that

IE MSE(Xθ̂L) ≤ C|θ∗|1σ
√

log(2d)
.

n

ˆProof. From the definit

[

ion of θL, it

]

holds

1 |Y − 2 1 2X L̂
n

|2 + 2τ |ˆθ θL|1 ≤
n
|Y − Xθ∗|2 + 2τ |θ∗|1 .

Using Hölder’s inequality, it implies

|Xθ̂L − Xθ∗|22 ≤ ˆ ˆ2ε⊤X(θL − θ∗) + 2nτ |θ∗|1 − |θL|1
≤ ˆ2|X⊤ε| θL ˆ2nτ θL + 2 ⊤ε θ∗ + 2nτ∞| |1 − |

(

|1 |X |∞

)

| |1 |θ∗|1
|X⊤ | − |ˆ= 2( ε nτ) θL|1 + 2(|X⊤ε| + nτ)|θ∗∞ ∞ |1

Observe now that for any t > 0,

2

IP |X⊤ε| ≥ t

( t) = IP( max X⊤
j ε > t) 2de−∞ 22nσ

1≤j≤d
| | ≤

Therefore, taking t = σ
√

2n log(2d) + σ
√
2n log(1/δ) = nτ , we get that with

probability 1− δ,
|Xθ̂L − Xθ∗|22 ≤ 4nτ |θ∗|1 .

The bound in expectation follows using the same argument as in the proof of
Corollary 2.9.

Notice that the regularization parameter (2.16) depends on the confidence
level δ. This not the case for the BIC estimator (see (2.14)).

The rate in Theorem 2.15 if of order (log d)/n (slow rate), which is
much slower than the rate of order (log d)/n

√

(fast rate) for the BIC estimator.
Hereafter, we show that fast rates can be achieved by the computationally
efficient Lasso estimator but at the cost of a much stronger condition on the
design matrix X.
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Incoherence

Assumption INC(k) We say that the design matrix X has incoherence k for
some integer k > 0 if

X⊤X 1

n
− Id ∞ ≤

14k

where the |A| denotes the la

∣∣

rgest eleme

∣∣

nt of A in absolute value. Equivalently,∞

1. For all j = 1, . . . , d,
|Xj |22 1

n
− 1 ≤ .

14k

2. For all 1 ≤ i, j ≤ d, i = j, w

∣∣

e have

∣∣

∣
X⊤Xi j

∣ 1≤ .
14k

Note that Assumption ORT arises

∣

as the

∣

limiting case of INC(k) as k → ∞.
However, while Assumption ORT requires d ≤ n, here we may have d ≫ n as
illustrated in Proposition 2.16 below. To that end, we simply have to show
that there exists a matrix that satisfies INC(k) even for d > n. We resort
to the probabilistic method [AS08]. The idea of this method is that if we
can find a probability measure that puts a positive probability of objects that
satistify a certain property, then there must exist objects that satisfy said
property. In our case, we consider the following probability distribution on
random matrices with entries in {±1}. Let the design matrix X have entries
that are i.i.d Rademacher (±1) random variables. We are going to show that
most realizations of this random matrix satisfy Assumption INC(k) for large
enough n.

Proposition 2.16. Let X ∈ IRn×d be a random matrix with entries Xij , i =
1, . . . , n, j = 1, . . . , d that are i.i.d Rademacher (±1) random variables. Then,
X has incoherence k with probability 1− δ as soon as

n ≥ 392k2 log(1/δ) + 784k2 log(d) .

It implies that there exists matrices that satisfy Assumption INC(k) for

n & k2 log(d) ,

for some numerical constant C.

Proof. Let εij ∈ {−1, 1} denote the Rademacher random variable that is on
the ith row and jth column of X.

Note first that the jth diagonal entries of X⊤X/n is given by

n
1

n

∑
ε2i,j = 1

i=1

6
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⊤

Moreover, for j = k, the (j, k)th entry of the d× d matrix X X is given byn

n
1 ∑ n

1 (j,k)
εi,jεi,k =

n n
1

∑
ξi ,

i= i=1

(j,k) (j,k) (j,k)
where for each pair, (j, k), ξi = εi,jεi,k so that the random variables ξ1 , . . . , ξn
are iid Rademacher random variables.

Therefore, we get that for any t > 0,

(∣∣X
⊤X −

∣ ( ∣ ∑n∣ )
∣∣ 1 (j,k)

IP Id > t = IP max ξ t
n ∞ i >

j=k n
i=1

∣∣ )

≤
∑

P
∣∣ 1

I

∣

( ∑n
∣ (j,k)

ξi

∣∣∣ > t
)

(Union bound)
n

j=k i=1

≤
∑

2e−
2nt

2 (Hoeffding: Theorem 1.9)
j=k

≤ d2e−
2nt

2

Taking now t = 1/(14k) yields

IP
(∣∣X

⊤X
n

− Id
∣∣ 1

> d2e−
n

2392k δ∞ 14k

)
≤ ≤

for
n ≥ 392k2 log(1/δ) + 784k2 log(d) .

For any θ ∈ IRd, S ⊂ {1, . . . , d} define θS to be the vector with coordinates

{
θj if j

θS,j =
∈ S ,

0 otherwise .

In particular |θ|1 = |θS |1 + |θSc |1.
The following lemma holds

Lemma 2.17. Fix a positive integer k ≤ d and assume that X satisfies as-
sumption INC(k). Then, for any S ∈ {1, . . . , d} such that |S| ≤ k and any
θ ∈ IRd that satisfies the cone condition

|θSc |1 ≤ 3|θS|1 , (2.17)

it holds

|θS |22 ≤ 2
|Xθ|22
n

6

6

6

6
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Proof. We have

|Xθ|2 1 Xθ 2
S X⊤X2 = + 2X
|| θ 2

S XθSc |2
|≥ + 2θS

⊤ θSc

n n n n

If follows now from the incoherence condition that

|XθS |2 X2
⊤X X 2

= θS
⊤ S

θS = |θS |2
⊤X θ

2 + θS
⊤( − Id)θS ≥ |θ 2

S |2
| |

n n n
− 1

14k

and ∣∣∣ X⊤X 1 3
θS
⊤ θSc θ

n

∣∣∣ ≤
14k

| S |1|θSc |1 ≤
14k

|θS |21
Observe now that it follows from the Cauchy-Schwarz inequality that

|θS |21 ≤ |S||θS |22
Thus for |S| ≤ k,

|Xθ|22
n

≥
( 7
1

|S|−
14k

)
|θS |2

1
2 ≥

2
|θS |22

Fast rate for the Lasso

Theorem 2.18. Fix n ≥ 2. Assume that the linear model (2.2) holds where ε
subG

∼
n(σ

2). Moreover, assume that |θ∗|0 ≤ k and that X satisfies assumption

INC ˆ(k). Then the Lasso estimator θL with regularization parameter defined by

√
log(2d)

2τ = 8σ + 8σ
n

√
log(1/δ)

n

satisfies
1 ( )

MSE(Xθ̂L) = |X L̂ − Xθ∗|2 log 2d/δ
θ 2 . kσ2

n n

and
g|θ̂L − θ∗ 1 . kσ

√
lo (2d/δ)| .

n

with probability at least 1− δ. Moreover,

IE
[ log(2d) log(2d/δ)
MSE(Xˆ ˆθL)

]
. kσ2 , and IE |θL − θ∗

n
|1 . kσ

√
.

n

ˆProof. From the definition of θL, it holds

[ ]

1 |Y − Xθ̂L|2 1
X2 ≤ | ˆY − θ∗

n
|22 + 2τ |θ∗|1 − 2τ

n
|θL|1 .

ˆAdding τ |θL − θ∗|1 on each side and multiplying by n, we get

|Xˆ ˆ ˆ ˆ ˆθL−Xθ∗|22+nτ |θL−θ∗|1 ≤ 2ε⊤X(θL−θ∗)+nτ |θL−θ∗|1+2nτ |θ∗|1−2nτ |θL|1 .
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Applying Hölder’s inequality and using the same steps as in the proof of The-
orem 2.15, we get that with probability 1− δ, we get

ε⊤X ˆ(θL − θ∗ ˆ) ≤ |ε⊤X|∞|θL − θ∗|
nτ≤
2
|θ̂L − θ∗|1 ,

where we used the fact that |Xj |22 ≤ n + 1/(14k) ≤ 2n. Therefore, taking
S = supp(θ∗) to be the support of θ∗, we get

|Xθ̂L − Xθ∗|22 + nτ |θ̂L − ˆθ∗|1 ≤ 2nτ |θL − θ∗|1 + 2nτ |θ∗|1 − ˆ2nτ |θL|1
= 2nτ |θ̂SL − θ∗|1 + 2nτ | ˆθ∗|1 − 2nτ |θSL|1
≤ 4nτ |θ̂SL − θ∗|1 (2.18)

In particular, it implies that

|θ̂SLc − θS
∗

c |1 ≤ 3|θ̂SL − θS
∗ |1 .

ˆso that θ = θL − θ∗ satisfies the cone condition (2.17). Using now the Cauchy-
Schwarz inequality and Lemma 2.17 respectively, we get since |S| ≤ k,

2k|θ̂SL − ˆ ˆθ∗|1 ≤
√
|S||θSL − θ∗|2 ≤

√

n
|XθL − Xθ∗|2 .

Combining this result with (2.18), we find

|Xθ̂L − Xθ∗|22 ≤ 32nkτ2 .

Moreover, it yields

2k|θ̂L − ˆθ∗|1 ≤ 4

√
XθL Xθ∗ 2

√ n
| − |

2k≤ 4
√
32nkτ2 ≤ 32kτ

n

The bound in expectation follows using the same argument as in the proof of
Corollary 2.9.

Note that all we required for the proof was not really incoherence but the
conclusion of Lemma 2.17:

inf
|Xθ

inf
|22 ≥ κ (2.19)2|S|≤k θ∈CS n|θS |2

where κ = 1/2 and CS is the cone defined by

CS =
{
|θSc |1 ≤ 3|θS|1

}
.
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Condition (2.19) is sometimes called restricted eigenvalue (RE) condition. Its
name comes from the following observation. Note that all k-sparse vectors θ
are in a cone CS with |S| ≤ k so that the RE condition implies that the smallest
eigenvalue of XS satisfies λmin(XS) ≥ nκ for all S such that |S| ≤ k. Clearly,
the RE condition is weaker than incoherence and it can actually be shown
that a design matrix X of i.i.d Rademacher random variables satisfies the RE
conditions as soon as n ≥ Ck log(d) with positive probability.
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2.5 PROBLEM SET

Problem 2.1. Consider the linear regression model with fixed design with
d ≤ n. The ridge regression estimator is employed when the rank(X⊤X) < d
but we are interested in estimating θ∗. It is defined for a given parameter τ > 0
by

ridge
{ 1

θ̂τ = argmin Xθ|2 2

n
|Y − 2 + τ

θ IRd

|θ|2
∈

}
.

ˆ(a) Show that for any τ , θridgeτ is uniquely defined and give its closed form
expression.

ˆ(b) Compute the bias of θridgeτ and show that it is bounded in absolute value
by |θ∗|2.

Problem 2.2. Let X = (1, Z, . . . , Zd−1)⊤ ∈ IRd be a random vector where Z
is a random variable. Show that the matrix IE(XX⊤) is positive definite if Z
admits a probability density with respect to the Lebesgue measure on IR.

Problem 2.3. In the proof of Theorem 2.11, show that 4min(|θj∗|, τ) can be
replaced by 3min(|θj∗|, τ), i.e., that on the event A, it holds

|θ̂hrdj − θj
∗| ≤ 3min(|θj∗|, τ) .

Problem 2.4. For any q > 0, a vector θ ∈ IRd is said to be in a weak ℓq ball
of radius R if the decreasing rearrangement |θ[1]| ≥ |θ[2]| ≥ . . . satisfies

|θ | ≤ Rj−1/q
[j] .

Moreover, we define the weak ℓq norm of θ by

|θ| = max j1/qwℓq [
1≤ ≤d

|θ j]
j

|

(a) Give examples of θ, θ′ ∈ IRd such that

|θ + θ′|wℓ1 > |θ|wℓ1 + |θ′|wℓ1
What do you conclude?

(b) Show that |θ|wℓq ≤ |θ|q .

(c) Show that if limd |θ|wℓq <∞, then limd |θ|q′ <∞ for all q′ > q.→∞ →∞

(d) Show that, for any q ∈ (0, 2) if limd→∞ |θ|wℓq = C, there exists a con-
stant Cq > 0 that depends on q but not on d and such that under the
assumptions of Theorem 2.11, it holds

|θ̂hrd σ2 log 2d 1− q

−
)

2

θ∗|22 ≤ Cq
n

with probability .99.

(
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Problem 2.5. Show that

θ̂hrd = argmin
{
|y − θ|22 + 4τ2

θ IRd

|θ|0
∈

ˆ

}

θsft = argmin
θ

{
|y − θ|22 + 4τ |θ

IRd

|1
∈

}

Problem 2.6. Assume that the linear model (2.2) with ε ∼ subGn(σ
2) and

ˆθ∗ = 0. Show that the modified BIC estimator θ defined by

1
θ̂ ∈ argmin Y Xθ

θ IRd

{
n
| − |22 + λ|θ|0 log

∈

( ed

|θ|0

)}

satisfies,
log ed

MSE(Xˆ θ∗
θ) . |θ∗| 2 0

0σ

(
| |
n

)
.

with probability .99, for appropriately chosen λ. What do you conclude?

Problem 2.7. Assume that the linear model (2.2) holds where ε ∼ subGn(σ
2).

Moreover, assume the conditions of Theorem 2.2 and that the columns of X
are normalized in such a way that maxj |Xj

√|2 ≤ n. Then the Lasso estimator

θ̂L with regularization parameter

√
2 log(2d)

2τ = 8σ ,
n

satisfies
|θ̂L|1 ≤ C|θ∗|1

with probability 1− (2d)−1 for some constant C to be specified.

6
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