18.S997 Spring 2015: Problem Set 1

Problem 1.1

A random variable X has χ_{n}^{2} (chi-squared with n degrees of freedom) if it has the same distribution as $Z_{1}^{2}+\ldots+Z_{n}^{2}$, where Z_{1}, \ldots, Z_{n} are iid $\mathcal{N}(0,1)$.
(a) Let $Z \sim \mathcal{N}(0,1)$. Show that the moment generating function of $Y=Z^{2}-1$ satisfies

$$
\phi(s):=E\left[e^{s Y}\right]= \begin{cases}\frac{e^{-s}}{\sqrt{1-2 s}} & \text { if } s<1 / 2 \\ \infty & \text { otherwise }\end{cases}
$$

(b) Show that for all $0<s<1 / 2$,

$$
\phi(s) \leq \exp \left(\frac{s^{2}}{1-2 s}\right)
$$

(c) Conclude that

$$
\mathbb{P}(Y>2 t+2 \sqrt{t}) \leq e^{-t}
$$

[Hint: you can use the convexity inequality $\sqrt{1+u} \leq 1+u / 2$].
(d) Show that if $X \sim \chi_{n}^{2}$, then, with probability at least $1-\delta$, it holds

$$
X \leq n+2 \sqrt{n \log (1 / \delta)}+2 \log (1 / \delta)
$$

Problem 1.2

Let $A=\left\{A_{i, j}\right\}_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}$ be a random matrix such that its entries are iid subGaussian random variables with variance proxy σ^{2}.
(a) Show that the matrix A is sub-Gaussian. What is its variance proxy?
(b) Let $\|A\|$ denote the operator norm of A defined by

$$
\max _{x \in \mathbb{R}^{m}} \frac{|A x|_{2}}{|x|_{2}}
$$

Show that there exits a constant $C>0$ such that

$$
\mathbb{E}\|A\| \leq C(\sqrt{m}+\sqrt{n})
$$

Problem 1.3

Let K be a compact subset of the unit sphere of \mathbb{R}^{p} that admits an ε-net $\mathcal{N}_{\varepsilon}$ with respect to the Euclidean distance of \mathbb{R}^{p} that satisfies $\left|\mathcal{N}_{\varepsilon}\right| \leq(C / \varepsilon)^{d}$ for all $\varepsilon \in(0,1)$. Here $C \geq 1$ and $d \leq p$ are positive constants. Let $X \sim \operatorname{subG}_{p}\left(\sigma^{2}\right)$ be a centered random vector.

Show that there exists positive constants c_{1} and c_{2} to be made explicit such that for any $\delta \in(0,1)$, it holds

$$
\max _{\theta \in K} \theta^{\top} X \leq c_{1} \sigma \sqrt{d \log (2 p / d)}+c_{2} \sigma \sqrt{\log (1 / \delta)}
$$

with probability at least $1-\delta$. Comment on the result in light of Theorem 1.19.

Problem 1.4

Let X_{1}, \ldots, X_{n} be n independent and random variables such that $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{var}\left(X_{i}\right) \leq \sigma^{2}$. Fix $\delta \in(0,1)$ and assume without loss of generality that n can be factored into $n=K \cdot G$ where $G=8 \log (1 / \delta)$ is a positive integers.

For $g=1, \ldots, G$, let \bar{X}_{g} denote the average over the g th group of k variables. Formally

$$
\bar{X}_{g}=\frac{1}{k} \sum_{i=(g-1) k+1}^{g k} X_{i}
$$

1. Show that for any $g=1, \ldots, G$,

$$
\mathbb{P}\left[\bar{X}_{g}-\mu>\frac{2 \sigma}{\sqrt{k}}\right] \leq \frac{1}{4}
$$

2. Let $\hat{\mu}$ be defined as the median of $\left\{\bar{X}_{1}, \ldots, \bar{X}_{G}\right\}$. Show that

$$
\mathbb{P}\left[\hat{\mu}-\mu>\frac{2 \sigma}{\sqrt{k}}\right] \leq \mathbb{P}\left[\mathcal{B} \geq \frac{G}{2}\right]
$$

where $\mathcal{B} \sim \operatorname{Bin}(G, 1 / 4)$.
3. Conclude that

$$
\mathbb{P}\left[\hat{\mu}-\mu>4 \sigma \sqrt{\frac{2 \log (1 / \delta)}{n}}\right] \leq \delta
$$

4. Compare this result with Corollary 1.7 and Lemma 1.4. Can you conclude that $\hat{\mu}-\mu \sim \operatorname{subG}\left(\bar{\sigma}^{2} / n\right)$ for some $\bar{\sigma}^{2}$? Conclude.

MIT OpenCourseWare
http://ocw.mit.edu
18.S997 High-dimensional Statistics

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

